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ERROR BOUNDS FOR EIGENVALUES AND EIGENFUNCTIONS OF SOME
ORDINARY DIFFERENTIAL OPERATORS BY THE METHOD OF LEAST
SQUARES

K. NAJZAR, Praha
1. We shall consider a numerical approximation by the

method of least squares for the eigenvalues and eigenfunc-

tions of the following real boundary value problem

(1) Muw(x) = Ao (X)), xe (0,1)
subject to the homogeneous boundary conditions
(2) Ul (x)) = 0,

where

Mo (x) = 2 -0 Ly ) w019

) () eCP  G=1,,m, 2,(x)>0 on 0,1)

and the homogeneous boundary cor.ditions of (2) consist of
2m 1linearly independent cond.tions of the form

2
@) 5 fmyy a0+ myf "N 320, 164 £2m .

We assume that the eigenvalue problem (1) - (2) is self-

adjoint in the sense that
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(5) (Muw,wv )= (u, M) for all u, e D,

where £ denotes the set of real-valued functions of the

2m)
<0,1>

conditions (2) and

class C which satisfy the homogeneous boundary

4
. 2
(u,v)::bfw(t)-v(t)d,t for w(t), » (t) in L<0’4> .
We also assume that there exists a real constant K such

that

(6) (Huw, ) 2 K-(uya) for all w e D .

With the assumptions (5) and (6) the eigenvalue pro-
blem of (1) - (2) has countably many eigenvalues fﬂé}’-‘:q
which are real and have no finite limit point, and can be

arranged as follows:

(1) A oENE L Ny £

The associated normalized eigenfunctions {g% (x 73;:.,, ’

¥ € C:f,m';> form a complete orthogonal system in
2>

2
L<o,4>

For each positive integer A let K’: <0,1> deno-

te the collection of all real-valued functions « defined

-» _
on €0,1) such that each w« e c<‘:‘ 4") and ™)
il
is absolutely continuous with ™ ¢ L2<° 4y - Now let
’

M denote a differential operator of the form (1) with
the domain P (M) in I,"<° 1y '~ a real separable
”

Hilbert space, where

DM ={une K:""(%,,,; u satisfies (2)%.
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Let {VY, 1.% ¥, € I(M) be a totally complete sys-

4+ 4=z ?

tem (cf.[1]) and @ be a real number such that

(8) Wl%—(wl=l.7té-—(al>0.
By Theorem 3 of [1]1, we have
4&‘/"1: Q—N = |A‘—(u.l >

N co
where QzN is the smallest eigenvalue of the algebraic
eigenvalue problem

ANW—G'@N“' - 0 H

. N N
the matrices ‘A'N - 4 L3 }".”.._1 and ﬁN = {ﬂia' }4'5.1

have their entries given by
“1",‘_ = (M@?‘.“" Mﬂ“ Y?'), {3"= (Y‘-_,?F,n), 4:,4'.:4,...,}‘,
M v e Mr-w-v for v e DM .

Let R, and 3,‘ be subspaces of L’-(o s> determi-
?
N

ned by the functions {¥;3}; , and {M, ¥ 3‘{‘" , Tes-

pectively.
By Theorem 1 of [3] there exists a constant C, , indepen-

dent of N , such that
2
ey ~ 1A ~l = C .07 ,

G = ik Mgy -t

where q:’. is a normalized eigenfunction of M associa~

ted with the eigenvalue A’- . We shall call
N ,
A, =+ Qe mign [, - w]
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an approximate eigenvalue. Thus
(9) I, - Al £ Gt .
Suppose the eigenvalues {A;} of (1) - (2) satis-
fy the following assumption
(10) |.7l4_1l< lJl.é_I<l.h’-+4| .

Construct {uy ! such that the following conditions be

satisfied:
1) “‘N‘RN"“N,°4'
2) iN-“MG"“N"
3 (e, 4y, ) 20 .

By Theorems 2 and 3 of [3] there exist constants Cz, C,,K",
Kz, K’ and an integer _h[1 such that for N = N1

(11) A:'-(pgd-gu-/dqn[(M‘uuN,uN)J ,
Cro2ela, -ail=c.d
(12) luy-gl = ¢ oy,
and ‘
Kyred =1, -aj12x,- €,
Juy - @, 1 £ K,- 8, ,
where e"-QN-—lCM“aw“,wN)l .

We shall call .u.” an approximate eigenfunction for (1) -

(2).
We now apply the method of least squares to appropri-
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ately selected finite dimensional subspaces K of

DM) .

In particular, we consider polynomial subspaces and sub-

spaces of L -spline functions. We derive the asymptotic
order of accuracy for the approximate eigenvalues, as well

as for the approximate eigenfunctions.

2. As our first example, we consider PO‘N’ , the

_ . . 2
(N +1-2m) -dimensional subspace of L<‘,’4>

ing of all real polynomials of degree £ N which satis-

consist-

fy the boundary conditions of (2).
Let B be the operator with the domain QD (M) de-
fined by

(13) Bx = x®™  for x € M) .

The problem Bx =0, x € O (M) has only the trivial

solution. On the basis of the functional analytical theory

of differential equations there exists a continuous opera-
-1 . 2 : 2

tor B mapping I_,“,”> into L<o,1> such that

4
Blw = fE(t, 2 ulm)dr, well,, ,

where G (t, 2 ) is the Green’s function for the problem
Bx = 0. )
We now present an elementary lemma which will be essenti-
ally used later.

Lemma 1. With the assumptions of (3), (8) and (13),

let C =M(“ B"’ be a linear operator whose domain is

D), D) =4w e L2

0,155 4 is piecewise continu-
)
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ous on < 0,1 3 and whose range is in I}(o 45 ° Then
?
C is continuous.

Proof. If + € & (C) then there exist the points

[
{x“ }:;4 , X, € (0,4) such that fe C(&L.Ja (.xi,.x‘”)),
where X, = 0, Xg,0 = 1
It xe(x;,x, . ), 04£4i £ k , it follows from the

definition of the Green’s function that

1 .
(B £)P(x) = {G'x@"(.x,t)-ﬂf)dt for 024 & 2m -1
and (B1£)@™ (x) = £(x) .

Since M‘w can be written as

2m .
Mo fud = Z e, (Ou@(x),a,(x)eC, ., 064 %2m,

we have (Cf = M(“ B-'f = 2, where

1 2m-1 D
v(x) = @y, (x) £+ S(Z Ja, (x) G (x,t))- £ (t)at
for each % & (xa-_,l.xéﬁ), 04 & &
It follows by direct computation that NCFfl & Q.0+ 1 ,
where

Q@ =a+br a = la
’ x %15 am ()1,

201 &)
e (f/1% 0 060, 12at asrt .

Note that & does not depend on {x"-'}:;‘, and this

completes the proof of the lemma.
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Corollary. With the assumptions (3) and (8), let
KNC QM) A DCC) . Then there exists a constant C+ ,

dependent on 4 and m but independent of N, such that
= 4 - £ . @n)_ , Gan j2
= g NG NG g Vg 0T

(We make use of the fact that the eigenfunctions {%} of

am
(1) - (2) are of the class C<o,4; and M, P =

= (JL’- —(«.)-gg-)
We remark that if N 2 2m , then the set P =
= {ta‘”": te Poc”)i is a finite dimensional subspace of
D(M) A D(C) consisting of all real polynomials of the
degree £ N -~ 2m ., The following result is obtained
from Corollary and Jackson’s Theorem of [43, p.113.
Theorem 1. (a) With the assumptions (3) and (8), let

.7(.';- be the approximate eigenvalue of (1) - (2), obtained

by applying the method of least squares to the subspace

?:m of I.,'<o 45 » Where N =2 2m . If the eigenfunc-
2

. e s t) s

tion g of (1) - (2) is in C<°’4> , with ¢t 2 2m,

then there exists a constant 12' dependent on m and 3_
but independent of N , such that

1 1
N G D[ i (o A2
A M Ry TS e

forall N =2 2m where ¢ is the modulus of conti-

’
nuity.

(b) With the assumptions (a) let

1Al < 1250 < 1o,
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and let Aoy be the approximate eigenfunction for (1) -

(2), obtained by applying the method of least squares to

Pom) . Then there exists a constant Dz and an integer

N, , dependent on 3 and m but independent of N,
such that

1 1
: . - P4 . . C¢)
(15) Iq7 sy 1 £ N —2mim w(q; » N-2 )
for all NZ m .

(¢) If, in addition, the eigenfunction % is ana-
lytic in some open set of the complex plane containing the
interval <0,4)> , then there exist constants (%4 and

Gg » @€ €0,1>, 4= 4,2 such that
= | AN *
R e L

and .
Nﬁ (lg»,‘--u.“l)"7 -, -
Remark 1. If there exists a constant Kg e 0 such
that ‘%Ju(.x)lél(ﬁ- U Mg 4 for allu € D (M),

then we may obtain error estimates in the uniform norm for
"the approximate eigenfunctions.

Remark 2. If the hypotheses of Theorem 1 hold, then
the error of the approximate eigenvalue .ﬂ.”?-_ has the
order of magnitude o (d~2tt+%m) and the error of the

approximate eigenfunction in the norm |l . {

N
has the order of magnitude o (d-t+2m) , where

demr;”’aN+4-2m.

L2<0,1>

We now assume that 2.‘. * 0 for v =4,£,... and

consider 3" , the (N + 1) -dimensional subspace of

Li(g 1> consisting of all real functions of the form
v
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M1t R where t is a real polynomial of the deg-
ree £ N . From Lemma 1 and Lemma 5 of [3], we obtain
Theorem 2. Let the assumptions (a) in Theorem 1 be

satisfied and let A, # 0 for any integer i . Let

.hg be the approximate eigenvalue of (1) - (2) obtai-

ned by applying the method of least squares to the subspa.
2 .

ce RN =9 of L <o,1> ° Then there exists a con.

sonant IDS , dependent on 3 and m but independent of

N , such that

N 1 _. @ 4,2
(16) 125 = A1 £ e mgy - Lo ) 7]

for all N = 1.
If, in addition, the assumptions (b) in Theorem 1 are sa-
tisfied, then there exist a constant D,f and an integer

‘No such that
1
(17) Hu,u-cp’-l £ D, E?‘-‘-'wa

for N = NO «
Remark 3. Theorem 2 gives us that
N -2t
Iﬂ'é—ﬁ4|80‘(d ),

-t B
and "u,"-g)’.ﬂ-or(d, ), wheredsdam,suuN-tJ.
3. As our second example, we consider subspaces of

L. -spline functions introduced in [5]. We now restrict
for reasons of brevity to the special homogeneous bounda-

ry conditions of the following form

18) ™0 =u™=0, 04 hem-1.

- 243 -



Let L, be the m -th order linear differential opera-
tor defined by
m
Lu = hg.o%(x)-u(»(x) , x€e <0,1)>
for all w e K™ <0,1> . We assume that a, (x) €
e K*<0,1y, 0& b €m
all x € <0,1)> .

Let v : 0 = Xy < X, < .. < .x~<¢<~”-4 denote a parti-

, and a,, (x) T @ > 0 for

tion of the interval <0, 1) and let z = (=z,, Z,,..-

X Z ), the incidence vector, be an (N +2) -

N? T“Neq
vector with positive integer components each less than or
equal to m , i.e., 1€ 2, &€ m, F=0,...,N+1 .
The class of all I -splines for fixed # and 2z with
z, = Zyeqg = mv we denote by s,ﬂ, (L’ v, z ) , which
corresponds to the boundary interpolation of Type I in
[5]. Note that if L =« and x = (m,1,..., 1, m)
then 3p CL, w, 2 ) 1is the space of ordinary spline

functions Sp (), If 2 = (m,m,..., m) and

Lu = «™ , then Spn (L, o, =) is the Hermite spa-
ce H™ (x) of piecewise polynomial functions.

We remark that if m > m , then Sp, (L,m, z),
the subset of elements of Sp (L, s/, £ ) which satis-
fy the boundary conditions of (18), is a finite-dimensio-
nal subspace of D (M) D(C) .

Let {”h’:"l . be a sequence of partitions of < 0,1>

such that Mm =0, 7 = hml x, = xg ., ana
let @ be a positive constant such that & . = ’_"-a.

; . - 7S}
for all M =4, g!‘“=b:m"‘lx~ Xppq |l o Let z
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be an incidence vector associated with M ¢
If ¢ e K:""“ <0,1>, m > m , then there exist a

positive integer &, and a constant @ , dependent on

4 8and m  but not on fe, such that

'%“M)‘ b‘:w‘ £ G. (Wh’zm-xm , R = ho ,
where 4,  is a unique Sp (L, Jr;, %) _interpo-
late of @ (c£.[5]). Since &, e Sn,(L,m, 2®), the

following result follows immediately from Corollary.

Theorem 3. Let { i, 3% be a sequence of parti-
R ‘esq

tions of < 0,1 such that Ldmaﬁ,‘ - Q0 and

yoo
G-m;, = 7y for all % = 4 , where & isa
positive constant. Let ¢ Pl }:.1 be a corresponding

sequence of incidence vectors associated with {%i,:",f .
With the assumptions (3) and (8), let .7\.;‘_ be the ap-
proximate eigenvalue of (1) - (18) obtained by applying
the method of least squares to the subspace

Ry= S, (L,m, z,) of 1L, . .

If the eigenfunction g@; of (1) - (13) is in X} <0, 1>

with t = 2mm > 2m , then there exist a constant G,
dependent on j. and m and m but independent of g ,

and a positive integer ho such that

N . = \hm-bm
(19) l&é-a.?-(é G (m,)

for all M 2 k‘o .

If, in addition,
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1Ayl <1250 < 12,1

?
then there exist a constant 61 dependent on j,’ m and
m but independent of e , and a positive integer h1

such that

— \2m-2m
(200 by - @ 1 &« G- (7))

for all R =2 hq .
Remark 4. Let {1y $.° be a sequence of parti-
RS TP

tions of < 0,1 such that = Limy o = 0 and let
Ao ~ o0

{ x"" “:’_1 be a corresponding sequence of incidence vec-

. . (-
tors associated with 4 Moo Joceq -
Define % as the class of real-valued functions of the

form
-4

w=B"Y ¥YeSp (L,m,2z™), o =1,2,. .
With the assumptions of (3) and (8), let A,;_ be the ap-
proximate eigenvalue of (1) - (18) obtained by applying
the method of least squares to the subspace R, = b’h .
If 9, € K; <0,1> , ¢t = 2m + 2m | then there ex-
ist constants G'2 , G',3 . and a positive integer f, such
that

N = \é&m
12, - a1 £ G- (@)

for any &R = Ry -

F+1 ]
re exist a constant G,* and an integer k_, such that

If, in addition, 12.?-_4I< I.?Lé) < | A | then the-

— |20
Ilu.N—cy’-’ﬂ < G4~ (:rk)m
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for any & =2 )o1 . This follows from Lemma 1 and Theo-
rem 9 of [51.

In (7], Ciarlet, Schultz and Varga obtain the asym-
ptotic order of accuracy for the approximate eigenvalues
and for the approximate eigenfunctions by applying the
Rayleigh-Ritz method to Po‘“’ and to Spu (L, 2) .
Comparing the above theorems and remarks with the results
of [7]1 we see that the asymptotic order of accuracy for
the approximate eigenvalues and the approximate eigenfunc-
tions obtained by the method of least squaree are very
close to those of [7]; more precisely, (16), (17), (19)
and (20) correspond to (5.1), (5.4), (5.9) and (5.10) of
[7], respectively.

We remark on the ether hand that the principal advan-
tage of the method of least squares is that we need net
know the eigenvalue ﬁi for 4 < 4 and the corresponding
eigenfunctions te obtain an appreximatien of Aé .
Moreover, ene can obtain upper or lewer numerical approxi-
mations of the eigenvalues and the eigenfunctions of (1) -

(2) by choosing a parameter ¢ appropriately.

The behaviour of the constants C; and K«’. , v =
=1,2,3 of (11) depending on Z are studied and the

results will be published later.
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