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A SAKLSCHUTZIAN THEOREM FOR TRIPLE SERLES

L.K. BHAGCHANDANI and
K.N. MEHRA, Jodhpur

1. Iptroduction. The object of the present paper is
to obtain a Saalschutzian theorem for triple series. The -
Saalschutzian theorems for double series were obtained by
Carlitz [1,2) and sum for double hypergeometric series of
superior order was recently obtained by Jain [3]. It is
interesting to note that results due to Carlitz [1,p.416
(9)), and Jain (3,p.300(1)] are particular cases of our

theorem,

2. The following results (5,p.218(8.3.4)1,(1,p.417
(12)] and (4] will be required in our investigations:
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3. The first formula to be established here is
(4) P (ay, @y ,0,,8;, Ly, 0,5 ¢4, 04,045 %,9,%)
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where c1=a,1+a,2_=1q+1rz .

Progf. Expressing the series (3) for hypergeometric
function of three variables F-,- in terms of Appell’s
function F,

1 we have
(5)
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Now employing (1) in (5), we get
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Again using (2) in (6), the result (4) follows
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lmmediately after little simplifications.

4. The main result that is the Saalschutzian theo-

Tem for triple series obtained here is

(7)
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Provided c, ,1,;.,.,& =a+a,, ﬂ; -a,

integer, 4+a,2+17;_-m=c1+d1, '1+a,4+,(;—m.=e1+d2 and

is not an

1+a,4+1;24-4,,=c1+d,3

Proof. Employing the expansion of (3) in (4), we
have
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putting 1+a,-& -m=d, 1+b;-a,-m=d, 1+l-2,- =d,

and

equating the coefficient of x™ 4™ 2™  on both
Y

side of (8), we obtain (7) under the conditions stated.
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5. Particular Case., (i) Putting m =0 orm=20
(7) we obtain a reylt’ due to Carlitz [1,p.416(9)].

(11) When we put 2 = 0 in (7), we get a result
to Jain [3,p.300(1)].
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