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MAPPINGS INIO SPACES OF OPLRATORS
Viastimil PI{K,Praha

In a recent paper [1] B.E.Johnson proved the fact that
every strictly irreducible representation of a Banach algebra
is continuous. It is the purpose of this note to show that a
similar argument may be used to prove a more general result
which is concerned with algebraic homomorphisms of Banach spa-
cea into spaces of linear operators. In this preliminary re-
port we only give the proof of this main result; it has a num=~
ber of consequences which will be published in the full ver-
sion of the note.

Theorem. Let (Y,q) and (X,w) be two normed spaces.
Let (A,p) be a Banach space and T an algebraic‘homomorph-
ism of A into L((Y,q),(X,ew)). Suppose that the following
two conditions are satisfied.
1° Given Agyyerry Ym€ Y and X,y -0 3%, € X such that the

y, are linearly independent then there exists an ae€ A
such that Tnh = X; ]
2° for each y ¢ ¥ the set N(yg)={ach; Iy-O} is clo-
sed in (A,p) .
Then either Y is finite~dimensional or the mapping T is
continuous.
Proof. The proof will be divided into four steps.
For the sake of brevity, we shall write ay for T,y .
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I. Let us prove first the following assertion.

(F) There exists a finite sequence A<, Yp, € Y such
that every y € Y is continuous on N(ag )Yn... " Nl ).
Suppose that (F) is not true, Takel a discontinuous y, € ¥
with qly, ) =1 . Since ¥4 1is discontinuous on (A,p )
€ A with p(a1 )61 and wl )X 2.,
Since (P) 1is not true there exists a ¥y € Y which

there exists an a

is discontinuous on N(y, ) and q(y,) =1 . Hence there e-
xists an a, € N(y“) for which n(a, ) & 1 and
w(oyng, ) 3 2"(2-’-% W (@, %4 )) . Since there exist dis-
continuous y's on N(y,)n N(y, ) there exists a ye ¥,
alyy) =1 and an aye Ning) A N(agy ) with pla) € 1
and @ (ayap) 3 223+ F wia, a0+ () 0w 2y ).
Proceeding by induction, we construct two sequences a;€ A ,

Y‘_C Y such that p(g‘.‘)‘ 1, q(y’- )& 1 and
a; ¢ NW-,M... ANy, )
L] Py ,
W@,y & 2 (m+?_§:’w(%) @ (a; tpy 1) -
Define now a € A gag

@ = ,'%4 (12.' ? ch so that p(a) & 1 . Given a natu~

ral number n , we have
QY%m = :'?m (%)’a«,"'hy* V Ym
Where v -\,;M (%)"a’. . Fo 4 & n+1 we have

a; ¢ N("hu) so that, N(y, ) being closed, the vec-
tor v belongs t, N(y,, ) as well, It follows that




©@nle @ (L ey, T ($)7a,y.) 2

2(%)“-:0(4,‘9,,)—’,;“(%_)”co(ajy,,) e m
which contradicts the continuity of a in the second varia-
ble. The proof of (F) is thus complete.

II. Let us show now that every Yy € ¥ which does not
belong to the subspace generated by Ay, resr 4gy is al-
ready continuous. Take an arbitrary y € Y which is linear-
ly independent of Aggy'c* )My We may clearly assume that

Yar' 'y Y are linearly independent. We begin by pro-
ving that A = N(fy.,,)n... A Ny + N(yg ).

Indeed, let a € A be given, Since the n + 1 elements
Mgg170) Ofm s Y are linearly independent, there exists,
by assumption 1°, a ¢ 6 A with ey, = =cy, = 0 and
cy =ay . If ve write @ =¢ + (a - ¢ ) , we have ¢ €
Ny, ¥n...A Nyl and (a-cde N(gy) .

Since (A,p) is complete and both N(4)n ... n N (4, ) and
N(y) are closed, there exists a 6> 0 such that eve-
*y a € A may be written in the form a=u+v , &4 € N(%)n
N, Nlag Y, e N(g) andpl)+nlv) € 6n(ad.
Now y is continuous on N (4, ) ... N N, ) 8o that
there exists a 3 > 0 such that xeN(y)n... N N (g,
impliess @ (Xy) & BN (X). !

If ae€ A, ve have

wylswUy+vy)=wluy)t Bpu) €3 8n )l

and the proof is complete.
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III, We have shown that there exists a finite-dimensio-
nal subspace of Y which contains all those y e ¥ which
are not cont_inuous on (4,p) . Denote by Y, the smallest
subspace of this property and let us show that either Y, =
=Y or ¥, =0 . Indeed, consider the case Y, % Y , Choo-
se a y*s ¥ outside Y, . We intend to show that every
¥y 6 ¥ is continuous. According to the preceding part of the
proof, this is immediate if y lies outside ¥,

If ye Y, then both y+ y* and y -y* belong to the
complement of Y, . Hence both y + y*¥ and y - y* are con-
tinuous and so is A= i (y+4") + j?: (- ™). It fol-
lows that Y, =0,

IV. The proof is concluded by a standard category argu-
ment. Denote by B the unit ball of (Y,q) « If Y is infi=-
nite-dimensional the space ¥, has to be the zero space so
that Y may be considered as a subspace of L((A,n), (X,w)),
Let us show now that the set B c L((A,n ), (X,w)) is
pointwise bounded on A . This, however, is a consequence of
the fact that T is a mapping imto L((Y,q),(X,c)). Indeed,
if a€ A 1is fixed and if y € B , we have

wlang) & [T lqy) & | T I|.

It follows that the set B is bounded in L((4,p),(X,
@ )); hence there exists a & > 0 such that
wlay) & 6n(adrgly)

which proves the theorem.
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