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ON PROBLEMS CONCERNING EXTENSION OF LINEAR OPERATIONS ON
LINEAR SPACES X)

Frantifek CHARVAT, Praha

The aim of this paper is the formulation of the so-
called & -extensibility of linear operators (i.e. linear ,
transformations of a linear space into another one) which
is a generalization of the traditional extension of line-
ar operators, resp. functionals preserving the norm. A
necessary and sufficient condition for extensibility of
bounded linear operators is proved (it is the condition
analogous to that in [3]).

A theorem is proved on extension of complex linear
operators that is a generalization of the well known Sucho-
mlinoff’s result concerning the extension of complex line-
ar functionals preserving the norm (see [2]). We shall
call P, G the linear space over a field X . The symbol

R denotes a subspace of the space P, The elements of
P, resp. @ , resp. X will be denoted by small Latin
letters from the end of the alphabet x, 4, x etc., resp.

x) This paper is a more exact extension of the results in [4].
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from its beginning, i.e. a,.f, ¢ etc., resp. by small
Greek letters etc. Linear operators from P into Q@
operators only in the following will be marked by capital
letters A,B, C etc.

For the domains of operators the symbol def is
used, i.e. for example a space which is a domain of the
operator A  will be denoted def A .

Linear envelopes of subsets of a linear space will be de-
noted by brackets.

Definition 1. Let @ be a mapping from P into
. exfy Q (i.e. the set of all subsets of the linear space

@ ). We shall say the operator A to be ¢ -admis-
sible, if the following condition is satisfied:

X e defA => A(x)e $(x) .

Definition 2. Let ¢ be a mapping from P into Q.
The operator A be called ¢ -extensionable, if there is
an operator B  such that

defB =P ,

X edef A =>A(x)=3B(x),

X € P = B(x) e p(x) .

Definition i. Let § Dbe a mapping from P into @ .
This mapping is called linearly covering P in respect
to 6 , if the following statement is satisfied: -

Let A be a @ -admissible operator, then there is
an element o € Q for every 4 € P so that

‘ A(.x‘l"}—oc. a e d(x+axqy)
for all x e def A and < € XK .
Theorem 1. Let @ be a mapping from P into @ .

Then the following statements are equivalent:
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(i) Every ¢ -admissible operator is a ¢ -exten-
sionable operator;

(ii) The mapping ¢ is linearly covering P in res-
pect to @ .

Proof. Let (i) be true. Let A be a ¢ -admissible

operator and 4 & P . From (i) it follows that A has

a @ -admissible extension B  such that defB = P .

Suppose that @ = B(a4). Then

AX)+xa =B(x)+cB(y)=B(x+axyle (x + qu,‘)

and so (ii) is satisfied. ‘
Let (ii) be true. Let A be a @ -admissible ope-

rator. Let & be a set of all § -admissible operators.

According to the assumption the set is not empty becausg

A e & . Let us introduce the relation of a partial or-

der on & as follows:

D<E (D,E e &) if:

defD © defE, xe defD => D(x) = E(x)

is fulfilled. )

Such system & satisfies the assumption of Zorn’s Lemma

because if {F, }4 eI is a monotone subsystem of the

system & , then we define the operator F in the fol-

lowing way:

def F = U defF; |,
v €

1
X e defF =>F(x) = F; (x) for such 4 that x € F; .

It is obvious that the definition is correct and that fl <
<F for L € I (obviously F e & ).

And so there ia B ¢ & such that A X B and if B g

< C,then B = C , We shall prove by contradiction that
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defB = P. Let defB % P . It means that there is
such 4 € P that defB £ [defB ugl c P,
Because B & & , there ia & € @ such that
B(x)+ xctre §(x+ xqy) for all xedefB and
« € K . It is possible to write every element
2z e [defB u g1 uniquely in the form

X+ Xy, XxXe&defB, «ceX .
We define the operator C on [defB u 4 ] by this way:
C(z)=B(x)+ &, where x = x+ xp, X € def B ,

«x € K . It is easy to see:
X e defB => C(x) = B(x) ,

2 6 defC => C(z)e §(x),
B+£C.
Hence C € & ,B<C, B % C , however, it is a contra-

diction. Thus (ii) is satisfied and the proof is complete.
Convention. In the following K will denote the field
of real or complex numbers. Let P, @ be normed linear

spaces. We denote the norm on P by 4l| ol | the norm

H
of G by 5. . The symbol S (a4 €) is used
for the set -

{re@; Na-4l € e, e6>0 .
(e.g. a closed sphere in @ with the centre a and ra-
dius €& ).

Definition 4. Let 4 & 0. Let P, § be normed
linear spaces. The linear space @ is called . -producti-
vely centred in respect to P , if the following is satis-
fied:

Let A be such that
SCAG), 2 Mx vyl A SAW), x+ 1) 4 4
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fcfr all x,,x, € def A and g € P , then

Dga SCAGO, S Mixs gy ) £ F  forall ye?P.

Theorem 2. Let % 2 0. Let P, @ be normed line-
ar spaces. Then the following statements are equivalent:
(i) The mapping ¢ from a linear space F to exf G
defined by

xeP = d(x)=faec@; Mal £ & "Mxit
is linearly covering P  in respect to @ ;

(ii) The linear space @ is 4 -productively centred in *
respect to P .

Proof. Let (i) be valid. Let A be such that

SCACx), e Mx v+ ll) A SCA), R Mx,+ 4 1)+ &

for all X xzedefA and y e P .

4 )
From the relation

SCA(x), & Mx1) A S(0,0) # F, xedef A
(in the previous relation we denote X, = X, X, = 4 = 0
- zero in P ) it follows that
HA(x) € 2 Ixl, xedefh.
Thus the operator A is ¢ -admissible. According to (i)
the condition is satisfied that there is a € & for eve-
ry 4 € P such that
A+ xcal € nlix+ axnyll for xedefA and < € XK.
It follows from the last relation (denoting o« = 1 ) that
-a ‘xcf;fA S C(A(x), s Mx + 41) for all 4 € P

(generally for different 4 there are, of course, diffe-
rent — a ). Thus, it is true that

' 1

x Chata SCAX), & hx+ g )) + 0
for all 4 € P and (ii) is satisfied.
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Let (ii) be true. Let A be ¢ -admissible. We
will show that
1 1
SA(x), b Tlx +gll) n SCACx), ke N, + 4 1) & 0

for all X xzedef‘A and 4 e P .

19
It is sufficient to show that the sum of radiuses of such
two spheres is greater or equals the distance of their

centres which is correct under the assumption, because
1 1 Nx -
S ( ||.x1+ry."+ ﬂxa-rty,”)gﬁo "x1 .xzﬂg
2 AA (x - )= HA(x) = Alxy)

So there is —a € & for every 4 € P such that
-a € N S(ACX), &’ ()
x € clafA ? Ix+y ’

in other words:

NAxY+all £ .b4ﬂ.x+q,ﬂ for x e def A .
From there it follows that for all «x € X , o« =% 0 :
lecl- MA(Z)+all & lecl de M(ZE)+ 4 ll, xcdefA
so that

NAGO +xal € s'lx+ cgl, xedefA,xek, x4 0.
Since the last relation is trivial for « = 0 , (i) is sa-
tisfied and the proof iAs complete.

Definition 5. The linear space (@ is called produc-
tively centred in respect to P , if it is . -productive-
ly centred for every 4 = 0 .

Remark 1. As a result of Theorem 1.2 and Definition 5
there 'foll‘ows the statement: Let P, @ be normed linear
spaces. Let @ be productively centred to P . Then eve-
ry bounded operator from P into & may be extended on

the whole P preserving the norm. .
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Theorem 3. The linear space of real numbers is produc-
tively centred in respect to every normed linear space
over the field of real numbére.

Proof. Theorem 3 is a result of a more general state-
ment for the linear space of real numbers: Let & be an
arbitrary system of closed spheres in the linear space of
real numbers such that any two elements of this system ha-
ve a non empty intersection. Then the intersection of all
these spheres is a non empty set. The proof of this state- i
ment is easy. We denote & = flateen s T = e r» R ? -
If we denote 41‘@% e, &= :2"&% Q@ » then it fol-
lows s+ € q . Suppose, on the contrary, that n > g . Then
there is w, , “, 8uch that e, > q,“z by another way
%ﬁ A Iyi"ﬂ , on the contrary to the hypothesis. Hence it
follows I=<f,q9> and 1 c I,  for every w € N,

so N 1 _# g and the proof is complete.
«weN &

Remark 2. As the result of Remark 1 and Theorem 3,
there follows the Hahn-Banach theorem on extension of real
bounded linear functionals preserving the norm.

Convention. Let P Dbe a normed linear space over the
field of complex numbers. By the symbol mP we denote the
linear space P as a normed linear space over the field
of real numbers, analogously for subspaces and linear enve-
lopes.

Definition 6. Let G be a linear space over the field

of complex numbers. We call this linear space a pure com-
plex linear space, if:

1. There is introduced a so-called involution(see [1]) on 2a
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linear space & , i.e. a mapping J from & into &
such that N

Jlxa + ) = £JICa) +3I (&)
J(J(a)) = a

2. on the linear space @ there is introduced a norm such
that

HIa) = Hal

’

Yoy = nn,aleha,.mtﬁ-ltma../.s&ntﬂ
t e

(4 is a set of real numbers).

By the symbol Re a , resp. Im a we denote the so-
called real part, resp. imaginary part of the element a .,
Every element a. € & may be written uniquely in the form

Rea + i Ima,Rea, Ima e€Re G
- is a subspace of the space "'0. for every its element
it follows J(a) = (a) .

Theorem 4. Let P be a normed linear space over the
field of complex numbers. Let @& be a pure complex line-
ar space. Let 4o & 0. Let a mapping ,$ from P in-
to expp Re @ defined by the following
xe P=> d(x)=faeReB;Ual £ o Mxl}
be the linearly covering ”_P in respect to Re @ .
Then the mapping ¢ from P into. e¢ft @ defined by
x€P=p O(x) = {aecQ;2al s 4 Muxli
is linearly covering P  in respect to. Q .

Proof. At first we shall prove the following lemmas.

Lemma 1. Let. P be a linear space over the field of

comples numbers., Let @ be a pure complex linear space.
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Then
‘(1) for an arbitrary operator A it follows that
x € def A => Im A(x)=-Re A(ix), Re A is the opera-
tor from ,P inte @ ; '
(ii) if B ie the operator from w? into Re @ then
A(x) = B(x)-4B(ix), xe def B the operator
from P into @ 1is defined and B = Re A .

The proof is

Lemma 2. Let P be a normed linear space over the *
field of complex numbers. Let @ be a pure complex line-
ar space. Let & = 0. Then:

if xedefC = 2C() £ % MMxt
then x € ,def C => 21Re C(x)I & 4 "Mx1
and inversely.

Proof. This statement is trividal in regard to the
first direction, see Definition 6.

Let x e ,def C . Then we have
2hRe C(x)N & A T x) . Because x. &' ¢ pcef C
for all real t , it follows
Re C(x) eont - Re C (i x) mimt 1% do Mlx, €= fo Ml
for all real t and so ‘

¢ () = max 2 Re C(x)eoot + Im C(x) mintl =

€
= 2 - : ; 1
= max IRe C(x) cont ~Re C(ix) nimtll & % "xll
and the proof is complete.
Lemma 3. Let P be a linear space over the field of

complex numbers. Then it followa..

rln LRUglu igl=(Runyl.
The proof is easy.
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Now we prove Theorem 4.

Let A be @ -admissible. From the lemma it follows
that Re A is ,¢ -admisaible, i.e. there is a, €
e Re @ for every Yy € P such that

xedef A=> Re Alx)+Ba,ll € h'ix+ Byl
for all real (3 .
Re A(x) + fa, is an "¢ -admissible operator on
pnldefAun ]l into Re @ , i.e. for every <4  the-
re is a, e Re (c} such that
x 6 ,def A=b 2R A(X)+ fay+ya,l & seMx+Py+vigyl
for all real (3, o .

Re A(X)+ e, + ya, is the , -admissible
operator on A [, def Av.41 uigl into Re @ .

We define the operator B as follows:

def B =L[defA ungld,
if 2=x+ (B+iply ,xecdefA, (B+iy)eX , then

Blz) = A + (B+ig) (ay - da,) . ‘
It follows that Re B(z) = Re A(x) + Bo, + va, .
According to the preceding we have that

zeldeft Avugled 2UB(2IIE RN,
in other words,

NA()+xal € & Mx + cyl for all x ¢ def A

and « 6 K (a=a;,-4a,) .

So @ is linearly covering P i{: respect to @ ,
q.e.d.

Theorem 5. Let P be a normed linear space over the
field of complex numbers. Let ® be a pure complex linear
space. Let Re & be productively centred in reaspect to

,‘P . Then every operator from P into & is extension-
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able on the whole P preserving the norm.

Proof. This theorem is an easy result of Theorem
1, 2,.4.

Remark 3. Theorem 5 is a generalization of the well
known Suchomlinoff’s result concerned with the extension

of complex linear functionals preserving the norm.
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