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SOME NOTES ON THE CONVOLUTION SEMIGROUP OF PROBABILITIES
ON A METRIC GROUP

Josef STEPAN, Praha

Summary: The present paper deals with probability
measures, say P , ona complete separable metric abelian
group such that there exists a nontrivial solution @ of
the equation P = P % w . Such measures will be cha-
racterized in Section 2. We shall make use of these re-
sults in Section 3 finding extreme points of the closed
convex hull of all translations of a probability measure

P . Most of the methods which are used here are due to
Parthasarathy [1967).

Let G Dbe a complete separable metric abelian

group. Let us consider the space M (G) of all proba-
bility measures which are defined on the 6 -algebra 03
of Borel subsets of (G . The space M(G) is a commuta-
tive semigroup under the operation of convolution (% )
which canvbe defined as
P* @A) = [P(t7A)Q(dt)

for any two P, G € M(G) and any Ae @ . Denote
by 29_ the probability measure degenerated at a point



9 € G . Then €, 1is the identity and the only regu-
lar element of M (G) .
Consider the family of sets

AwEyfyyennnty , €)= {pe MG I (F)-YHE D<€,

i=4,2,...,m}

where £, ... f_ are elements of C(G) and € >0.
This family is a base for a topology of M(G) which is
known as the weak topology.

The space M (G) in the weak topology is a metri-
zable topological semigroup (see [1]1) with the following
properties:

l.1. Consider P € M(G) and & c M(G) . Then the
set P x & is relatively compact if and only if the
set & 1is relatively compact (see [1]1,Chapter III,2.1;
[4)) . '

Pt D(P) = co{F :te G} faor each
Pe M(G) , where the right-hand side is the closed convex
hull of the set of translations of P.(P(A) = P(t-'A)
for t € G, A€ B).

Then (see [41)

1.2, D(P)=P x M(G) for every P e M(G) .

The assertion is a not precisely easy consequence of the
theorem on the separation of convex sets in linear topo-

logical spaces (see [11, V.III.10).

2. Inv babil
Let us consider the idealJc M(G), J={Pe

€M(G): P=Px @ for some 0t eM(G), w4+ € 7. In
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this section we shall describe the elements of J. For

any Pe€ M(G) we denote by AP the set A, =

={teG: P =P . We shall say that the set A, 1is

the maximal invariant get of the measure P e M(G) .

Now, we can prove the following
2.1, Lemma. The maximal invariant set AP is a compact
subgroup of G for every P e M(G) .

Proof. Take two points t, 4 € AP . Then for a-
ny A€ @3, we have
R, (A =B A =R A = B (5A) = P, (A) = P(A)
and €.4 (A) = E, (tA) = g(t/\) = PCA).

Hence AP is a subgroup. Further, it is obvious that A,
is a closed set. To prove its compactness let us consi-
der a sequence {t,n},l” c AP, . ThenP= Ptm,= P *x €, -

By 1.1 the sequence {e%;:" is relatively compact
and by a well-known theorem due to Prochorov (see Theorem
6.7,Chapter II in [(1]) there is a compact set Kc G such
that e%C Ky > ~42- for all m , Hence {t, 7"c K and
the gset Ap is compact. This completes the proof.

In the case when G 1is a complete separable metriec
group we can characterize idempotent elements of M(G).
It is known that #% = & for some & € M(G) just if
there is a compact subgroup S ¢ G  such that M is the
normalized Haar measure of S (1 (S)=41, h, = &,
for t € S).

Denote by (. the family of all compact subgroups S c G,
S % {11 and by #° the normalized Haar measure of S.
Then {Ah° 56 Q3%cJ holds and we shall show that
the set on the left side is "a base” for J .
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The following lemma is very important for our purposes.
2.2. Lemma. Suppose that P and (t are elements of
M (G) such that w # €  and P=P % « . Then the-
re exists an S e A, Sc A, such that P= P x #0°
and (S)y = 1.
_Pr_g_o_:.TakeP,(u.eM(G), @ * €, such
that P= P @« . It implies that P= P x 3, , where
1 & 4
))n= ;“é' w for m=1,2,... . By assertion
l.1 the sequencéd ivm}:o has an accumulation point
M € M(G) and P= Px /A holds. Consider the sub-

sequence {v,%i c {»,} such that v"“&. i

then
/rho-" 9
P o A B C 2 | A _
I, x@w =2 1 = I-—7 €5 for k=1,2,..

( €1 = 1€ ¢ h

we have put i €| pufy A)|, where € 1s a
set function on the & =-algebra @ )

which shows that 13,% * == 4 and, consequent-

1y, /o = /o * @ . Therefore we can write A =_f * -
Thus .h = /u* and Jh 1s a normalized Haar measure on

a compact subgroup S ¢ G. From the facts that 4 =

=Mh xw and (& + £  we can easily deduce that /v +
* €, . Hemce S e @ and 4 = 42 .Since

1= h(S)= [0 (t'S) udt)= L[t @t)-eu(S)

and&:(P*h)t:thf-P*,h =P for te$,



the proof is completed.
2.3. Theorem. Let us suppose that G is a complete se-
parable metric abelian group. Then J =s%)a, DcmS)

holds. (We have employed the notation which wes introdu-
ced in Section 1.)

Proof. According to Lemma 2.2 and the remark 1.2
we have J c sl;JwD(Ms) . On the contrary, let us

suppose that P e D(hs), where S e (@ . Then, again
by the remark 1.2, there exists a « such that P=

- 0 x @ - We can write Pxh’= (hs)zx(w=hs*(u= P

and hence P e J as ,hs=|= 61 , The proof is completed.
The following assertion is an easy consequence of

Theorem 2.3 and Corollary 6 in [5].

2.4, Corollary. let us suppose that Pe J. Then P is

an element of the ideal J if and only if there is S e

e A sucl:x that P(+4) étlzodgf‘u wScet) for each

fe CG) .

(We have used the notation f(x) =f(t.x) for ¢t ,
Xxe G )

A s8light reformulation of Theorem 2.3 is given in
the following
2,5, Thegrem. Let G be a complete separable metric a-
belian group. Then Pe M (G) is an element of the ide-
al J if and only if the meximal invariant set of P,
Ap , 18 an element of O (A, + {13) . Ir « € M(G)
is such that P = P*(u, then (a,(AP)= 1.

Proof. The second part of the theorem and the ne—
cessity of the first part follow easily from Lemma 2.2.
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Conversely, let us suppose that AP € A . Then the-
re is 'teAP, t + 1 , and if we put
(ob’%(81+€t) we have (w+€.1,F’=P*(w-
This implies that P e J and the proof is completed.
The theorem which was just proved implies
2.6. Corollary. Suppose that G is a complete separab=-
le metric abelian group. Then the following statements
are equivalent.

A J =8, B) A =8 .

C) The mapping Pt : G — M(G) does not separa-
te points of G for any P e M(G) .

Elements of J have a simple description when G
is a finite group:
2.7. Theorem. Suppose that G 1is a finite abelian group.
Then P e J 4if and only if there exists S € d such
that

(1) P({x3})= PC{né,i) holds for any two X ,
yeG, xy'le 5.

Proof. Suppose P e J. It follows from 2,5 that
Ape A . Take x, ¢4 € G such that t = xryf"e Ap
Hence

PUxi)= BR({x})= Pyl .

Conversely, let S e Q@ be a subgroup such that the
condition (1) holds. Then we can write

RUx$=PEE ™% 3)=P({x3) for each (t,x)e (5= G).

Therefore AP >S5 e and it follows from 2.5 that
P e J . This completes the proof.

- 618 -



Now we shall examine the special case when G has
a € -finite Haar measure f - (h, = h for allte G ).
Denote J ={PeJ:P£& m3 , J={Pel: Pl 3}
where P_L f1 signifies the fact that the measure P
is fr -singular. We can prove the following "decomposi-
tion theorem":
2.8, Thegrem. Let G be a complete separable metric a-
belian group with & 6 =-finite Haar measure 4 . Suppose

PeJ- (J, v J;). Then there exists unique

(,8,R) € (0,1) = J; such that P=ac @+ (1-)R,
Moreover, AP= AG. N A holds.

Proof. Consider Pe J -(J, v Js ) . Then
(see [2]) there are nonnegative finite measures A , 5
which are defined on 3 such that
(2) P=A+S, A€ h,SLh, A,S+08 .
The measures A , S are uniquely determined.
It is quite clear that Af <€ /, for each t € G . Sin-
ce S1 fo, there s a C e @B such that " (C) =0
and S5(B ANC%)=20 for all B € ¢3 . (We have deno-
ted (°= G- C .) Hence h(t"C)=0 and

S,(BAtt’c)) =St'BAC)=0 forall Bed
and t e G . Thus St 1 4 for every t € G . Therefo-
re we have P= P = A, + S, for eacht € A, -
It follows from the uniqueness of the decomposition (2)
that

(3) At=A, S*=S for'l:eAP-

If we put o0 = A(G) then 0 < o« <41 and




(4) P=a@® +1-«x)R

where @ = % , R= 1%0'5 . It follows from (3) and Theo-
rem 2.5 that @ € J,, Re J; andA , c A, n A .
The relation (4) implies that Ae A AR c A, -

The uniqueness of our decomposition is an easy
consequence of the fact that the measures A, S in
(2) are uniquely determined. The proof is completed.

It is quite easy to characterize elements of the

set Ja_ .

2.9. Theorem. let G be a complete separable metric a-
belian group with a 6 =finite Haar measure . . Then
P e J, if and only if there i8 5 & Q@  such that

h({x:g'—}:'(é'&) = gEPCx)S)-f 0 holds for each t € S .

The assertion of the theorem is a consequence of
Theorem 2.5 and Radon-Nikodim s theorem if we realize
that

dPp, apPyt-1
Ff:(d—h) for t € G using the

same notation as in Corollary 2.4.

3. Extreme points of the set D (P)

The aim of this section is to find extreme points
of the comnvex set D(P) =¢co {F, : te G 3 .
We shall have occasion to use the result of the section
2, Denote by ¢ A the set of extreme points of a con-
vex set A . First of all we note that the space M(G)



with the weak topology can be topologically imbedded in—
to the space C*(G) of all continuous linear func-~
tionals on C(G) with the weak*topology (see [3],Chap-
ter V). (By the Riesz reprezentation theorem we can con-
sider elements of C*(G) as regular additive set func-
tions on the algebra @3, c 43 which is generated by
all the open sets of G .)

Denote the closure of a set Ac C*(G) by A* .
3.1. Let Kc G be a compact set. Then -Hi: te K3

and &?{g_ : t € K} are compact subsets of C* (G) .
To prove the assertion it is sufficient to show
that both sets are compact in the weak topology of M(G)

and this is .an easy consequence of the relation (see [4]),

(5) 5'6"‘(& :te K ={@ € M(G): @=P % « , where

“w € McG) and(u,(K)=4§ .

An easy consideration together with one of the con-
dequences of Krein-Milman theorem (see [3],V,8.5) shows
us that
3.2 «wer{R:teK? = {F :te K3} for each com-

pact subgroup K c G .

Now we are able to prove the following theorem.
3.3. Theorem. Let G be a complete separable metric abe-
lian group. Then the equality

37 D(P)={Pt :t € G} holds for every Pe M(G).

Proof. Have a P € MC(G). First of all we shall
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show that Pe ec D(P). Consider (oc,R,@)€ (0,7)=

< D(P) =< D(P) such that P= t R+ (1 ~0o) @& . By
1.2 there exist «w , ¥ € M(G) such thet R=Pxw«,

G = Px>» . Putting sce + (1-0L)V = 7 we can

wite P= P x 7 . It follows from Lemma 2.2 that the-
re is a compact subgroup S ¢ G such that mcsSy=1.
Hence (S)= »(S)=1 and according to (5) we can
see that P,O.,Rec?i{a::tes.?. It follows
from 3.2 that P is an extreme point of the set

er{F :teS3 and hence P= @ = R . Therefore Pe

€ e« PDCP). Now, an easy consideration will show that
{P* :te Gice D(P) . Let us prove that ec D(P)c
C{@:t € G3.The set D(P)* 4s a closed bounded subset
of C*(G). Thus D (P)* is weakly compact (see [3],

V. 4.2).
Therefore by Krein-Milman theorem

x*
(6) ,wD(P)*c:{Pt,teGl

Take @ € ec D(P) and consider (o, % ,%,) € (0,1)x

< D(PYx D(P)* such that @ = arn+(1-a)r, (this

means that @ (B)=a s, (B)+(1-aw)x, (B) for sll
Bed, ). Since 3(B) 2, (B),R(B)2 (1-0t)r, (B)
for all B e @3, the set functions x, (i = 1,2) ere
€ -additive on 03 ., Therefore they have extensions to
the 6 -algebtra (3 , Denote them R,, R, . Obviously

R“ , Rz € D(P) and P(A)saqu (A +(1-x) R, (A)
holds for each A € ¢3 , It follows from our assumption



(& € e« D(P)) that R, = R, and consequently
K,= %, .Therefore we have @ & ex DCPY* |
According to (6) and the fact that @ € M(G) it is
clear that G € {F : t € G7.Since M(G) is a metrizab-
le topological semigroup, there exists a sequence {t;n]c
c G such that @’n = P x Etn 752 & . It follows

from 1.1 that the sequence {gt”};" is relatively com-
pact. Using the same argument as that in the proof of Lem-
ma 2.1 we can show that the sequence {t, 7% is relati-
vely compact. Hence (& = P"o for each accumulation point
t, of the sequence {t,}* . Therefore Qe iF : t e Gf
and the proof is completed.
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