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A NOTE ON FREE ABELIAN GROUPS 

Ladislav PROCHXZKA, Praha 

In this note we shall give a simple generalization 

of a theorem of A. Ehrenfeucht (see [13) concerning free 

abelian groups. All groups considered here are also abe-

lian. 

We begin with the formulation of the following 

statement. 

Proposition 1, A torsion free group (x is free if 

and only if Eat C Or 7 CCoo )) - 0 (such group G-

is called W -group) and G belongs to some Baer's 

class 1^ • 

Proof. If Cx is free then evidently both condi­

tions of our proposition are fulfilled. Conversely, sup­

pose that G is a W -group and simultaneously Gr e f^ 

for certain ordinal oo . For the freeness of G- we shall 

give two different proofs: 1) By C3 ,Lemma 0 and Theorem 

23 G is X,, -free and hence G is homogeneous of the 

same type as CCoo) . In view of f3,Corollary 13 G 

is also separable; thus by a Baer's theorem (see [23,Theo­

rem 49*2) G is completely decomposable, therefore, 

it is free. 2) Let H be a free subgroup of G genera­

ted by any maximal independent set in Gr ; therefore, 
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Cr/H i s torsion. Cx as a W -group i s H^ - free . 

This implies that i f S i s an arbitrary pure subgroup 

in G of f in i te rank, then S is free and hence 

S / ( S n H ) i s f in i t e . Furthermore from the ^ - f ree-

ness of G we conclude / t ^ ( G ) = 0 (see £43tLemma 

1) for a l l primes >fv . Thus we may apply £4,Theorem 13 

and we get G == H . Therefore, G i s free. (This proof 

does not use the separability of W -groups.) 

From this proposition we conclude easily the fo l ­

lowing equivalent statement generalizing theorem from 

t i l . 

Proposition 2. Let H be a subgroup of a free 

group F . 'Then H i s a direct summand of F if and 

only i f every homomorphism of H into C (po) can be 

extended to a homomorphism of F into C(oo) and F/H 

i s a torsion free group belonging to some class f^ . 

Proof. Evidently both above conditions are neces­

sary for H to be a direct summand of F . Thus we shall 

suppose that F /H l i e s in some class f^ and 

(1) HvrnCH^CCoo)) » Hom(F\ H , C(ao)) . 

(The symbol Horn, ( FJ H ., C (oo )) denotes here the 

set of a l l homomorphism8 in Hom(H , C (oo ) ) which 

can be extended to a homomorphism of F into C(oo ) . ) 

The exact sequence 

, o - 4 H - ^ F ~ * F/H~> 0 

induces the exactness of the sequence 
<cc* 

(2) 0--*H<rrn(F/H,C(oo))-+H<yrn(F, C(oo))-^-> 

<&H<ym(H,C(oo))^E*i(F/H)C(oo))->0. 
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Since (U> i s the immersion of H into F , we conclude 

that the image of any ^ e ^omXF9 C(ao)) under p* 

i s the restriction n^ | H of ^ to H . Thus in view 

of (1) /a* i s an epimorphism and this implies that E* 

i s zero-homomorphism; but by the exactness of (2) £ * 

i s likewise an epimorphism, therefore, Ext (F/H? C (ao ))-*• 

-s 0 . Hence by Proposition 1 F/H i s free and H 

i s a direct summand of F . 
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