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Commentationes Mathematicae Universitatis Carolinae

10,3 (1969)
PRIMITIVE CLASSES OF ALGEBRAS WITH TWO UNARY IDEMPOTENT
OPERATIONS, CONTAINING ALL ALGEBRAIC CATEGORIES AS FULL
SUBCATEGORIES

A. PULTR and J. SICHLER, Praha

Introduction. In the present paper, these primitive clas-

ses of algebras are discusssed, into which any category
of algebras can be embedded.

To describe the contents of the paper more precise-
ly, let us first introduce some notions: A category A
is said to be algebraic if there exists a full embedding
of X into some category of algebras and all their ho-
momorphisms. A category is said to be binding if every
algebraic category can be embedded into it. A concrete
category ( X,0) (under a concrete category we mean a
category together with a firmly given forgetful functor,
here [J ) is said to be strongly algebraic if there ex~- |
ists a strong embedding of (X, 0) - into a (concrete)
category of algebras. (A strong embedding of (X, O0) in-
to (X’, O0’) is a full embedding H: X — X’ such
that there. is a functor F , mapping the category of sets
into iteelf, with O0°¢ § = F o [0 ; categories of alge-
bras are treated as concrete categories endowed by the

natural fomtﬁxl functors.) A concrete category is said

to be gtrongly binding if every etrongly algebraic ca-
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tegory can be strongly embedded into it.

There was proved in [1] that every algebraic cate-
gory can be fully embedded into the category £ (1, 1) of
algebras with two unary operations,i.e. that C£(1, 1) is
binding. By [3], L (1,1) is, moreover, strongly binding.
There arises naturally the question, which subcategories,
particularly which primitive subclasses of (X (1,1) are
binding or strongly binding. This, in general, seems to
be rather complicated, partly due to the large variety of
possible systems of identities. We restricted ourselves
to the primitive subclasses of the class I(1, 1) of
the algebras (X;¢, %) witu =g, ¥?= 4 (we shall
call them idempotent algebras; the mentioned basic identi-
ties will be frequently omitted), since the systems of i-
dentities describing such primitive classes are particu-
larly lucid.

We prove that a primitive subclass of L(4,1) is
binding or strongly binding (these two properties are e-
quivalent in this case) if (see § 1) and only if (see §
2) it contains s;ame primitive class Ph defined by the
identities ¢?= g ,y’'= v, (gYry=-g, yorty = ¥
with k= 3.

Minimal binding pfimitive subclasses of 1(4, 1) a-
re exactl\y the classes Eﬁ, with =4 or H = odd
prime. This answers for I(4,1) the problem stated in
{4], where minimal binding primitive classes are conside-
ved in more details.

By results of § 2, we obtain also another charac-

terization of binding primitive subclasses of 1(1, %)
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namely (see 2.10) the existence of nontrivial rigid algeb-
ras (i.e. algebras without nontrivial endomorphisms). In
§ 3 we added a complete analysis of cardinalities of ri-~

gid algebras appearing in primitive subclasses of I(1,1).
§ 1. Strong embedding of O(4,1) into & .

1.1. Construction I. Let 4& be a natural number, & = 3.

Let us define unary operations ¢g, 9 on the set

A={(0,0),..,(2k-1, 0), (0,1),..., (24e~1,1), (1, 0), (), 12,9, % 3
by

@24, 4) = (2i,4), gQi+h,4) = (2G+1),3),
Y (24,3) = 2i+4,4), YQ2i+4,5)= (2i+1,4) ,
YW, §) = (0,4), yw,zil=G34), gin)=(2,0),
Yip) = k1,1, 9)=2k-2,1), y@) =,0),
@)= (0,0), Y(n) = (2k-3,1)

( 4+ designates the addition mod 2.k ).

Obviously, A”= A = {g, £} is a subalgebra of (A;J, y).
1.2. Lemma. The embedding of A’ into A is the unique

homomorphism A’ — A .

Proof. We see that only (u,0) eand(m,1) sa-
tisfy (¥ ¢)2(x)= y(x). Further, we have (2¢, )=
= (@ ¥)¥ (0,4) ,(24 +1,3)=y(0¥) (0, 4) . hus,
for homomorphism 4 : A" —> A we have h («,4) =
=, 450, MGy 3) = G, 40 .

1t £ = 1, we obtain g(h{g;)):h(q(p)).e(z,ﬂ,so



that either h(f2)=(2,1) or h(f2) = (1,1).0n the o-
ther hand, ¥ (h ()= (Y (1)) = (24-1,£,), s0 that
either h(n)=f or ()= (2k-1,4£,) or h(p) =
-=(2h—2,l1). This is a contradiction, since fe = 3.
Thus,

S, 0) = (4,00 , h(4,0)=(%,0)
(4=0,1,-., 24-1) .

Now, since ¢ (h(f))=t(p(nn))=(2,0),h(n)is
either 4 or (2,0) or (4,0). The second and the
third case implies that h(2k-1,1)=h(y(p)) is eit-
her (4,0) or (3,0) which is (again by & = 3 )
impossible. Thus, h(nde . and (2K8-1,£)= A (2h-1,1)=
=hy(n)=y(n)=(2k-1,1).1t follows £ ~ 1,
G, )= (1) and b (i) = (£,4) (& =0,.c., 2k-1).
1.3. Construction II. Let (X; &, 3) be an algebra
with two unary operations. Preserving the notation from
1.1, we define operations ¥, '27':'5 (if there is no
danger of confusion, we write simply ¥, 2% ) on Xx A
by: .

ri(x,a) - (x,p(a)) for any @ € A,

DP(X,a) = (X, y(a)) for any a € A",

S(x, Q) = (oo (x), yig),

Bx,n) = (BIx),yr)).

1.4, Lemma. Jr: X x A —> A defined by (X,2)= a2

is a homomorphism of (XX A3 = 1) into (A; &, ¥).
For X e X,t&:A-—-»XxA defined by cfx(‘-'l')’("va') is
a homomorphism of (A"CI, ¥) into (X x A3 %, ).
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Proof is trivial.
1.5. Lemma. Let (X; &, B), (X% &/, A7) be ybjects
of AA1,1). Letg:(XxA;2,B) —r (X'x4, 2,489

be a homomorphism (we write ~° instead of X, B ‘
instead of QQ::/!, ). Then ¢ = £ > €d, ,wherq ¥ :
: (X0, 8) — (X'_; oc’, 3°) is a homomorphism,

Proof. g 1)3( is a homomorphism. Thus, by 1.2,
g(x,a)= (4,a) for any a € A’ . Define fi: X— X’
by g (%, (u,3)) = (£ (x), (u,7)) . We obtain g (x,(24,4))=
=g (T2 (x, (D= () 2 g.(X, (4,3 V= (4§ (x), (24,5.))
and similarly g (x,(24+ 1,3 )= 9.(')"6’)"*4(-X,(“'74:”’
= -f;-(x, (21 + 4,3‘-)) . Defining ¢ by g.(x,p)= (oy_,’»rz,),we
get (1, (2,0)) = ¢'(y,2)=gT(X,10)=g (x, (2,00= (£, (x), (2,00,
(4, (24-4,10) =P (y,p)= 9,'19'6(,1'&): £, (x), (2h-1,1)).

Thus,f,= f, = f and g(x, )= ($(x), 1) .
Now, put 9,(x7g)=(fy.,a).We have
1) #'(y,a)=vg(x,9)= g ¥ (x,9)=9(x,(2&-2,1)=
= (£(x), (24-2,1)) ,
(2) B (y,a) =09 (x,9)=gdlx,9)=g @ (x),(1,0)=
= (#(ax (X)), (1,0)).
By (1), a equals either ¢ or (%,1) fof some z,
by (2), @ equals either ¢ or (x,0) for somé =z .
Thus, @ = @, &and by (1), o = f(x).
Similarly, put g,(.x,/‘b): (q«, a) .We have
1) 2'(g,e) = TQlx,n)=gT(X,1) = g(x,(0:0)) =
= (£(x), (0,00 ,

(29 ¥y, @) = g lx, 1) = gD (X, k)= @ (3 (x) 2e-3,0)
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= (f(B(x)), (2%-3,1)) .

By (1), @ equals either &£ or (x,0), by (2%,
a equals either 2 or (zx,1) . Thus, @ = X ,/yﬂ‘F(a‘)-

Consequently, g = £ x idA. f is a homomorph-
ism, since (ac’(£(x)),(1,0)) = 19"9(x,g,)=q,'z?‘(x,g) =
=(flec(x)) , (41,0)) (see (2)) and similarly ‘
(R (X)), 2Rk-3,1)) =F(B(x)), (2/-3,1)) .

1.6. Lemma. There exists a strong embedding of L (4,1)
into its primitive subclass [ of algebras (X; %, d)
satisfying o= z, > P, = ’Z:‘(fl”c’)k, P N Dl
where &R 1is a fixed natural number, & = 3.

Proof. Denote by & the category of sets and de-
fine a functor F: ¥ — ¥ by F(X)=Xx A, F(f) =
= £ dd,. Put J(X; e, B)= (X< A; 2%, L)

(see 1.3). It is easy to see that $ (X;cc, B3) is al-
ways in f; .

f £: (X;,8)—> (X’3x’, 8°) is a homomorph-
ism, ¥ x idl, is obviously a homomorphism of & (X ;
o, ) into @ (X'; oc', (3’) . Thus, extending the
prescription  for mor};hisms vyOd )= FOF,
we obtain a functor $: X (1, 1) —> R . b is evi-
dently one-to-one and maps CL (1,1) onto a full sub-
category of P"’ (see 1.5). We have, of course,

DoQ-FoD.

§ 2. Embeddings into general primitive subclasses
of 1¢(4,4).

In the following lemmas, (X; o , 3) is always
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an algebra with two unary idempotent operations.
2.1. Lemma. Let I1X| >4, x(X)= 3(y) for somex,sy € X.
Then, (X', or,,. B) has a proper endomorphism.

Proof. For £ = o (x) we obtain z = o€ ()= B(=).
Thus, conwl, is a homomorphism.

2.2. Lemma. Let |X| > 2,0B(x,)= X, . Then,

(X3, (3) has a proper endomorphism 42 .

Proof. We may assume (see 2.1) that for no =
o (x)= 2 = (3(x ) holds. Put 44 = (3(X,).We ha-
ve ot (ag,)= Xo, £ V= Xy, B(Ys)= 4y, B(X) = Yo
Put hu(X)= 14, whenever (3 (Xx)=X,h(x)=X, otherwi-
se.
2.3. Lemma. Let w~ be a non-empty word in o, 3 . Let
w(x)= X for every xe X . Then, (X; 00, 3) has a
proper endomorphism.

Proof. Let, e.g.,w = %o /3. Thus, /3 is one-to-
one, so that, by B2(x)=R(x), R(X)= X for e-
very x € X . Take X, € X , we have at(X,)= Boc(x,)
and we may use 2.1.
2.4, Lemma. Let 25, w~ be words. If either ax v (Xx) =
= (Bw(x) for every x and |XI> 1, or if 2o (x)=
> w @B3(x) for every x ami |X|>2 then (X;0a,/3)
has a proper andomorphism.

Proof. By 2.1 this is trivial for ot v = Bw”. Now,
put v:(oc(S)"" (after a possible renotation of o€ and
(3 ) and we obtain a3 (VK (X)) = (oo 2Y*0cBox (%) =

= (wee) Boc (X) = (wfB3loe (X) = (o) (X)) -

The second statement follows by 2.2.
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2.5, Definition. A cycle of the length 2m (m & 1)

in (X3 0, B) 1is a sequence a,, &, a,, & ,...

vy &, of elements of X such that

1. BG@)=b; (L1&€m-1),x)=a,, (£m-2),
¢(%-4)= a, >

2. the elements @,, &,,..., &, _,, ¥; , are distinct.
A cycle of the length O 1is an element x with X =
= a(x) = [3(x), an infinite cycle is a sequence
a,o,,?)o" %,ﬂ;; ... such that 3(a;)= 1{;-, oc(ﬁ;): .,
and all the elements a ,,@2 are distinct.

2.6 . Lemma. Let (Xj3oc,6/3) contain a cycle of the
length 4 and let all the other cycles be of a finite
non-zero length divisible by 4 . Then, (X ; &,/3) has

a non-identical endomorphism. Consequently, if

(Gcﬂ)mz(x) = (ac/&)""(.x) for every x € X and if
IXI>2, (X;a,/3) has a non-identical endomorphism.
Proof. Denote by 0,1, 2, 3 the elements of the
cycle of the length 4, let @B(0)=1, (1) =2,
p(2)=3, a(3)=0. Put 2(G)=ZG.Let C be any
other cycle. Choose a e C with ac(aé)z @, end de-
tine h(xp)¥ca) =0, hB(xpI* @) =1,
h(x 3 a) = 2, hp(m? @)= 3.

No;v, let x be contqined in no cycle. Since the-
re are no infinite cycles, h((ac/})‘*’(x)) is defined
for some & and equal to 0. According to the possible
lengths of the cycles such a f is always (for a given

X ) even or always odd. .



1r &k is even, put
h(x)=0 for x =c(x), h(x)=1 for x= [5(x),
irxeX = (X)u A(X))  and @@fa(x)= 0,
then h(x)=0 for £ even,h(x)=4 for £ odd.
If & 1is vdd, put
h(x)= 2 for x=oo(x), h(x)=3 for X=B(x],
ifxe X = (o (X)u B(X)) andl@pfe(x)=0,
then .2(xX)=3 for £ even, Ja(x)=2 for £ odd.
It is easy to see that 4 is a homomorphism. If
I X1=4,(X; %, (3) has an endomorphism f defined
by (i) =1+ 2 (addition mod 4 ).
The second statement is obtained as follows: If e,
(3 satisfy the mentioned equation, (X-,ac7/3) either
has a cycle of the length 0 (see 2.1), or has a cycle
of the length 2 (see 2.2), or all its cycles are of the
length 4 and we can use the first statement.
2.7. Lemma. Let 27, w” be words in o, 3, let w(X)=
= (y) for every x, o4 € X. If | X1 >2 ,then (X ;
o« (3) has a proper endomorphism.
Proof. In particuler, wec(Xx) = v/3(xX) for every
X , Statement follows by 2.4.
2.8. Lemma. Let k&, , ..., R,  be natural numbers, d
their greatest common divisor. Then there is an m2, such
that for every mm =2 m, , the equation
Xy Ry e+ X My = ol
has a solution with natural

Proof. See, e.g.[2], p.25.
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2.9. Theorem. Let X be a primitive subclass of I(1,1).
Let there be an algebra ( X o, 3) in X without pro-
per endomorphisms with | X| > 4 . Then there is a & 2 3
such that B £ x.

Proof. Let X be determlned by equations
k +x.

(1) aB) ¥ H(x) = (oc/3) *(x) —rel) ,
; &, .
(2) (3 oc)h"m"(.x) = (Bex) (Xx) (1 e€l,) ,

4, . .
) B ) = w (B)F0 (e ly)
+ . I .
(4) /s(oc/ﬁ*z ()= BlxB) T(x) (1€ 1) -

(By 2.4 and 2.7, any of the equations determining X is
of some of these forms.)

Put £, = k; for i € 1 ,L=Mk,+1 for ielu
U.I ul . Vle obtain

(o(.[3)1' ‘(.x)_ (oo[&)“(.x) (1:611U... Ulq_),
and, consequently, for arbnrary natural numbers X:
(06{3)‘ % x) = (x3) “ex) .
1t I is finite, I€ L u...ul, £= 2, 4 ,

we have

(5) cocp)‘* 155 () = (Y (XD

By 2.8, there exist natural numbers m, X,;,.X.E (i e1)
such that ZIX‘H@ =m, Z x ", = m + d , where -
is the greatest comon divisor of x, (4 € 1).By (5),

@)™ = («g)"”(x) .
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Since I was arbitrary finite, we see that the-
re exist a natural number & dividing all the 25
(relu.. v 1,) end a natural number m such
that

( BYHR(x) = (L BY™(x) .

By 2.2 and 2.6, % = 3, Now, we see thatli s X, sin-
ce all the equalities (1) - (4) are consequences of
o (B ™= o« ana fBcap)®= 3. (For (1) and (2),
this holds only under the assumption of ’k-i >0 for
ie v Iz . This, however, follows by 2.3.)
2.10. Theorem. Let X be a primitive subclass of I1(1,1).
Then the following statements are equivalent:
(1) There is a e &€ 3 with f, £ X .
(2) There is a rigid algebra of a cardinality at least 5
in ¥X.
(3) For every cardinal m  there is a rigid algebra of
a cardinality greater or equal than m in x.
(4) There is an algebra in X such that its semigroup
of endomorphisms is a non-trivial group which is not i-
somorphic to the cyclic group of the order 2 .
(5) For every monoid S there is an algebra in X such
that its semigroup of endomorphisms is isomorphic to S .
(6) K is binding.
(7) K  is strongly binding.

Proof. By 1.6, (1) ==> (7). Evidently (7) = (6) =
= (5) = (4), (6) == (3)=> (2). By 2.9, (2) =
=) (1). It remains to prove that non (1)==> non(4).
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If (1) does not hold, an algebra ( X; o, B3) with a
non-trivial group of endomorphisms must have by 2.9 a car-
dinality 2,3 or 4 .Since (X;o,/3) has no proper
endomorphisms, we have neither of = identity nor ﬂ = i-
dentity and hence oL (X, )= X, # X, for some X, ﬁ(xq) =
= X, by 2.1, 3(X,) # X, by 2.2 (for IX| =2 , this
algebra would be rigid). Put B(X, )= X,. «*(x,) is
neither X, (by 2.1), nor X, (by 2.2), nor X, (since
x?(x,) = &(Xy) ). Put (X,)= X, . Similarly,3(X,)
is inequal X, , X, X, and hence B(X,)= X, . Thus,
¢ X, o, (3) is determined and we see that its endomorph-
ism semigroup is the cyclic group of the order 2.
2.11. Theorem. Minimal binding primitive subclasses of
1(4,1) are exactly the E&, where either & is an
0dd prime or f = 4 .

Proof. Immediately by 2.9 and 2.10 and by the fact
that o(.(ﬁoc)hz ot implies o(,(ﬁor.)'”k- o« .

§ 3. Cardinalities of rigid algebras in primitive
subclasses of I “1,1).
In the whole paragraph, the trivial rigid algebras
of cardinalities 1 and 2 are ignored.
3.1. Lemma., Let k& 2 5. For every m 2 2. +1 there is
a rigid algebra (X;a, 6 B) in 1(4,1) satisfying
(B *x = x, (BxY*p=p3
with | X = m.

If A= 4 ,then there are such algebras for 9 £ m &
£ 45 and for m & 48 , if ke = 3, then there are such
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algebras for ¥ £ m £ 8 and for m = 15.

Proof let M £ % x< & (natural number m is
treated as the set of all natural numbers less than m ),
a ¢ 2R UM .Put
Ag (m, M) = (2RI < m U Mx(m-Nufaix (m-1); «x,3),
where o (24,/) = (24 +1,1), 324, 2)= (24, 1) ,
o« (2i4+4,2) =(2i+4, 1), B2i+4, 1) = (21+2,%) ,
&(a,n) =U,n+1), Bla,r)= (0, %), oK (L,4,%)=
= (2i+1,6), B(i,4,%) = (24,2 +1)

(+ designates the addition mod 24k unless otherwise
stated).

The following two statements are evident:

I. If o (x)=(4,2) and B(x)=(f,2) then t-4£=1 or
4-4=1.

II. If £(i,,£)= (4, /) for a homomorphism f, therf(i x)=
= (14 4,~1,») and, consequently,f(C )= C, , where
Co= 2% < Sn}.

We shall prove that Ay (m, M) with m Z 2 is
rigid, whenever (0,3)ée M and R Z 4 or{(0,0), (0, 23s
&M and & = 3.

Let f: A, (m,m)— Ak(rn,, M) be a homomorphism.
1f f(a, 2 )=(21,,4) , we obtain £(0,x) = (24,  5), ¥, +1)=
=(2¢+1,5) and hence af(0,3,£) = fx (0,3,2)=F(1,k)
=(24,+1,5) (by II), while 3€(0,3,1) = £3(0,3, 2 )= f(6,+1)=
=(21‘:,+67/5)in a contradiction with I; if ke =3 , we obtain
a contradiction considering ocf(0,2,x) and 3f(0,2,%x).
1f f(a,x) =(24,+1,4) , we have £ (0,x)= (24,+2,5),

f(1,n+1) =(24,+ 1, ») eand we obtain again a contra-
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diction considering the images of (0,3,x2) ( (0,0,%)¢
for & =3 ) under ¥ and BFf . If fla,x)= (©, 4,7,
we obtain easily by II 4(04) =C,,, and £(Cryq)= Go
and, conseqﬁently, f(n,q,x)=(a,s) for any (n,2)€
€ M, This yields an immediate contradiction in the
case of IMI 2 2 . 1¥IMI =1, we have & 2 4 and
M ={€0,3)3 . Then, (0,4) = f3(a,»)= £3(0,3, %)=
=f(6,2+1).0n the other hand, f(a,x)= (0, 3,5) and
hence f(1,£+M) =1 4) and (by II)£(6,2+1)= (6, 5)
- a contradiction. B

Thus, (@, %)= (@, (%)) . Put wr= 3(a/3Y*",
We have Rf(a,n+1)=f(0,n+N)=f(w (1,x+1) = wfx (a,r)=

=wala,s(xN=w(,s0)+1)= 0,5k )+1) and Bf(a,n+l)=

=(0,5(+1)).Thus A(+1)=A()+1.Now, we see easily

that #(k) = » for any x, so thatf(a,x)=(a,r) for a-
ny # ., Consequently, using /3 and II, we obteinf(»i,/(_)-
= (i,n) for any 1,4 and finally, using both oL and
3, we obtainf(4,4,/)m= (,4,1) for any <, 4, % -

Thus we obtained for #& & 4 algebras of cardi-
nalities beginning with 4Me+2 , for k=3 rigid algeb-
ras of cardinalities beginning with 45 with the excep-
tion of 23. Such an algebra with cardinality 23 may be
constructed as follows: Put A=A;(2,3x3)u {843
and define o (&)= (3,0), B3(&)=(0,0) . The proof of
rigidity of A is analogous to the previous one, we must
only prove first thatf(a,0) & &, If f(a,0) = &,
we have £(0,0)=3f(a,0) = (0, 0)) and hence f(i,0)~
= (1,0), f(1,N=ocf(a,0) = (3,0) and £(i,1)=
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=(1+2,0). Thus, o (0,1,0)=(1,0)= (1,0) $3f0,1,0) =
=f(2,1)=(4,0) in a contradiction with I.

Now, let M € &k x & be such that
1) (i,2)eM=> i 44, i-F£1(mod ),

) 0,MeM, (-1,00¢M ,
3 (4,i+MeM,0&ji<i,=>(F,4+1)eM.

Put Ak(M)-—-' 2R UM 5 %, 3) , where x(21)=2i+1=

&k (2i41), B(2i4 D= 2042, B(24)=24, ot(5,4)= 244 1,
B Ciyg) = 24 .
We have (o0 3)2(x)= o€ (x) iff x = (i,i+1).

Thus, f(0,1)= (%,,%,+ 1) for some ©,<-1. Conse-
quently ,f(<) = 21,+1. Thus, & f(Zi,i+1) =
= £(2i43)= 201+ 14, + D+, B4, +1) = £(21) = 2(< +1:0) .

The unique element with these images under oo and /3
would be (di+1,,i+1,+4) (here, the addition is
mod k), if it were in M , Let J be the first natu-
ral number with (F,7+1) ¢ M (see 2)). If 1, %+ 0, x =
=(;’-1'b,9'-1:0+4) is in M . We have acf(x)=2(GF+1)+1,
Bf(x) = 24 . But there is no element with these
images under o¢ and B in A*(M), Thus, £(0,1) = (0,1),
and (i )= ¢ and (i, 4) = (4,4) .

By 1),2),3), M can have any cardinality between
1 and k% 24 -1. Tnus, we obtained for bk = 3 algeb-
ras with cardinalities ¥ and 8 , for f¢ = 4 algebras
of cardinalities between 9 and 15 , for e 2 5 algeb-
ras of cardinalities between 24 +1 and k%Z_4 (and
R2-4 is now greater than 44e +1 ) .
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3.2. Lemma. Let & 2 3, For everym & 242 +1 there is a
rigid algebra (X3, B8) in I(4,1) satisfying
(e =, (Ba*'p-pap

with IXl= m.

Proof. According to 3.1 it suffices to find for fe=

= 3 rigid algebras of cardinalities between 9 and 14,
for & = 4 rigid algebras of cardinalities 16 and 17.
Put X(F)=6Ugix20u{al, wherea¢bu(Fx2),
g'=4,2,3 . Define operations o, /3 on X(4) by
€ (27) = R (294N =24i+1, 3(24i)=21, 3(24+1)=2i+2,

&(i,00= 2944, (3(3,00=B(i,1) = (i,4), & (i,1) =
=21-1, a(@)=3, @Bla)=(0,1).

We have st (x) = (& 3)2(x) iff X = (i, (). Thus,
$(¢,0)=(3,0) and, consequently, f(i,1) = (4 ,7). We have
further aoBx(@)= aB(a), so thatf@)e b6 u{ald
If f(a) € 6, then £(0,1) € 6 - a contradiction.
Thus, f(a.)= @ and we see now easily that + = identity.
Thus we obtained rigid algebras of cardinalities 9,11,13.
Rigid algebras of cardinalities 12 and 14 are obtained
Joining a new element & to X(4). (4= 2,3) and defi-
ning (&) =5, B(&)=(1,1).

Now, add to A;({(0,1),(1,2)3) (see proof of 3.1)
new distinct elements @, & and putacCa)l=1, B(a)=
=ﬁ('?r)-—i Ir, (&)= 5. The elements (£,2 + 1) ohly
satisfy B(x) = (Ba)?(x). I££(0,1) =(1,2) for a ho-
momorphism +f , we obtain easily a contradiction conside-

ring £(4, 2). Thus,¥(0,1)=(0,7), f(1,2) = (1,2) and
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fC(€)= 1 . We have af(a) =fax@)= 1 and hence
£(a) is either 0 or 4 or a ; since «(@) =
=(cc/3 y2ca) , we have f(@) = @ and, consequently,
£(&)=f(Ba) = &~ . We obtained a rigid algebra of car-
dinality 10.

In order to obtain for fde = 4 algebras with
cardinalities 16 and 17, add to A, (M.) (i=0,1) ,
where M, = {(0,1),(1,2),(0,2), 4,3),(2,0), (3,133, M, =
=M,u{(2,3)3 , new elements @, and define
L@)=1, 3a)=LLB)= &, (&)= ¥.

The proof that these two algebras are rigid is
quite analogous to the proof that A4 CM:,) is rigid; we
must only prove first that f(0,1) + a .

If £(0,1) = a, we have f(0)= f3(0,1)=3(a) = ¥,
fMN=Ffx (0)= ot (&)= ¥, so that £(0)= 6 - a contra-
diction. We obtain again f(2,€+1) = (<,4 +1), f(i)=
=1,f(<,4+2) = ({ ,1 +2). Consequently, af(a) = 1 and,
therefore, considering that (a:{.’»)z(a) =oc(a), f@)=a
and finally £(&) = 4.

3.3. Lemma. Let /& = 642 .Then there are rigid al-
gebras with cardinalities 11 and 12 satisfying (o\:f.i)*'oc-
=« and (Ba’™p-p.

Proof. PutC=4x40},D=6=x£13, a,t
be two elements not contained in C U D . Define opera-
tions on CuDufad (Cu Dufa,&] respectively)
by (24,4 )= (24+1,3), 3(2¢,4)= (24,4), x(2i+1,4)=
=(2i+1,4), B(2i+4,4i) = 2i+2,3), x@)=(1,0),

a () = (1,1), Bl@)=(0,1), AL)= (0,0
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(for 2 = 0 a ddition moodl 4 ,forj=1 mod 6 ).
It is easy to see that for a homomorphism ¥ the-

re is neither £(C) € D nor¥(P) & C . Iff(a)+ @,

we obtain, however, some of these two cases. Thus f(a)=

= a and now it is easy to see that € = identity.

3.4. Lemma, Let (X; 0, 3) be a rigid algebra such

R (O= )™ (X ) is satis-

that the equation (ot/3)™
fied for every x & X, let | X| &= 3 ., Then there is a
cycle of the length 2d in X, where d is a divisor
of Je, d >1. By 2.1 ana 2.2, of course, there is no
cycle of the length O or 2 in X .

Proof is trivial.
3.5. Notation. Let X be a binding primitive subclass
of I1¢4,1) determined by the equations (1) - (4)
from the proof of Theorem 2.9. Denote by o (¥) the gre-
atest common divisor of the numbers x; .Let

d(H) = 2%93735°F ...

be its prime decomposition. If @, £ 1, defi_netm(.'ff)
as the least odd prime f2 witha, =% 0, if a, & 2
end @, = 0 putm(¥H)=4,ifa, >0, putm (X)) = 3.
3.6. Theorem. Let X be a binding primitive subclass
of 1(1,1) . Then the cardinalities of (non-trivial)
rigid algebras in X are exactly all the cardinal num-
bers greater or equal to 2m (K )+ 1 with the following
exceptions:

It X=P,de223" ... ana
l. if o, & 1, a, + 0 =+ a, , there are no rigid
algebre® with cardinalities 9 and 10,
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2. if a, = a, = g, Q, =+ 0 , there are no rigid algeb-
ras with cardinalities 9,10,...,14,

3. if a, = 1, a, # 0 = @_, there are no rigid al-
gebras with cardinalities 9 and 10,

4. if @, =2, @, = & = @, = 0, there are no rigid
algebras with cardinalities 16 and 17,

5. ifa, > 2, @,= a, =~ @, = 0, there is no ri-
gid algebra with cardinality 16.

Proof. Since the embedding of X (1,1) into
described in 1.6 preserves all infinite cardinalities ané
since X (1, 1) has a rigic algebra ot cvery infinite
cardinality (see [11 and [5]), it suffices to discuss the
finite case.

The positive part of the statement follows easily
by 3.1, 3.2 and 3.3.

Now, let (X; o, B ) be a non-trivial rigid algeb-
ra in X . By (the proof of 2.9 and)3.4 and 2.6, X con-
tains a cycle of a length at least 2m (J{). The cycle a-
lone is not rigid.

Now, let us discuss the exceptions:

1. By 3.4 and 2.6, a rigid algebra with cardinality 9 or
10 contains a cycle of the length 6. The remaining four

(or three) points evidently cannot form a cycle. On the

other hand, we cannot add three or four points to a cyc-
le of the length 6 without allowing a nonidentical endo-
morphism.

2. The cardinalities 9, 10 and 11 are excluded by a con-

sideration similar to that in 1 - there could be only
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one cycle of the length 6 there. For the case of cardina-
lity 12 it remains only algebra consisting of two cycles,
which is not rigid. A rigid algebra of the cardinality
13 or 14 should contain two cycles of the length 6. It
is easy to see that we cannot obtain a rigid algebra ad-
ding two points to such cycles, however.
3. A rigid algebra with the cardinality 9 or 10 must con-
tain a cycle of the length 6, since it cannot (by 2.6)
contain only cycles of the length 4. Contradiction is ob-
tained by similar way as above.
4, By 2.6 (and 3.4), a rigid algebra with cardinality 16
or 17 contains one or two cycles of the length 8 (and no
other cycles). We see easily that there is no such rigid
algebdbra.
5. The situation is quite analogous to that of 4, with
the exception that there is a possibility of a cycle of
the length 16. This yields the rigid algebra with the
cardinality 17.
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