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Commentationes Mathematicae Universitatis Carolinae

11, 3 (1970)

ON ATOMS IN LATTICES OF PRIMITIVE CLASSES
Jaroslav JE2EK, Praha

This paper is a continuation of my papers [2] and
[3) on lattices :CA (of all primitive classes of aigeb-
ras of type 4 ). For the terminology see [3] . We shall
be concerned with atoms in iA .It is well-known (see
[1]1) that every 84 is atomic.

In § 1, Theorem 1, a complete answer to the follo-
wing question (Gratzer’s problem 33 in [i] is given: find
the number of atoms in :Ca , for all types 4 .

For any complete atomic lattice 1, we can define,
in a natural way, an element of L. : the supremum of the
set of all atoms of L . If L = &, , then every element
of I, determines a primitive class of alge_brae of type
A and we may ask to describe the primitive class de-
termined by the supremum of atoms. The description de-
pends on whether A4 contains or. does not contain at
least binary operations. The description is found in
Theorems 2 and 3.

For the terminology and notation see § 1 of [3J.

As in [{3), we fix an infinitely countable set X
and for each type 4 an absolutely free algebra W,
of type 4. If A is an algebra of type 4 = (m;);. 1
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and ¢ € 1, then the < -th fundamental operation of
A is denoted by £’ ; the < -th fundamental o-
peration of W, is denoted by f;. If m; = 0, then
£f.

; 1is an element of Wd .

Elements of W, are called 4 -terms. A 4 -
term 9 is called constant if X n S (w) is empty
(the set S (w) is the set of all subwords of -,
defined in [3])). A 4 -term is evidently constant, if
and only if it belongs to the subalgebra of w4 ge-
nerated by the empty set.

A 4 -equation <, w;) is called constant

if w, and w, are constant 4 -terms.

Let a type 4 = (m, )“I be given. Elements i €
e I such that m; = 4 are called unary symbols (of
4 ). A finite (not necessarily non-empty) sequence
of unary symbols is called unary sequence. If A is
an algebra of type 4 ,a € A and A = Ay ,..., Ay
is a unary sequence, then @® is defined in this way:
a*=a it » is empty; aV . L2 @ttty
Ifr = Ayyeyh, andtet ., t,  are two unary
sequences, then A% is the unary sequence 4, ..., 4, ,
tiywis tm ¢ v

If 4 is a type, then X, is the dual of the
lattice of all Fl-congruence relations of W, . Let us
denote tho-groatut element of .‘td by '1,“ and the
smallest by 0“ .

A 4 -theory E is called consistent if
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Cm (E) + Ox‘ , i.e.if E hes a non-trivial model;

"inconsistent" means "not consistent".

§ 1. The number of atoms in lattices .‘84

Given a type 4 , denote by AT (4) the car-
dinality of the set of all atoms in &, .

Lemma 1. Let 4 = (m, ), where I=4i(, 4L, 1,

. . »
4,1#142 and m41-@“-4. Then AT(4) = 2%,

E-oof. It is sufficient to brove AT 2 2%,

Denote 4, by | and i, by +.1If A is an algeb-
ra of type 4 and a € A, then a = f,-f:’ (a) and

a' - f’.“’ (a). Let x and 4 be two different ele-
2

ments of X , Denote by M the set of all infinite se-

quences € = (01 » 99

1 )

so that M has 2"  elements. For each ¢ € M
define a 4 -theory E.‘ : it contains all equations

C',... > of numbers 0 and

(xﬂzl , @'H:“ b where m. is such that ¢, = 0

and all equations  x, x*! n b

where m is such
that ¢ = 1. (Here T denotes the sequence contai-
ning m symbols + .) If e, and ¢, are two diffe-
rent elements of M , then E, v E," is evidently
inconsistent; as :&d is an atomic lattice, it is suf-
ficient to prove that every E.. is consistent. Let
eeM .

Denote by A the set of all ordered paira‘

(42,2 > where £ Z 1 is a rational number and £
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is either 0 or 4 , Let us fix a one-to-one mapping ¢
of the set of all rational numbers , = 4 onto the
set of all rational numbers ¢ such that 1£¢g < 2 .

Define an algebra Ae with the underlying set A in
this way:

(1) <O, " = <A, )Y
(ii) 4,27 =<1, +1;
(ii1) (4, 2> = (0, n )
W) If m & n<m+1 and e =0,then <0, x> =
= (0,01-);
Vietmanr<m+1 and e,,,=-4.1r gw"’(lb-m,+
¥4 < 2, put €0, xY=<0,97 (g (x —nt10)> .
1t gl n-m+422,put <O,n¥ =<1, 0 tw-m+1)-1).
We shall prove that A, is a model of E, . Let an
integer m = 4 be given.
Let ¢, = 0. Let @ 6 A. There exists an ~ < 2
-1
such that a+!+ = <1, 2 > . We have a*+ ¥ o <1, r0 +
#m=1% wnere ménr+m-1<m+4  so that

-~ »
at!v! = <o , m Y . Hence, ¢ xHe? , ,,,4"7' >

1id in 'A¢ .

is va-

Let ¢, = 4. Let a€A. It a-(O,ll-),then

at® <o,?(9(m)) +m-1), 88 n £ (PL) +m-

“d<m +4 magPPAN+M-AomiN)=giic2,
we g,taﬂl‘n_ <0, 9-4(9’4(9 AN+ Mm-141)) = O,k > = .

Ir Q = (4,&,)’ then a""- <0,9(b+4)+”-4 >;ll
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mégly+i)em-A<m+l sndglpusD+m-1-m+l)=nsix2,

ve got &'Ma <A, gl st)tm-t-meN)-D =<l 2 =a .
Hence, ( x , x5 ig valid in A, -

Lemma 2. Let A= (m;); . where m; € 1 for all
4 el . Ifc is a constant /A -equation and A
an atom in :ZA , then @ € A

Proof. Let C be the set of all w € W‘ such
that (w, W) € A for some constant 4 -term # . It is
easy to prove that A u (€ > C ) is a FI-congruence
relation of \92 and Au(CxC) =+ QC . As A is an

: 2

atom, we set A=A oy (CxC), i.e. C xC € A . Each
constant / -equation belongs to C =< C .

Lemma 3. Let 4 - (m,);,; where m; =4 for all
iel. It T is infinite, then AT (4) = 2“1

Proof. It is sufficient to prove AT (A4) 29Cmal
Let x and g Dbe two different elements of X . For each
subset M of I define a 4 -theory E, in this
way: it contains all equations (x, f; (x,...,x)> whe-
re {€ M and all equations {¥;(x,...,x), f;(%,...,4)>

where i € I - M . Evidently, each E, is consistent,
80 that there exists an atom Ay in &, such that

AM ~ E)p . If M, and M, are two different subsets
of I , then E.m v EM, is evidently inconsistent, so
that AM1 - A“a . There are 2***? gifferent sub-
sets of I .
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Lemma 4. Let 4 = (m;). . ; 1let there exist
an i € I such that m; = 1 and m; = 0 for all
16 1I-143. Then AT(4)=2,1f C is the set
of all constant 4 -equations and x, @ two diffe-
rent elements of X , then the two atoms of -‘Cd are
just C,,‘(Cu{(.x,ﬁ’(.x)>3) and C“(Cu{'(ﬁ;(.x),
fi ()21

Proof is easy; for the complete description of

34 in this case see [2).

Theorem 1. Let a type A = (m ), . be giﬁn.
(i) Let m; £ 1. for all + € I ; put m = Carl {i el;
m,=13.1fm =0, then AT(L)= 1. If mm =1,

then AT(4)=2 ,.1ft 2 €6 m < ¥ thenATM)-Z" .

o )

If 44 is infinite, then AT(4) = 2™ .~
(ii) Let there exist an 4, € I such that m; 2 2 ,
1 T ie finite, then AT(4) = 2% . 1£ I is infi-
nite, then AT(4) = 20m¢1

Proof. Let m, €1 forall 1 € 1. If m = 0,
the asaertién is easy, and if # = 41 ,it follows from
Lemma 4. Let 44 = 2 , By Lemma 2, if 1',,;'. €1l and m; =
wm, = 0, then {(f;, £ > Dbelongs to every atom of

f 4

&, . Thus, the atoms in 24

correspondence with some primitive classes of algebras

are in a one-to-one

with one nullary and 44 unary operations; we get
AT(4) € 2% if w4 is finite and AT (4) &
€ 2%

, if .t is infinite. The converse inequali-
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ties follow from Lemmas 1 and 3.

Let there exist an ¢, € I  such that m; 2 2,
If I is finite, then the assertion follows from Kalic-
ki (4) ; see also CGratzer [El], Theorem. 2 in § 27. Let ]
be infinite. It is sufficient to prove AT (4) 2

> 2¢ I.At least one of the two eeta{icl;m.‘.z'ﬂ

and {< € I; m; = 03 has the same cardinality as I .
If Card {i € I;m; 2 IimCard 1 ,the assertion follows
easily from Lemma 3. Letlaxd{i€ l; m, = 0} = Carct I .

Let x and g be two different elements of X . For eve-
ry subset M of {¢ ¢ I; m; w0} define a 4 -theory
E) ¢ it contains all equations (x, f; (x,f,..., ;)
where 4 € M and all equations <f; (x,f},..., ;) ,
%, (y,%,..., %)) where defieLm,=0j-M.The

proof can be finished as in Lemma 3.

§ 2. Supremum of the set of atoms in 84 : the

case m; % 4 forall ¢€1l.

Let 4 = (m,);,r De a type such that m, &« 1
for all < 6 I . We shall describe the supremum & of
the set of all atoms in &, .

Firstly, let m; = 0 for all <6 1 . As there is
exactly one atom in &, , ¥ is just the atom, i.e.,
the set of all 4 -equations that are either constant
or trivial.

Secondly, let {< € I;m; =1} have exactly one
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element ¢, . &f, has exactly two atoms; they are des-

cribed in Lemma 4. It is easy to see that the supre-

mun & of these two atoms is just C,, (Cu <t (x),

f; (f (x))>13) where x and C are as in Lem-
(- (]

ma 4.

It remains to consider the case Card fc e I ;

m4-43.>.2.

lLemma 5. Let m; £ 1 for all i e I and
Cord (16 I;m;=1] 22, Let x € X; let » and 5 be
two different unary sequences (of 4 ). Then there ex-

ists a consistent 4 -theory E such that E u {<.x‘,

x* %3 is inconsistent.

Proof. Let us fix two different unary symbols |
and + (of type 4 ). We may suppose that if either
s =nt or =5t for some unary sequence t ,
then the first symbol in t is nof | . (If this were
not true, we could exchange the role of | and + .)
Denote by t, the longest common beginning of 4 and
%A ; we may write % = t, t, for some unary sequen-
ce tz. Denote by ¢ the length of 8, by & the
length of t1 and by d:. the length of t, .

If n and & are two rational numbers, then
{n, X ] denotes the set of all rational numbers @
such that x <@g < x . Pt A=I[0, 11. 1t is
evidently possible to choose subsets A,, --., Ay of
A s0 that the following be true: A, is an infini-
te subset of [i‘ , 13 and 1ts complement in
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[% , 11 is infinite, too; if 0 < &k = ¢ and if
the /A -th symbol in 4 is +,thenAh-{%/t;mc

€A, ,3; if 0 < Jo £ c ‘and if the A -th symbol
in 4 is different from + , then A, is an infini-
te subset of [ g' ,11-(A,u...uA,_,) and its

complement in [i’- ,11- (A, U... UA, ) is infini-
te, too. It is evidently possible to choose sets 71',,

ey /sz so that the following be true:K, - A," H

it 0 < k € d, and if the M -th symbol in t, is

+ , thenx‘;- (';'_'lt; msZ,‘_,;, it0< h <d,

and if the & -th symbol in t, is different from +,
then A-h is an infinite subset of f%, 11 - (A, v...

W UA, uzou...u&_‘,) and its complement in [%, 11~

~(A v...UA v A,u.. u._A_-._,) is infinite, too.

Let us fix an integer m 2 4 such that neither
A nor 5 contains -’: (the unary sequence,consis-

ting of m symbols + ) as a connected subsequnce.
1 —
The sets [0, 3® 1, A,,..., A, Aoy Kd’ are evi-

dently pairwise disjoint.
We shall make A algebra of type 4 . For all

a €A put qgt = -;-a,;fox' allae[O,E"a'J put

a’ =@( a.q) where ¢ is a fixad one-to-one mapping
of (0,31 onto A ; if 0 < & c and if the
M -th symbol in » is 4 s + , then for all
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ae A, , put £%(a) = g (a) where g, isa
fixed one-to-one mapping of A, , onto A, ;if 0 <
<k édz and if e -th symbol in ¢, is i %+,
then for all a € Kh_q put ﬁ-‘"(a) = ¥, (@) whe-
re Yy is a fixed one-to-one mapping of K,‘,, on-
to Kh' The definition of the algebra A is not
yet completed, but realize this: a«:"’ is alrea-
dy defined for all a 6 A and @ — a:" is a

one-to-one mapping of A onto Ac ; similarly,

at'F e already defined for all a € A and

a — Q-’r"tZ is a one-to-one mapping of A onto
K,t‘ 3 by the assumption stated at the beginniné of
this proof, &' is not yet defined for any £ ¢ A,
and for any £ ¢ zd, . Let us fix an element o« e
€ A . #e can complete the definition of the algeb-
ra A in this way: if & ¢ A, , then &' is the
uniquely determined @ € A  such that at1i® - & ;
it e K“& , then &' = oc 5 in all other cases the
operations are defined arbitrarily.

In this algebra A , the equations {x, x Tt >

and ( x™1® , .y,""' ) ( 4 ¢ X being diffe-
rent from X ) are valid and thus the theory E =

= {x, xTimry , (x?’z",’?"')I is consistent;

E v { a‘, x% 33  is evidently inconsistent.

Theorem 2. Let 4 = (m;);,, “herem, & 4
for all i« ] and Card (i ¢ 1y m; =45 2 2 . The

supremum of the set of all atoms in &, is just the
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set of all [ -equations that are either constant or
trivial.

Proof. Denote the supremum by Y and the set
of all 4 -equations that are either constant or tri-
vial by C , By Lemma 2, we have £ & ¥ . Let
Cw;,w;>¢ C. Then ay < w; and either z; oray
is not a constant /4 -term, so that it is equal to
x® for some x € X and some unary sequence A .
There exists evidently a unary sequence A <= A such
that S, ap > <X x®> ., By Lemma 5 there ex-
ists a consistent theory and hence an atom E in £,

such that E v {< x)’, x® >} is inconsistent. As
(x*, x*> ¢ E , we have <x*, x* > ¢ &
and consequently, <{aj, w, > ¢ ¥ . We get S =
=C .

§ 3. Supremum of the set of atoms in &£ : the
case m; > 2  for some % €I
Let 4 = (mn;);,1 be a type such that there
exists an {4, € I satisfying m; = 2 ; let us
fix such an <, .
For all w e W, snd m =4,2,3,,.. aefi-

4
ne w® in this way: wia Wi win f,-.(w’,..., w®).

Lemma 6. Let «w; and w; be two different ele-

ments of - WA and X ,' 4 two different elements of

XA (S(wy)u S(w;)) . Then there exist two Qif-

ferent elements v, , w, € W, such that
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$wp,wp> — < W) and X A (S(FIUSGENE

& (X- 441 (S u Sty .

Proof. For each m = 1,2,3 ... let 75, be
the endomorphism of W, defined by Mm (g) = Xx=
end 7, (2) =2 for all z € X - {4} . Evidently,

we have {av;, wp > <7, (w), 7, () and

Xn (S, (W) S, () EX-{4I)n(Su)uSayg .
There exists an integer m = 41  such that x & Scw;)

end x% ¢ S(Caw,) . It is sufficient to prove the fol-

lowing assertion for all ¢, , t, € WA ¢ whenever

m 21 isan integer such that x¥ ¢ S t) ,
X® §5(t)) « and g (t)mp, (t) thent =t .
We shall prove by the induction on t, that the asser-
tion holds for this f and for all % e W, .

Let t, e X. If t, e X-{y}, then9, (t)=t,
8o that (if 7, (t)=n,(t,)) 2,.(t;)e X , so that
evidently, 7, (t,) = tz and consequently, t = ¢, .
It t = g, then 7, (t) = x® , 0 that (if m, ()=
w N, (t,)) 7, ()= x%  and thus either t,= x=
or t, = 4 ; in the first case we would get a contradic-
tion with x® ¢ S(¢,) , so that t, = g = ¢ .

Let ¢, -‘Q(tf"’, ooy t:“") and let the assertion
hold for tf,"’, ver s t,‘“" . If % & X , then the
proof is similar to the proof in the case t,e X .
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Let t, ¢ X , so that ¢, = f; (t;" “#)  for

) ooy
some 3 ¢ I and t’ ..., t;”"c W, . If9.(¢)=
=7y (t,), then ‘

)
£ (), R N = 8, N =, (1) =

-ty = (), 7, (878

), 4
) “

s0 that i = 3 and 7, (4" = n, (47,7, ") e 2,7,

1
By the induction assumption (as xZ ¢ St v S(¢)

evidently implies xZ% & S (t,“’) v S Ct;”), eer ),

) o ng) ong)
we get t:”-t,,...,tq‘- ta‘ , 80 thatt « ¢ .,

Lempa 7. Let LA and %; be two different ele-

ments of Wd . Then there exist two different elements

w o, w e Wy end an x € X such that
wp > < W) and X N SG, ) = X n Sy )= {xi.

Proof. As every S(wr) is a finite set, the fi-
nite number of applications of Lemma 6 gives the exis-
tence of different elements v, Y € V\Q satisfy-
ing wj, w;> <y 4> and Cadl (X (S(p)v

Sy M £4. 1t Xa(S(y) uS(vy)) is non-

empty, let X be its (only) element; if it is empty,
let X be an arbitrary element of X . It is sufficient
to put q—r; =

(%, ..., %) and W = C»n;,x,...,xh

% KA

Lemma 8. Let a non-trivial J -equation (g, g >
and an element x ¢ X  be given; let X n S(w,) =
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=X SCuy)={x]. Then there exists a consistent

4 -theory E such that E v {<w;, w; >3  is in-
consistent.

Proof. Put B = S(w;) U S(w;) . Let D be
the set of a1l ™ where « € B and m = 1, 2, 3,..
Let X be the set of all constant A -terms belon-
ging to D; put VaD-K. Let R be the set of all
rational numbers. Put A= (Vx R)u K . e shall
suppose that no element of X is an ordered pair; in
the contrary case we would use (instead of W, ) some
algebra isomorphic to V\/A ., If @ 1is an ordered pair,
denote by & its first and by & its second member.
If @ is not an ordered pair, we put g = a and we
do not define @ ., Let us fix a one-to-one mapping 7
of A onto R, Let us fix an integer ¢ 2 4 such
that u* ¢ B for all « € W, 3 the existence of
such a ¢ is evident, and ¢ + 1 has the same pro-
perty. Let us fix an element o« 6 A .

We shall make A algebra of type 4 . Let 4 &

€l,m=0. 1t eX,put {'= £ ; irf ¢ X,

detine #¥ ¢ A arbitrarily. Let i € I, m; = 0,

and @, ,...y Qp, € A . Evidently, at most one of the

following six cases can take place:

1) %<& ..., "5“‘) € D ; there exists a £
(165 & m;) such that a; € V< R ; there ex-
iste an x € R such that whenever 1 & 4 € m_ eand

a; & Y x R, then 5.; - xR
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(ii) ct,,...,‘&',,,‘,) €D and Q,..., %, 6 K ;

(iii) 4 = ¢, ; there exists a v € V' and an 1 €
€ R such that @, = (v, 2 ) and “‘a"'";'“'m’

v
=<t >,

s . . s .
(iv) i =4, 32, eK;a=..=a, =2 ,

(v) 4= 4, ; there exists an x € R such that @, =
Y
= Sy, 2> anda,z-..,za,,,&-(w; Y
(vi) 4 = €,; there exists an # € R such that
e
a, = <w,, x> and a.z-.-...-a.%,-(w;_ , k2.

. 7
In these cases we define ;" (aq ..., U, ),

successively, in this way:

.0,k

ﬂb‘ 2

(i) =<f (...,
(i1) = € (a,,..., a,,,‘,) H
(ii1) =<x, g (@,))
(iv) =<x,7m(a,)> ;
v =),

(vi) = o« .

)
In all other cases we define ﬂ-“ (e,..., a,,.‘)

arbitrarily.
Let us define an endomorphism 2 of W, by

V(x) = (x, .x‘,..., xL)  and v(2) =2 for
all z ¢ X~ {x1 . '
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Let @ be an arbitrary homomorphism of I{‘ ine
to A. Put @ = ¢(x). Evidently,®(»(x)) = <x,% (a)}.
For all « € K we have P(»(w)) = & ; by induc-
tion on v it is easy to prove for all v e€ D that
if XN S(v)={x} , then g (v =<v,7(a)>.
We get

4
PU 0, » (', ., 20 ) =
= XU, @13, ¢ @2y, .y s, (@13) =

- n"’(qz (a)) ma= y(&)

and similarly,
er! g1
?c“.("('“i ” ”(«5 ),-o., ”(wa ))) - 00 o
As this holds for all homomorphisms ®, A is a model
1
of the theory E composed of (¥, f,-. (» (w; ), 9(1«5”'),

- 4
ey ® (w;,*")) > and “3'5 (v(w;),v(«g“‘),...

ey D), & G, » @) Ly >

where Tu; arises from w; by exchanging X .with some
element bf X -{x#, Thus, E is consistent, and E v

viCw, ,u7 >} 1is evidently inconsistent.

Theorem 3. Let 4 = (m;);,; where m; 2 2
for some i, ¢ I . The supremum of the set of all atoms

in &, is just 4“ , the greatest element of &, .

’ m. Let ¥ be the supremum. Suppose S - 4“ ,
so that some non-trivial equation belongs to ¥ . By Lem-
ma 7, 4 contains a non-trivial equation < W, , g >
satisfying the assumptions of Lemma 8; by Lemma 8 there
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exists a consistent E 6 &£ such that E v (<],

r-
W, > 1 is inconsistent. As E is consistent, the-
re exists an atom A in X, such that E & A . We
have E U {<wj, w0} SAuY = A, 80 that A is
inconsistent - a contradiction.

Lei us give a re-formulation of Theorem 3. A class
YL of algebras of type 4 is called non-trivial if
it contains at least two-element algebras;it is called
non-extreme if it is non-trivial and does not contain
all algebras of type 4 . .

Theorem 4. Let 4 = (m,); , where m; 2 2 for
some 4; € I . For every non-extreme primitive class ¥4
of algebras of type 4 there exists a non-extreme pri-
mitive class & of algebras of type 4 such that
LAY is trivial.
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