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Commentationes Mathematicae Universitatis Carolinae

11, 4 (1970)

SOME GENERALIZATIONS Of THE NOTIONS LIMIT AND COLIMIT

Jir{ ADAMEK, Praha

In the following note we introduce some generaliza-
tions of the notions limit and colimit in the theory of ca-
tégoriea. With their help we are able to model some non-
categorial products, especially some of the "non-direct”
products used in algebra.

Remark: Let ® be a category. Then l.’nl is the
class of objects of A ; a diagram.) in & is a
functor from a small category inte 9% . A bound of a dia-
gram D: D — R is <X,{g,} 49 >, where X e IR,
@ € ® (X,D(d)) and where d'¢ D(d, ,d,) = %, = D) e 941 .
A co-bound of D is (3,47, 4,9 >,vhere Z e |R| ,
A, € R(D@),Z) end where d'e 2(d.1,d.1)-b’(,418 K,dl-b(d').

Definition: Let ®  be a categary, J° a claas of
collections of morphisms of &R , let D: D — R ta a
diagram. A bound of D , < X, {P 3, .2/, 38 a T
bound of D if {@ 3} .96 7 A T -boundef D ,

(X, 4Pl e10) > i a J -limit of D if for each

J" -bound of D, <KY,{y, 3, qi19)> there exiats uni-
que § € ¥ vith y, =g e §f for each d ¢ D . Analo-
gously aefine J -co-bound snd  J -oolimit of D .

Definition: Let R, D, be as above. A bound (co-
bound) of D , <X,4P 3y etdl > is said to be atrict
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if for each bound (co-bound) of D , (Y, {vyli¢121 >,
there exists at most one § e€ ® with ¥, = ¢, § -
c(yy = §o gad_) for each d € |/ . A strict bound (co-
bound) of D, <X, 4@, %, 419, > , is guasilimit (gua-
sicolimit) of D  if for each strict bound (co-bound) of
D, <Y, Syydaciol” » fe® is an isomorphism
as soon as @, = Y, * § (g, =§°y,) holds for each
deldl .

Definition: JStrict ' -bound, J -quasilimit, as well

as the dual notione, are obvious generalizations of the pre-

ceding definitions.

Example 1: Box topology.
The box product cf a collection of topological spaces {x"!‘d
is their cartesian set product ‘.2(1 Xb with the topology
given by the collection of all open sets {LJ‘(! "u.‘_-, ub open
in X‘_ for each v ¢ I 3§ .

Let R be a complete category, let &« € R (A, B)
be a monumorphiem. Define a class. J, of collectiona of

morphisms of R : {3 ;& Tolpe A(X ,Y ) e
1. X =XViel2.Viw}d («aR(Y ,BNIue

tiel
e R(X,B)
such that —
‘_Q «-,,l [ ©
73
is pullback, where
—_—
"k
44.4.91:

is pullback for each i @€ I . (As o is mono, w; 1is mo-

no and »?1 @, 1is correct.)
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Now in case 2t = Toft, A is the one-point space on
03, B the space on £0, 113 with {13 = £13
and {03 = 40,13 , «(0) =0 we get: The box pro-
duct of topological spaces is just their Je <-product.

Example 2: Weak direct product of universal algebras.
Weak direct product of a collection of universal algebras of
a given type {A 3 €1 is any such a subalgebra A of
their direct product Lg('x A that

lodx b €A, 49,3, 1 e“XIA‘_,caad{ieI;x‘i#qgi('x.:#{gbiur €A
2ix Y €Ay ge Adcardiiel . Hy, 3 &, .

Let ® be a category of universal algebras of a type
4 and their homomorphisms. The weak direct product is
the same as J° -quasiproduct in 9%  where
(g er€ .'J"(g:bc R, ,Y ))& 1.X,=XViel
2.x,feR(1,X)=>cand{iel; g,x +g,B3< %, ,
where 1 denotes the free algebra with one generator.

Example 3: Subdirect product of universal algebras.
Subdirect product of a collection of universal algebras of
a given type {A"i"eI is any such a subalgebhra A of
“XI A that T, (A) = A; for each i el (T; ve-
ing the 4 -th projection of L.Z(l A_ ). It is the same as
the strict 7 -bound of the discrete diagrem {A 3 . ,

where J° is the class of all collections of epimorphisms

of R (R see above).

Example 4: Quasicoproducts of connected graphs and to-

pological spaces.

Denote Gra Con the category of connected graphs and their
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homomorphisms,Top Con the category of all connected topolo-
gical spaces and their continous mappipge. It is evident
that the coproduct of any collection of graphs in Gra (or

of topological spaces in Top) is disconnected and that the-
re does not exist coproduct in Gra Con (TopCon). Still, the-
re exist (but of oourse not generally unique) quasicopro-
ducts in these categories and they give especially in case
of two objects a natural factorization of the coproduct from
Gra (Top): Let A,B be connected graphs( topological spa-
ces); we get just all quasicoproducts of A and B in

Gra Con (Top Con) by choosing one point in each of the un-

derlying ssts of A and B and clewing A ‘with B in the-

se points.
} I<F__—_€ﬁr
For example A: { ,» B: we get {
—,
and. I x s the others being isomorphic to those
€ —
two.
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