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12,2 (1971) 

ERROR BOUNDS FOR EIGENVALUES AND EIGENFUNCTIONS OF SOME 

ORDINARY DIFFERENTIAL OPERATORS BY THE METHOD OF LEAST 

SQUARES 

K. NAJZAR, Praha 

1. We shall consider a numerical approximation by the 

method of least squares for the eigenvalues and eigenfunc-

tions of the following real boundary value problem 

(1) Jijuu(x) •» X*AA,(X), X € (0,4) 

subject to the homogeneous boundary conditions 

(2) UUt, (x)) m 0 , 

where 

•M,4A,CX) m Z.oC-4) + . L^CX)44,C*>CX>JC*} , 

(3) i^Cx)eCc
<f^>9i^4,...9m,, ^Cx)>0 on <0, 1 > 

and the homogeneous boundary conditions of (2) consist of 

2m, linearly independent cond .tions of the form 

(4) T inn,.. u^CO) +<*;*.AJ^CD }**0, 4 & £ *2m, . 

We assume that the eigenvalue problem (1) - (2) is self-

adjoint in the sense that 
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(5) ( M/uu, <w ) » (*JU9Mnr) for all At, nr e 3), 

where 2) denotes the set of real-valued functions of the 

class C. which satisfy the homogeneous boundary 

conditions (2) and 

(xc94^)«r y^Ci)"ir(i)cii for ^ C * ) , ^ Ci) in I* ,v , 

We also assume that there exists a real constant K such 

that 

(6) (Jt,4A,fAA>) 2- K-C-a.,>u.) for all AM e. S) . 

With the assumptions (5) and (6) the eigenvalue pro­

blem of (1) - (2) has countably many eigenvalues ^ A^JfJ^ 

which are real and have no finite limit point, and can be 

arranged as follows: 

(7) \ * \ * ... -V * ... • 

The associated normalized eigenfunctions A <y- (^^^.^ .» 

<2m) 
7-i € ^<o <i> form a complete orthogonal system in 

^<0,1> ' 

For each positive integer Jk* let K ̂  < 0f 4 > deno­

te the collection of all real-valued functions AJU defined 

on < 0, 4 > such that each AC m Cj*"J[ and ufh'1)(x) 
\ Q?1 ? 

is absolutely continuous with AJU e L < 0 4> . Now let 

M denote a differential operator of the form (1) with 

the domain 2) (M ) in La
<0 ^y ~ a real separable 

Hilbert space, where 

2 K M / - *>u* c T^l%0^4> ; AA> satisfies (2)?. 
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Let < f4 f~4 , Y^ e. 3CM) be a t o t a l l y complete s y s ­

tem ( c f . E l J ) and p, be a rea l number such that 

(8) ^ F l ^ - ^ l » U . - (O.I > 0 . 

By Theorem 3 of [13, we have 

where q^H is the smallest eigenvalue of the algebraic 

eigenvalue problem 

AH JO, - G (foH AA, ~ 0 . 

the matrices A . « * cc — ff . „ and ft m {fl.,}*. 

have their entries given by 

«*+ - CM^Vt, Me,r+)9 &+-'<.**.%), l,imi9^H9 

-M^ir • Mir - (U»ir £ov ir c S)(M) . 

Let Ru and A w be subspaces of I* _ determi-
*• w < 0,-J > 

ned by the functions **"* jj„f and fAi^l^iJ^ , res­

pectively. 

By Theorem 1 of [3] there exists a constant C, , indepen­

dent of K such that 

** -'**-f*' * V or/ , 

* t w ^ *> * 

where g>. is a normalised eigenfunction of Jt associa­

ted with the eigenvalue A* . We shall call 

A. » ^ + j ^ . îx̂ yv [ A J - <u, 3 
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an approximate eigenvalue. Thus 

(9) I A, - Л* | * Ç. • <^â 

Suppose the eigenvalues f X^ t of (1) - (2) satis­

fy the following assumption 

(10) IA^.,1 < 1^1 < U^.,,1 . 

Construct {^M ! such that the following conditions be 

satisfied: 

1) JUUH c RN , l.itN f « 4 , 

2) <̂ w • IM^ u,H ! , 

3) («..!,.-«., AÍ+1 ) г ű 

By Theorems 2 and 3 of [33 there exist constants C« , C ,̂ X̂ , 

X., X 3 and an integer }[ such that for }( & ft„ 

(11) A^-• (t<, + £ N • ^ 9 ^ £ ( M ^ ^ N f ^ N )J , 

(12) l « . N - 9 j l 6 c , . d; , 

and 

I-** - 9>*« -- V f e N > 

where e^ - q,N - I C .M^ <u,N , -tt,N ) I . 

We shall ca l l Ai.v an approximate eigenfunction for (1) -

(2) . 

We now apply the method of least squares to appropri-
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ately selected finite dimensional subspaces KM of 

2>CM) . 

In particular, we consider polynomial subspaces and sub-

spaces of L -spline functions. We derive the asymptotic 

order of accuracy for the approximate eigenvalues, as well 

as for the approximate eigenfunctions. 

2. As our first example, we consider P , the >CN) 
o 

CAT +• A -2n%) -dimensional subspace of L < 0 4> consist­

ing of all real polynomials of degree i4 H which satis­

fy the boundary conditions of (2). 

Let 3 be the operator with the domain SB CM) de­

fined by 

(13) Bx * xc2m,) for x € 2 CM) . 

The problem B,x » 0} x € <$ C M ) has only the trivial 

solution. On the basis of the functional analytical theory 

of differential equations there exists a continuous opera­

tor 3~* mapping LZ
<0 A> into L 2

< 0 ^ > such that 

B ~ V m £ G CI,**) JULCV) drf u> e L < o , ^ > > 

where <J Ct , t ) is the Green's function for the problem 

B*x - 0 . 

We now present an elementary lemma which will be essenti­

ally used later. 

Lemma 1. With the assumptions of (3), (8) and (13), 

let C =-AL.B be a linear operator whose domain is 

2 ) C O , 3 ( C ) =- {-U/ 6 L ^ H > j u, is piecewise continu-
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ous on < 0, 4 > } an^ whose range is in l}<Q A> • Then 

C is continuous. 

Proof. If -f * fl) C C ) then there exist the points 

I ; * , » ! * . * . * C o, 4 > 8uch that * 6 c C M (**> ̂ A 

where «x0 * 0 ,
 x4,+^ -» 4 • 

If X € C*.. *• ), fl ̂r i -6 Jfe , it follows from the 

definition of the Green's function that 

f 
o 

and CB^-n'^Cx) - fC*> . 

(B-"-f )C^(x) - fвjĄ*,i)-t(-tìcH: foг 0 « ÿ « U - 4 

Since .M*, can be written as 
2m-

M^C44,3»4Z0a4C^)^
c^Cx),a^Cx)€C<v>, 0**.6 .2/n, , 

we have Cf » -ML 3"* f * & , where 

/iK*)» a„ Cx>-^C^)+/CiZ"a.Cx)Gx
ci>Co(,t)).-fCi)vit 

-t.TI' 0 *V«0 *» ** * 

/ 
for each x e C X^, *£-M > > *> * & * ** • 

It follows by direct computation that II Cf J ^ ft« I) f II 

where 

Q-*a, + *, a, -„*&%„ I a^C*)! , 

*r- ifJ\%\.Cx)G?>Ut-b)\i-dLtdLx)^ . 

Note that A does not depend on {Xji. M and this 

completes the proof of the lemma. 
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Corollary. With the assumptions (3) and (8), let 

Ky c 3)(.M) A S)CC) .Then there exists a constant C. -

dependent on <£ and m* Dut independent of H , such that 

CШ,) ,CZ*n> шl 

N t*Яц J* -> tвK 
a 

(We make use of the fact that the eigenfunctions ig>4 I of 

(1) - (2) are of the class C^1> and M <p. m 

We remark that if H £ 2m, then the set P «• 

« -C t ^ . t e P ? is a finite dimensional subspace of 

3)CM) r> SDCC ) consisting of all real polynomials of the 

degree -£ >f — 2 m , The following result is obtained 

from Corollary and Jackson's Theorem of C4J, p.113-

Theorem 1. (a) With the assumptions (3) and (8), let 

A - be the approximate eigenvalue of (1) - (2), obtained 

by applying the method of least squares to the subspace 

T?m of I* ̂ v , where H £ 2 m . If the eigenfunc-
0 vO,*1/ ; 

tion q>. of (1) - (2) is in Cc*> ̂ v , with t -* 2m9 

then there exists a constant J) dependent on <rt, and ̂. 

but independent of M 9 such that 

(14) ^-^^\^X^^'^?f^2 

for all H £ 2m- , where a) is the modulus of conti­

nuity. 

(b) With the assumptions (a) let 

•V<i < ' V * ,A**< 
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and let /u,^ be the approximate eigenfunction for (1) -

(2), obtained by applying the method of least squares to 

3? . Then there exists a constant 3) and an integer 

HQ , dependent on -j, and m* but independent of N , 

such that 

(i5) i^-^'-^-i-of.L)*^^^ ihz* 
lor all if* ** • 

(c) I f , i n a d d i t i o n , the e igenf unc t ion <p> i s ana­

l y t i c in some open s e t of the complex plane c o n t a i n i n g the 

i n t e r v a l < 07 A i> , then t h e r e e x i s t c o n s t a n t s /cc and 

<" .* , (*>t* * Q> *> f 4*.m 49 1 9 such t h a t 

JUmi 1 * 2 - A . I * » ^ 

and 

H%Si% ?*""•*** 'Ví 

Remark 1» I f t h e r e e x i s t s a cons tan t JC £? 0 such 

t h a t muue l 4 * 0 x > l £ K • 1 J L , - ^ * for a l l ^ e 2>CM), 

then we may ob t a in e r r o r e s t i m a t e s in the uniform norm for 

the approximate e i g e n f u n c t i o n s . 

Remark 2 . Jf the hypotheses of Theorem 1 ho ld , then 
if 

the error of the approximate eigenvalue X • has the 

order of magnitude <y(dL~ * "* ) and the error of the 

approximate eigenfunction xi,M in the norm (I • J a 
W L.* < 0,4? 

has the order of magnitude or Cct~* * a"1') , where 
ct * c&m, Pf** » K + 4 - 2/n. . o 

We now assume that A. 4» 0 for £ « ^£,,.. and 

consider 5^ , the (if + 4 ) -dimensional subspace of 

XT<0 consisting of all real functions of the form 
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M i } where i is a real polynomial of the deg­

ree is M . From Lemma 1 and Lemma 5 of f3J, we obtain 

Theorem 2. Let the assumptions (a) in Theorem 1 be 

satisfied and let X± 4s 0 for any integer 4, . Let 

A^, be the approximate eigenvalue of (1) - (2) obtai­

ned by applying the method of least squares to the subsp^ 

ce Rw e SM of La^* A -, - Then there exists a con-* 

sonant JL , dependent on g- and m, but independent of 

K , such that 

(i6) IAJ - A^I ^\^t-t^>^a\jn% 

for all N £ 4 . 

If, in addition, the assumptions (b) in Theorem 1 are sa­

tisfied, then there exist a constant D^ and an integer 

H such that 

(17) l*H -%l& \ C jft ' co CM,«\ jj- )1 

for N £ ^ f 

Remark 3. Theorem 2 gives us that 

\x1-Xj\mv Cd"1*) , 

and II AA,H - g>, 8 » O* CcT* ) , where d m dunv SH ** H + 4 . 

3* As our second example, we consider subspaces of 

L -spline functions introduced in [51. We now restrict 

for reasons of brevity to the special homogeneous bounda­

ry conditions of the following form 

(18) M,(M*(0) * M?*ti)m 0 , 0 - 6 * , - * / * - * -
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Let L be the /m ~th order linear differential opera­

tor defined by 

L ^ - J£«a^(x).>aclt)Cx) , x e < 0, O 

for a l l AJU m K%* < Qf 4 > . We assume that a^ (x) e 

e K™ <07 4 > f Q&Jks"<m,f and ailn,(x)*6>»0 for 

a l l x € < 0, 4 > . 

Let ft t 0 m x0 < ot^ < ... < XN<*H 4
m ^ denote a parti­

tion of the interval < 0, 4 > and l e t x, .« Ca^, a^, *•• 
• ••-^.w- ^ ) • the incidence vector, be an (N + 2 ) -7 n' H+4 * 

vector with positive integer components each less than or 

equal to /m , i . e . , 4 £ £ . m m%, $ m Qf ... f H + 4 . 

The class of a l l L -sp l ines for fixed ff and it with 

*S> * XH4.4 = rrrv we denote by &p, (Lf IT, X ) , which 

corresponds to the boundary interpolation of Type 1 in 

[ 5 ] . Note that i f L*^ •» 4jucm) and %m (mv,4f ..., 4, sm,) 

then 5-ft C L ftf Z> ) i s the space of ordinary spline 

functions i&ffc C j r ) , If 5& m Cm,, /m, f *.*, /m. ) and 

L-a- « AU(m* f then £>fv CL,3rf x> ) i s the Hermite spa­

ce H(m* (vr) of piecewise polynomial functions. 

We remark that i f /*n- > m. , then Afi^ (LfJrf z>) f 

the subset of elements of &f* CL? srf z) which sa t i s ­

fy the boundary conditions of (18), i s a finite-dimensio­

nal subspace of 3> CM ) n 3) iC ) . 

Let { ^ f i f De a sequence of partitions of < Qf 4 > 

such that ^ij*£ 3 ^ - 0 , % - ^tff^J ** ~ *-(,•< I and 

let 6" be a positive constant such that & ft 2: 5TL 

foг all * -M , 2Г ~ i? *J X* " •**t>i ' * L e t * ' 
Cfe) 
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be an incidence vector associated with % 

If qp. c K*4* < 07 i > , «n> >• m* , then there exist a 

positive integer Jk,Q and a constant <? f dependent on 

^ and (m, but not on Je, such that 

where Jb^ is a unique &fi (L, sr^9 z,c ) -interpo­

late of 9. (cf.[53). Since j ^ m &p,0CLf3fa, z>ck)),the 

following result follows immediately from Corollary. 

Theorem 3. Let i 7T^ ^m4
 De a sequence of parti­

tions of < 0, i > such that .jtim* 5v m Q and 
* m--*eo **• 

G • 3T 2r sfj^ for all M* Ss i , where 6* is a 

positive constant. Let i soc^ }£ m 4 be a corresponding 

sequence of incidence vectors associated with iv%,l£u4 • 

With the assumptions (3) and (8), let ft*\ be the ap­

proximate eigenvalue of (1) - (18) obtained by applying 

the method of least squares to the subspace 

KHm ^ , ( 1 , ^ , * * > ' of I* < < V f > . 

If the eigenfunction <f* of (1) - (13) is in X* <0, i> 

with t fe 2mv > 2/n, , then there exist a constant (3 , 

dependent on £> and m, and tnv hut independent of jfe , 

and a positive integer Jfc, such that 

(19) lxf--Xj\* G . ( J E ) W - ^ 

for all M/ & M0 , 

If, in addition, 
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then there exist a constant GL dependent on £ /n, and 

/m- but independent of Jfe, ̂  and a positive integer Jt 

such that 

(20) \м.ц - <PàЪ * ö,. ÍJ^ l/m,-2/n, 

for all Jfc, 2 M^ . 

Remark 4. Let ^^jj^JjJ^^ D e a sequence of parti­

tions of < 0. 4 > such that .icw SL » 0 an<- let 

{ X ijf 4 be a corresponding sequence of incidence vec­

tors associated with { 3TrV $«?* .-

Define JjL as the class of real-valued functions of the 

form 

w « IT4*, Y e Aft C I , , ^ , *<*>), J* - 4,2,... . 

With the assumptions of (3) and (8), let X* be the ap­

proximate eigenvalue of (1) - (18) obtained by applying 

the method of least squares to the subspace 3?.. s 6J, . 

If *#. c K* < Q7 A > } i * 2m, r 2/m. , then there ex­

ist constants <j* , GL and a positive integer Jk,Q such 

that 

IA+ - *f I * G a - c ^ ) w 

for any Jfe» -i Jfe, . 

If, in addition, I A- A I <-- I A? I <: I Aj . . I % then the-
y"T #• ^ r i > 

re exist a constant (3̂  and an integer Jk, such that 
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for any Jh & Jk/ * This follows from Lemma 1 and Theo­

rem 9 of C52. 

In [71t Ciarlet, Schultz and Varga obtain the asym­

ptotic order of accuracy for the approximate eigenvalues 

and for the approximate eigenfunctions by applying the 

Rayleigh-Ritz method to PcW> and to S<p> (l*^, *> ) • 

Comparing the above theorems and remarks with the results 

of [7 3 we see that the asymptotic order of accuracy for 

the approximate eigenvalues and the approximate eigenfunc­

tions obtained by the method of least squares are very 

close to those of L7J; more precisely, (16), (17), (19) 

and (20) correspond to (5.1), (5.4), (5.9) and (5*10) of 

£7]i respectively. 

We remark on the other hand that the principal advan­

tage of the method of least squares is that we need not 

know the eigenvalue A^ for * < #* *n<* the corresponding 

eigenfunctions to obtain an approximation of A. -

Moreover, one can obtain upper or lower numerical approxi­

mations of the eigenvalues and the eigenfunctions of (1) -

(2) by choosing a parameter p* appropriately. 

The behaviour of the constants C and K. -i/ -» 

= 4,2,3 of (11) depending on & are studied and the 

results will be published later. 
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