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Commentationes Mathematicae Univers i tat is Carolinae 

11, 4 (1970) 

SOME GENERALIZATIONS OF THE NOTIONS LIMIT AND COLIMIT 

J i* i ADiMEK, Praha 

In the following note we introduce some generaliza­

tions of the notions l imit and colimit in the theory of ca­

tegor ies . With their help we are able to model some non-

categorial products, espec ia l ly some of the "non-direct" 

products used in algebra. 

Remark: Let fl be a category. Then I HI i s the 

c lass of objects of H • a diagram J) i n H i s a 

functor from a small category into 7t . A bound of a d ia ­

gram D : JD —• fo i s < X, <Qf>A }dL m , 0 , > , where X a mi • 

9 € H CX9 VCd)) and where c?e SbCd^d^) «-> 9 ^ - DCS) o g^ . 

A co-bound of D i s < 2 , «C^!lflL# } ^| > , whmrje 2. m IHl , 

X e »CD0ct) ,Z) and where <fe S C d ^ c ^ ) - * H,d* K^^CcT). 

Def in i t ion: Let H be a category* F a c l a s s of 

c o l l e c t i o n s of moronisms of H , l e t 1> t «D —* H b i a 

diagram. A bound of 2> , < -*»***«(,*«* c l # l > > i*1 a f "* 

bound of 3> i f <9aL^dLm^i « T» A IT -bound of D , 

K.Xj-Cg^ J^ c l e i > i a a £s&iMkL°* 7> if f03r each 

T̂ -bound of T> 9 • <Y* {ifa ^ • 191 * thara exiata uni­

que § « 9*. with T^ • %c* f * o r € a c h ^ * -̂  • Analo­

gously def ine T -co-bound; and T - o o l i a i t of D . 

Def in i t ion: Lat H, .D,<2) ba aa above* A bound (co-

bound) of V % < X 7 <9V-t,lct c | AI ^ i * « * i d *° °* •££&££ 

- 823 



if for each bound (co-bound) of D , < Y, { y ^ ldL€ /#{ > , 

there exists at most one f e % with y ^ m cp± o f * 

' ̂  Vd, * f ° && ^ for eacn ct # !•&/ . A strict bound (co-

bound )of D , < X, <<p^} <-/, m | 01 > , is quasi limit (qua-

sicolimit) of 3 if for each strict bound (co-bound) of 

J) , < Y , <t|rot ̂  c , 91 > , f * 9t is an isomorphism 

as soon as <p^ * tj^ • f C ^ » f » t^ ) holds for each 

d € I -2)1 . 

Definition: Jtrict ff"-bound. ^ -quasilimit. as well 

as the dual notions, are obvious generalizations of the pre­

ceding definitions. 

Example 1; Box topology. 

The box product of a collection of topological spaces *XLl€j 

is their cartesian set product X X with the topology 

given by the collection of all open sets i X 11 % 11 open 

in X, for each u e I J . 

Let 'ft be a complete category> let occ 71 <A,3) 

be a monomorphism. Define a class T^ of collect ions of 

morphisms of VI t <%1i,€l & - ^ ( % e ^ ( X ^ , YL )) <«-=> 

^ i . X . - X ^ c I i . W o , J T U «^CY,B))3xtc 

c ^ecx,3) 
such that *•, 

is pullback, where 

4 
is pullback for each £ c I . (As oo is mono, <ct̂  is mo­

no and O /«., is correct.) 
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Now in case n * Toft ., A is the one-point space on 

< 0 5 , 3 the space on < 0 , 4 1 with -C 4 J » < 1J 

and. <T} m { 0, 11 y oc(0) s? 0 we get: The box pro­

duct of topological spaces is just their J^c -product. 

Example 2: Weak direct product of universal algebras. 

Weak direct product of a collection of universal algebras of 

a given type -CA^} L j is any such a subalgebra A of 

their direct product X AL that 

Let 0£ be a category of universal algebras of a type 

d and their homomorphisms. The weak direct product is 

the same as T -quaaiproduct in 0t where 

2.oc, fie % (1, X) «=-> ootd {*«!•, ̂  oc #^/3 3 < ^6 , 

where i denotes the free algebra with one generator. 

Example 3: Subdirect product of universal algebras. 

Subdirect product of a collection of universal algebras of 

a given type t A ^ J t e I is any such a subalgebra A of 

X A, that TT. (A) xr A - for etch i <s I (TT.be-

ing the i -th projection of JC A^ ). It is the same as 

the strict T -bound of the discrete diagram <^it^Lm j > 

where T is the class of all collections of epimorphisms 

of 7%, ( 7t see above). 

Example 4: Quasicoproducts of connected graphs and to* 

pological spaces. 

Denote Gra Con the category of connected graphs and their 
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homomorphisms,Top Con the category of all connected topolo­

gical spaces and their continous mappings. It is evident 

that the coproduct of any collection of graphs in Gra (or 

of topological spaces in Top) is disconnected and that the­

re does not exist coproduct in Gra Con (TopCon). Still, the­

re exist (but of oourse not generally unique) quasicopro-

ducts in these categories and they give especially in case 

of two objects a natural factorization of the coproduct from 

Gra (Top): Let 4 , B be connected graphs( topological spa­

ces); we get just all quasicoproducts of A and 3 in 

Gra Con (Top Con) by choosing one point in each of the un­

derlying sets of -4 and 3 and clewing _4 with 3 in the­

se points. 

For example Ki su Jr » B: ^ — > we get
 f CЗ 

< : 

and 1 1 the others being isomorphic to those 

two. 
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