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Commentationes Mathematicae Universitatis Carolinae 

12,1 (1971) 

ON PROBLEMS CONCERNING EXTENSION OF LINEAR OPERATIONS ON 

LINEAR SPACES x ) 

FrantiSek CHARVAT, Praha 

The aim of this paper is the formulation of the so-

called $ -extensibility of linear operators (i.e. linear , 

transformations of a linear space into another one) which 

is a generalization of the traditional extension of line­

ar operators, resp. functionals preserving the norm. A 

necessary and sufficient condition for extensibility of 

bounded linear operators is proved (it is the condition 

analogous to that in C33). 

A theorem is proved on extension of complex linear 

operators that is a generalization of the well known Sucho-

mlinoff's result concerning the extension of complex line­

ar functionals preserving the norm (see [23). We shall 

call P , Q. the linear space over a field X . The symbol 

X denotes a subspace of the spaceP. The elements of 

_F , resp. ft f resp. JC will be denoted by small Latin 

letters from the end of the alphabet xt n^f z. etc., resp. 

x) This paper is a more exact extension of the results in £43< 
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from its beginning, i.e. cu7Jtrf c etc., resp. by small 

Greek letters etc. Linear operators from P into Q, 

operators only in the following will be marked by capital 

letters A, B, C etc. 

For the domains of operators the symbol cUf is 

used, i.e. for example a space which is a domain of the 

operator A will be denoted dM,t A . 

Linear envelopes of subsets of a linear space will be de­

noted by brackets. 

Definition 1. Let § be a mapping from P into 

. ex^p & (i.e. the set of all subsets of the linear space 

Q ). We shall say the operator A to be $ -admis­

sible, if the following condition is satisfied: 

x € cUA A -=-»> A (x) € $ (x ) . 

Definition 2. Let $ be a mapping from P into Q . 

The operator A be called $ -extensionable, if there is 

an operator £ such that 

dvf 3 m P , 

x e <tef A ===-> A(x) * 3(x) , 
x 6 P ===> B (x) e § Cx) . 

Definition 3. Let § be a mapping from p into Q . 

This mapping is called linearly covering P in respect 

to 0, f if the following statement is satisfied: 

Let A be a $ -admissible operator, then there is 

an element a, e ft for every /̂  € P so that 

A fx#> ot . a, e $ (x +. oc <y-) 

for all x e def A and oc e K . 

Theorem 1. Let $ be a mapping from p into & . 

Then the following statements are equivalent: 
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(i) Every $ -admissible operator is a $ -exten­

sions ble operator; 

(ii) The mapping $ is linearly covering p in res­

pect to Q . 

Proof. Let (i) be true. Let A be a $ -admissible 

operator and ^ € P . From (i) it follows that A has 

a $ -admissible extension B such that def £ -* P • 

Suppose that a, m B ( ^ ) « Then 

A(x) + <*, a, = 3 (**) -*- ocB (<\f) == £ Cx -»- x ^ ) € $c\x«-oc^) 

and so (ii) is satisfied. 

Let (ii) be true. Let A be a $ -admissible ope­

rator. Let %r be a set of all $ -admissible operators. 

According to the assumption the set is not empty because 

A e <£r . Let us introduce the relation of a partial or­

der on %r as follows: 

B •< £ (B,JE e #-) if: 

def B c de* £ , x e def J = ^ J U ) » E U ) 

is fulfilled. 

Such system & satisfies the assumption of Zorn's Lemma 

because if { F^ } ̂- * is a monotone subsystem of the 

system & , then we define the operator F in the fol­

lowing way: 

def F m . U def F- , 

x e otef F *=$F(x) ** T: (x) for such I that x e F* . 
. * 

It is obvious that the definition is correct and that V. < 

-< F for U I (obviously F e tr ). 

And so there is B e £6- such that A -4 B and if B -< 

..V C , then B m C .We shall prove by contradiction th^t 
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def 3 m p . Let dt* 3 4* P . It means that there i s 

such n$, € P that def B $ £ ctef 3 u <& J c F . 

Because 3 & & , there ia Sr e Q> such that 

B ( x ) + oc -Cr € $ (\x + cc /y.) for a l l *x 6 def B and 

cC € K . It is possible to write every element 

Z e lde#3 u nfl uniquely in the form 

x + oc ^ 9 x m dvf 3 , oc e K . 

We define the oj>erator C on tdef3 u /y, 1 by th is way: 

C C *,) a» BCx) -f- cc Jtr f where 5 t « , x 4 - e c i ^ , , x e def B , 

oC c X . It i s easy to see: 

X c def B = » C U ) • BC*) , 

x e def C =*> C(sc) c $ Cst) , 

B 4- C . 

Hence C € i f i r , 3 - < C . > B 4 B C , however > i t i s a contra­

diction. Thus ( i i ) i s satisfied and the proof i s complete. 

Convention. In the following K wil l denote the f ie ld 

of real or complex numbers. Let P, A be normed linear 

spaces. We denote the norm on P by /( • I , the norm 

of (J by %% • I . The symbol S C a ; £ ) i s used 

for the set 

i Mr *, Q> -t Ha* - Jrl £ t } , I > 0 

(e.g. a closed sphere in A with the centre a, and ra­

dius & ) . 

Definition 4. Let Jk 2$ 0 . Let P , ft be normed 

linear spaces. The linear space A i s called Jk -producti­

vely centred in respect to 7 , i f the following i s sa t i s ­

fied: 

Let A be such that 

SCAC^), to,HxA + y.$) A SCACx2), JkHxL+y,l) + 0 
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for all x^ , x1 e def A and /jf- c P , then 

n ^ fi CACx), Jt ̂ ilx*/*.!) # J0 for all /u. € P. 

Theorem 2. Let to, d 0 , Let P, Q be normed line­

ar spaces. Then the following statements are equivalent: 

(i) The mapping $ from a linear space F to pcfi Q, 

defined by 

xe P =» $Cx)« (cu € a ;
 2« a, If ± to H x II f 

is linearly covering P in respect to $ • 

(ii) The linear space Q is to -productively centred in » 

respect to P . 

Proof. Let (i) be valid. Let A be such that 

SCAC^), toHx^ + <y-l) A S CAC.x2), Jk,*\\x2+ y.1) -f ̂  

for all x^ ; x, € def A and /u- € P . 

From the relation 

S(ACx), to, Uxl) A S (09'0) + 0 , x e def A 

(in the previous relation we denote x. * x} xa m ey, m 0 

- zero in P ) it follows that 

*IACx) £ to, 4ixl , x e def A . 

Thus the operator A is $ -admissible. According to (i) 

the condition is satisfied that there is a. € A for eve­

ry /y. c P such that 

HACx) tocal till fix + oc /̂.fl for X e def A end «c e K . 

It follows from the last relation (denoting oc m 4 ) that 

- c u e ^ S CACx), to AHx -t-zaft) for ell ni, • T 
xedefA ' . ^ 

(generally for different n^, there are, of course, diffe­

rent - a ). Thus| it is true that 

for all ̂ f ? end (ii) is satisfied. 
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Let (ii) be true. Let A be $ -admissible. We 

will show that 

S(ACx^), M, % x^ + /y. II) n & (A Cx2), At Hx^ y. II) #* 0 

for all #.!,*£* d*# «* and 1̂  € ^ • 

It is sufficient to show that the sum of radiuses of such 

two spheres is greater or equals the distance of their 

centres which is correct under the assumption, because 

Jk, C 1 1 ^ + y.1 + Hx^* vll) g ** *'*., - *f I * 
S 5i1A (^ - *2)I1 *

 2IIA (*,) - A(* 2)l . 

So there is — a € ft for every ^ e P such that 

-etc n SCA(*), J* 4lx +/u, «> , 

in other words: 

HA(x) 4- a, J -£ Je, 48«x -I- /y, II lor x e ctef A . 

From there it follows that for all oc c K , oc 4* 0 t 

I oc i. H A ( 5-) 4- a II 6 I oc I Jit, 4IC | ) 4- 4, II, x c def A 

so that 
2IA (x) 4- oc a II .# Jk, "* II x 4- ec /̂  I, x € def A , <sc e K, oc + 0. 

Since the last relation is trivial for oc as 0 , (i) is sa­

tisfied and the proof is complete. 

Definition 5. The linear space 0, is called produc­

tively centred in respect to P , if it is Jk, -productive­

ly centred for every Jfc, ifc 0 • 

Remark 1. As a result of Theorem 1.2 and Definition 5 

there follows the statement: Let P, 41 be normed linear 

spaces. Let Q be productively centred to P . Then eve­

ry bounded operator from P into d may be extended on 

the whole P preserving the norm. 
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Theorem 3. The linear space of real numbers is produc­

tively centred in respect to every normed linear space 

over the field of real numbers. 

Proof. Theorem 3 is a result of a more general state­

ment for the linear space of real numbers: Let %f be an 

arbitrary system of closed spheres in the linear space of 

real numbers such that any two elements of this system ha­

ve a non empty intersection. Then the intersection of all 

these spheres is a non empty set. The proof of this state­

ment is easy. We denote if** { L } ^ c N , 1̂ , «• * ^ - %^ > • 

If we denote 4. m ^ L ^ , 3,« ^ 4|t, , then it fol­

lows -fi, £z 5, . Suppose, on the contrary, that ft > £ . Then 

there is ^ , â such, that ^ > q^ by another way 

L A L - J? » on the contrary to the hypothesis. Hence it 

follows I m <4t,9q^y and I c 1^ for every ^ * N , 

so A I-. *# /? and the proof is complete. 

Remark 2. As the result of Remark 1 and Theorem 3, 

there follows the Hahn-Banach theorem on extension of real 

bounded linear functionals preserving the norm. 

Convention. Let p be a normed linear space over the 

field of complex numbers. By the symbol ^P we. denote the 

linear space P as a normed linear space over the field 

of real numbers, analogously for subspaces and linear enve­

lopes* 

Definition 6. Let ft be a linear space over the field 

of complex numbers* We call this linear space a pure com­

plex linear space, if: 

1. There is introduced a so-called involution(see L13)' on a 
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linear space ft , i.e. a mapping J from ft into ft 

such that 

J C o c a - t - / J i r ) m i c J C a W / f J O ) j 

J C J ( a ) ) - a j 

2 . on the l i n e a r space Q there i s introduced a norm such 

that 

H JCa ) I I - 2« a l l , 

I a I « /TtuJUfc i H e a . co-a t +• Vm. a, • /bt/n, i (1 
* • .1 

( 4 i s a s e t of rea l numbers). 

By the symbol Re a , reap* Lm. a we denote the so-

called peal part, reap, imaginary part of the element a . 

Every element a € ft may be written uniquely in the form 

Re a + i Ĵ v a , He a , Xm. a c Re A 

- is a subspace of the space f̂t for every its element 

it follows JCa) » Ca) . 

Theorem 4. Let p be a normed linear space over the 

field of complex numbers. Let Q> be a pure complex line­

ar space. Let jfc 2 0 • Let. a mapping <̂J> from ^P in­

to c&ft Re ft defined by the following 

^ e ^P =$> Jf Cx) * fa € Re ft> ai a I < 4* *tx 1 J 

be the linearly covering ^P in respect to He ft • 

Then the mapping $ from P into, efcfv ft defined by 

x c p => $ C*) « icu m ft j a0al -s 4t 4i x II 

is linearly covering P in resptct to ft . 

Proof. At first we shall prove the following lemmas. 

Lemma 1. Let p be a linear space over the field of 

comples numbers. Let ft be a pure complex linear space. 
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Then 

(i) for an arbitrary operator A it follows that 

x e def A ««> Vm, A (x) m - Ke ACtx), fte A is the opera­

tor from „ P into 0, : 

(ii) if B is the operator from ^? into Xe <3t then 

ACx) * BCx) - I B Ci x ), x 6 def 3 the operator 

from P into fit is defined and B * -Re A . 

The proof is 

Lemma 2. Let P be a normed linear space over the * 

f ie ld of complex numbers. Let Q, be a pure complex l ine­

ar space. Let Jk i§= 0 . Then: 

i f x e def C =-> 2II C Cx)ll £ Jte 1R x» , 

then x 6 ^def C «-> H Ke C Cx)ll 6 Ae 1H x I , 

and inversely. 

Proof. This statement i s trividal in regard to the 

f i r s t direction, see Definition 6. 

Let x e ., def C . Then we have 
fu 

Hue C(x)ll £ M, i l x l . Because x * e'** e ^cief C 

for a l l real t , i t follows 
aIRe CCx) e w t - t e C Cix)»iM,t» 6 J* ' l lx, e^B - /k ^xK 

for a l l real t* and so 
2IICCx)J m fttiatx, 2IRe C C«x) eo&t + lm> C Cx) *c/n> t I = 

t c 4 
s m ^ *«lte CCx) eo*t - H e C C i x ) **/*t II £ Jte ^tlxtt 

and the proof is complete. 

Lemma 3. Let P be a linear space over the field of 

complex numbers. Then it follows 

The proof is easy. 
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Now we prove Theorem 4 . 

Let A be $ -admissible. From the lemma i t follows 

that 3Le A i s ^^ -admissible, i . e . there is a, £ 

e Xe Q for every n̂  « ? such that 

x « def A =-» 2IIXc A C*) + /3 o^ II -= *, 1̂1 x + £ ^ I! 

for a l l real /i » 

Xe ACx) *+• fi a*4 i s an $ -admissible operator on 

j-tcle-f A u /i$, 3 into Hie (2 , i . e . for every *, ^ the­

re i s Ou « -8Le ft such that 

x € K4M$ A m*y H%&ACx)+ fia,t1 + <fa(L§£ Jk, %x + fry, + yi^l 

for a l l real /3 , <f • 

Re ACx) + (ia^ + T<x>* i s the K$ -admissible 

operator on n, C ^def A u . ty 3 u i / ^ 3 into Be ft . 

We define the operator B as follows: 

de^ B « £ cief A u /^ 3 » 

i f »*,>« + ( ( J + i f ) f , x c def A , C/3 + +¥< • X" > t n e n 

BCat) » ACx) -t- (fi + * r > f«^ - **fc > • 

It follows that He B Cst) m Jim ACx) + ft a,i + r Q-z • 

According to the preceding we have that 

* € t<t*f A u ^ ] mm5> *HBC*>!.£ -It 1 I x » , 

in other words, 

H A Cx) * <* a B £ 4t 1JI x -•- * ^ I for a l l x * dtf A 

and oc « K ( a « ^ - i ^ ) . 

So § i s linearly covering P in respect to ft , 

q.e.d . 

Theorem 5. Let P be a normed linear space over the 

f ie ld of complex numbers* Let ft be a pure complex linear 

space. Let Xe ft be productively centred in respect to 

P t Then every operator from P into CI i s extension-
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able on the whole P preserving the norm. 

Proof. This theorem is an easy result of Theorem 

1, 2,4. 

Remark 3- Theorem 5 is a generalization of the well 

known Suchomlinoff's result concerned with the extension 

of complex linear functionals preserving the norm. 
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