
Commentationes Mathematicae Universitatis Carolinae

Bohdan Zelinka
Tolerance graphs

Commentationes Mathematicae Universitatis Carolinae, Vol. 9 (1968), No. 1, 121--131

Persistent URL: http://dml.cz/dmlcz/105162

Terms of use:
© Charles University in Prague, Faculty of Mathematics and Physics, 1968

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must
contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

http://dml.cz/dmlcz/105162
http://project.dml.cz


Commentationes Mathematicae U n i v e r s i t a t i s Carolinae 

9,1 (1968) 

TOLERANCE GRAPHS 

Bohdan ZELINKA, Liberec 

E.C. Zeeman [3] has introduced a concept of a t o l e r a n ­

ce on a s e t . M.A0 Arbib [1,23 has used i t for the i n v e s t i ­

g a t i o n of f i n i t e automata. Obviously the to le rance can be 

used a l so in o ther branches of mathematics. In t h i s paper 

i t w i l l be introduced i n t o the graph theory* 

The to le rance f on a s e t X i s a r e l a t i o n on X t h a t 

i s r e f l ex ive and symmetric. A to l e rance space ( X ? f ) i s a 

s e t X toge ther with a to le rance f on i t . In f 3J the f o l ­

lowing a s s e r t i o n i s proved. 

A to le rance on X induces a to l e rance on the l a t t i c e 

LA of subse ts of X as fo l lows : Given A,A c X , wr i t e 

CA , A ' ) e f i f A c f A' and A/ c f A . Then the 

r e l a t i o n f i s a to le rance on L^ • 

The symbol fA denotes the s e t cons i s t i ng of a l l 

elements X € X such t h a t the re e x i s t s an element a € A 

for which ( x 1 cu ) € § ho lds . Analogously foe i s d e ­

f ined for x € X * 

Two to le rance spaces ( X ., § ) 1 (X', $') are c a l l e d 

isomorphic i f the re i s a one-to-one mapping <? of X onto 

X* such t h a t (*,<&)€ f implies (<y>(* ), 9> <V » ^ f' 

fo r a l l x and y from X . 
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The graphs considered here will be non-directed graphs 

without loops, multiple edges and isolated vertices (except 

of the graphs of tolerance defined below in which the loops 

e x i s t ) . 

The £ -tolerance graph is a graph G on whose vertex 

set U a tolerance f is given such that AA, e U, nr e U, 

(M,,v)e f imp l ies ( TAX,, CAT ) € f . 

By the symbol Vx we denote the set of a l l vertices 

of G joined with x by an edge. By -e we shall denote the 

tolerance on U such that C x , ^ ) e -e for a l l x, y from 

U ; so -e is the so-called universal relat ion on U . By <r 

we shall denote the tolerance on U such that Cx, <y* ) e <r 

i f and only i f x =- y ; thus cr is the relation, of identity 

on U . 

Theorem 1. Let U be a se t . The tolerances -e and <r 

are the unique tolerances? f on U such that every graph 

with the vertex set U is a [ -tolerance graph. 

Proof. If f * «e , then evidently (A, A ' ) e | for 

arbi t rary two non-empty sub9et9 of U , 30 (aa we do not con­

sider graphs with isolated vertices) C TAX, r f i r ) € f fo^ 

each two vertices u and v from U , and, according to the 

defini t ion, (AA*, 1/" ) e f . i f f = &} then C x , ^ ) e f im­

p l i e s x = y |and we have Fx « Fhj, which implies (F*, H^)£ 

e f . Now le t f 4. -e ) £ 4. <r. This means that there ex­

i s t two vertices; u, v from U such that AA* 4- v and 

( ^ , v ) € £ and two vertices x,y from U such that 

( x , i j f ) £ £ . If the vert ices u, v, x, y are pairwise dif­

ferent , then we conatruct a graph G in which 



O t - * * j , r ^ « { ^ j , r * « ^ 

for all x e U different from u,v,x,y • Such a graph is 

not a f -tolerance graph, because (HA,, nr )e f and ( T ^ , 

rv)£ f • I f x s u* t h e n we Put r<u>m{ir,v,j, r<*m{u,}, r*,» 
« U --*{ sU*? v*, ^ , ;& ?, fy»{aj ,for a l l .£ e U d i f ferent 

from u ,v ,y • Analogously for u = - y , v = x , v = * y . 

Denote M (§ ) * mat \ $ <m \, /m (§ ) *- /rrwrv I f ^ I , By the 

symbol <p (AM ) we denote the degree of u in the graph G • 

Theorem 2* Let u be a vertex of the £ -tolerance 

graph G with the vertex set IT • Let v be a vertex of G 

such that (AA,,V ) e f . Then 

9{W)M(£) ~ ?^) * f>(^M(f> • 
Proofs The se t Vv must be contained in f Ha, which 

i s the se t of a l l z such that a y. e Ha, e x i s t s for which 

(%j y,) e £ , For each <ty e ru 9 the number of such e l e ­

ments z i s at most fA (§ ) . As the number of elements of 

Flu, i s (p(u<) 9 the set f Ho, contains at most 

p(*4,)\A(\) elements, and p (tr) ts <p(u,) M (f ) . The 

tolerance being symmetric, there i s also (nr,<u>)e § t from 

which p (Us) & p (<v) M (f ) . Divid ing t h i s inequal i ty by 

M ( f ) , we obtain p (u,)/M (f) 4s p (v) • 

In [33 the fol lowing operations on graphs are def ined : 

sum, product, Cartesian sum and Cartesian product. 

Theorem 3« Let G1 , Ĝ  be £ -tolerance graphs with 

the same vertex se t U • Then the graph 0• » <5r + & i s a 

£ -tolawmcB graph, too . 

Proof* Let CJ * - ^ x , £ *X , l̂ *,x denote the se t s of 

ver t i ce s .joined by an edge with x in G1 ,G1 ,G3 ,Gy . 
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Let AA, € LL, v £ U, (<u, <*) € f , As Ĝ  ,QZ are f - t o ­

lerance graphs, there is C f .^, %v)e f, ClJ^. £v) e f «-

In the graph Q̂  ,we have Ij-u,* qu-uQu,, IJir- I.;?/- u £z/- • 

So f X^AjLmf 17^ u f H"^- \*lv ** f fJV u f^v 7 and the inclusi­

ons r^cfqir^vcfq+L, rzu,cfrxv, %v c f I7^c imply 

1744. c f 17^, f j v c ff j*c , and f £<*, £ f > * f ' 

Let C Xf, f f ) ? CX, ? f4 ) be tolerance spaces. A to le ­

rance f$ i s defined on the Cartesian product Xf x X2 as 

follows: CCx f ,X4 . l , C^ f , A}2 1 ) c f.j if and only if 

^1»^>€ ft • C x*>1^ € ?* 1 ^ w i n be <*enoted fey ^ft* h J ' 
Theorem 4. Let G(| be a ff -tolerance graph with the 

vertex set Û  and Ĝ  a f2 -tolerance graph with the vertex 

set Û  . Then the graph (3j » fy **- (JZ i s a f$ -tolerance 

graph, where f% m C ff , fz J • 

Proof. Let Lx f . Jx J tJ 6 ^ ^ -i- , le t C^.,-% J e 

c l JCX-^^J . This means that ^ e C^xf, ^ e / J ^ . Let 

CCx, f*tl9£*i,x'xl)e£ fi, f2 J 5 this means that Cx f ,x^ )€ ff , 

Cx2.,X^)€^ .As Ĝ  is a f1 -tdLarance graph and G2 a f4-

tolerance graph, we must have CCJXf, C^f ^€ f<i> ^*2XL>%XI ^€ fz > 

i . e . , I7xfc % %#'„ £x jc ff .7*,, qx2c fzqx'lt £ x ; c f a J j ^ , 

and thus ^ x ijx^c ff j ^ ' x & q*'x~ Cf1f fz J ( £ * ; x £x^ ) ~ 

I t is well-known that every binary symmetric relat ion . on 

the set U can be represented by a non-directed graph with 

the vertex set U * Thus if we have a tolerance f on the 

set U , there exists a non-directed graph 2 whose vertex 

set is U and two vertices u,v of 2 are joined by an ed­

ge if and only if (u, v)€ f . The graph S will be called 

the graph of the tolerance f • This graph has obviously 
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a loop at each vertex and some ver t i ces may be incident only 

with t h i s loop« 

Now, fol lowing £ 3 ] , we define the product Q^ • Ga of two 

graphs (non-directed) G1 , Q± with the same vertex set U aa 

a directed graph G in which a directed tdge goes from u i n ­

t o v i f and only i f a vertex w c U e x i s t s such that the ­

re i s an edge joining u and w in Q, and an edge joining 

w and v in Ĝ  * In these product graphs we consider also 

(directed) loops* 

Theorem S> Let ( Uf% ) be a tolerance space, l e t 2 

be the graph of the tolerance f • Let G be a graph (without 

i so lated ver t i ce s ) with the vertex se t U . Then G i s a f -

tolerance graph i f and only i f G • 2 * S * G . 

proof. Let G be a S -tolerance graph and l e t the ver­

t i c e s u,v be joined by an edge in 2 • G . This means that 

there e x i s t s a vertex w c Lt such that u and w are j o i ­

ned by an edge in S f i»e«, Ga, ixr) c £ f and w and v 

are joined by an edge in G • As G i s a f -tolerance graph 

and C >U/1 <ur ) e f , v e Ftir f there must e x i s t a vertex 

Z 6 V AJL such that (nr7 x ) e f , But then u and z are 

joined by an edge in G and v and z in 3 , so there i s 

an edge from u into v in G • S . S • G i s a subgraph 

of G • S . Analogously we can prove that G • S is a 

subgraph of S • G , and therefore G • 2 * S * G • 

Now assume that G • S » S • G . Let x € ( i , *x'€ ti , C*, 

* ' ) e £ . L e t nj. € PJ< . Then there Is an edge from x ' in to y 

in S • G , As S ' G - G # 3 , there must be an edge 

from x ' into y in G • S . Thus a vertex y ' e x i s t s such 

that y i s joined by an edge with x ' in G an&(/y,,y,')e f. 
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This imp l ies Hx e £ n * ' and, analofouaV, H x ' c f Fx • 

Corollary* The graph 3 of the tolerance f ia a f -

to-teranee graph at an arbitrary tolerance space ( U , £ ) ( i f 

we consider also graphs with loops as tolerance graphs)• 

Evidently 3 commutes with i t s e l f considering the graph 

mult ip l icat ion. 

Now the tolerance f whose graph 3 i s regular of or­

der r w i l l be ca l led the regular tolerance of order r - 1 

(as In t h i s case there i s no need to count a loop twice)* The 

regular tolerance of order 1 i s the tolerance C defined abo­

ve . So we sha l l not invest igate i t . Take a regular tolerance of 

order 2 . A3 mentioned above, the graph S has a loop at 

each vertex, so i f f i s regular of order 2 , the graph 2 

i s a regular graph of order 1 with loops added at a l l v e r t i ­

ce s . Thus each of i t s components consi3ts of two ver t i ces j o i ­

ned by an edge and with loops at each of them ( F i g . l ) * 

Theorem &• Let G be a f - tolerance graph with the ver­

t e x s e t U • Let f be regular of order 2 , G be regular of 

order 1 • Then the sum G + 3 i s a graph, each of whose 

components i s a quadrangle with loops added at a l l v e r t i c e s 

(Figo2) or an edge with i t s end v e r t i c e s , a loop being added 

at each of them. 

Proof. Let Cx, x ' ) € f , x *# x ' and l e t x be joined 

with a vertex y by an edge in G . Then x must be joined 

in G with a vertex y ' such that (ty, 14.') & f . It y ' » y , 

the vertex y i s joined in G with two d i f ferent v er t i c e s 

x , x ' which i s a contrad ict ion with the assumption that G i s 

regular of order 1 • So tf + a^' and we have a quadrangle 

in Or + £2 cons is t ing of the edges joining the pairs x , x ' 
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and y,y* in E and the pairs x,y and x ,y in G • 

At each of the vert ices x , x ' , y , y ' there is a loop in 3 

and therefore also in G -*• S * This quadrangle with loops 

added is a component of G + S , because each vertex in i t 

is incident exactly with two edges of 3 and one edge of* 

G , so i t cannot be joined with any other vertex at G + 3 * 

Now i t y =- x , the vertices x and x are joined by an 

edge of S and by an edge of G , so they can be joined 

with any other vertex of U neither by an edge of 3 nor 

by an edge of G . 

Theorem 1. Let ( U, f ) be a tolerance space, l e t f 

be regular of degree 2 . The necessary and sufficient condi­

tion for a regular graph G of degree 2 to be isonorphic 

with a £ - to lermce graph with the vertex set U i s that 

G have the number of ver t ices equal to the number of e l e ­

ments of U | and to each component of i t which is a c i rcui t 

with an odd number of vertices there exists, an even number of 

components isomorphic with i t (including this component i t ­

s e l f ) . 

Proof. Necessity of the condition concerning the number 

of vertices is clear. Now! assume that there exis ts a f - t o ­

lerance graph G regular of degree 2 , and le t C be i t s 

component being a circui t with an odd number of ver t ices . Let 

u^,...? M,H be i t s ver t ices , k odd, and le t the pairs M^9 

<ai<M for i -* l , . . . , k - 1 and the pair AJLH , AAJ^ be j o i ­

ned by an edge in C (i#e#, in G )• Assume that 6o^, 44^) € 

c § , where /&,/rrt are two of the numbers 1 , . . . , Jc and 

I *m. F i rs t of a l l , l e t m*i + 1 .We have T^j * {44,^ t A4,£^ ] , 
ruc^^>^* ? *** r ^ i c f ^ t r**« c f ^ . so 
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either (i4tmi , i ^ ) c f , or (44t , u,u% ) € f . The f irst case 

is impossible, because f i s regular of degree 2 and the­

re are yet two vertices in the relation f with <utm1, the­

se are ut^ and ut i tse l f ( k being odd, i t must be 4^^ + 

4* 44}^4 )• So ("i^ t ^t+i^ € f • Analogously we shall prove 

that fcfe*-"!**)* f> ("%>-$> ut+<) * f e t c . , generally 

(Mt.if"uu<)* $ f o r a 1 1 i # 8 * B u t ** k i s odd> f a r l * 
« I C 4 - 1 ) , we have 4Cg4 « ^ ^ 4 ^ ^ • Denote by v the 

vertex such that (^%mi(Hm4), v ) € f * All vertices of 

C except ^ . 1 £%•*:> stre y e t divided into pairs such that 

the vertices of one pair are in the relation f ; and f i s 

regular of degree Z • Thus v cannot belong to C • Let v 

belong to a component C of 0 • As ^ . i i*,.*; i s joined 

with ju%midm.4)+i t there must be a vertex w joined with v 

such that (**mim*(*m4)4.i 7w) e f . This means that either 

JWrsAAl+\(*-<) °* w m "i-lat-o+i > therefore w belongs 
to C • But w is joined with v , so v belongs alsc to 
C , which is a contradiction. 

Now let 44^ + Mn+1 1 **% + **%»+* • We have VAJ^ » -t«fm1 » 

**£•« J 1 ^"^m,m {%»- 9 ^ # f $ # Analogous^ to the above consi­

derations we prove that either 6t^ t44^, ) c f an^ ^ ^ » 

second case. We can prove that then <1<J > f̂**..* ) * f for 

a l l i • Assume without the loss of generality that m% > <£ . 

I f /m- JL i s odd, then for i * jCm- JL + 4 ) we have 

.44 * AJU . and we can come to the contradiction as in the 

preceding case. If /m - JL is even, then «Ou . * ***-**. • > 

where £ « j f >fe - /»». -j- •/ ** , and we come again to a contra­

diction* 
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Now assume that C f ^ , , ^ >* ?/ ^ J * * ' um+i ) € f 

Then we can prove that (^4 , "-^4 ) € f for a l l i • 

Take 4 » rm ~ -*? (we a-Hmme /m- > ./ ) . So ^ + * « / ^ > 

aid we have (u,^, ">imm£, > € f ' T h e v e r t e x ^ i s i n t h e 

re la t ion £ with ^ and with i t s e l f . Thus e i t h e r ^ % t m m t
m 

e 4A>* or AA, ** 4A, * The f i r s t case impl ies 2/tru-<*** 

sKmottfr) 9 so 2/mm 21 C«TUHL<k> ) f and, as k i s odd, 

/nv m JL(m&aL Jk ) , which means rm* •» •£ , because Q<* ^ < 

<<m£Jk.B%xt we have excluded t h i s case . The equal i ty fU,
tmgmgm 

- U^ implies 2/rtr~Z m <m (murcL M, ) therefore a l s o 

/m- m JL (mv&cL Jb ) . Wa have obtained a resu l t that no two 

different v e r t i c e s of C can be joined by an edge. 

So (4M4, <t% ) € § , where t£ i s a vertex of a com­

ponent C9 4* C of the graph G . As ^ i s joined by an 

e4ge with 44>x $ the vertex t^ mUst be joined with a vertex 

lTt such that (*+%t t£ ) e f . The vertex *£ belongs 

evidently t o c ' • We proceed further and ass ign t o each u^ 

a vertex UJ of C* such that (AJL^ , t% ) € f md-z* */;• 

are joined by an edge in C# • For i «.-* ̂ . > 1 h i £ 4*> > 

1 & y £ A, , we have ?£ »**• t j . because in the opposite 

case we should have (tg# 4A,i ) e f / Ctr^-o^ ) c f , Ct/;., t j ) € f , 

so the vertex l £ would be in the re la t ion f with three 

dif ferent v e r t i c e s , t h i s being a contradiction with the as~ 

sumption that G i s regular of degree 2 • We can a l so e a s i ­

l y prove that t/J f V^ are joined in G . So the v e r t i c e s 

^t t ^kf'**/ *% *0Tm a c i rcu i t with k v e r t i c e s which i s e -

v ident ly a component of G f i . e . , i t i s equal to c ' • The 

components with k ver t i ces can be divided into such pairs 

\ t f t' f , these pairs are pair wise d i s j o i n t , and the ir 
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number i s even. And as these components are c i r c u i t s with 

the same number of v e r t i c e s , they must be isomorphic with 

each other. 

Now we sha l l prove the suff ic iency of the cond i t ion. Let 

us have a regular graph G of degree Z with the vertex set 

U sa t i s fy ing the cond i t ions. Now define a r e l a t i o n f as 

f o l l o w s . If C i s a component of G being a c i rcu i t with 

an even number p of v e r t i c e s , and i t s v e r t i c e s are u,*/,"* 

"> ^ft * w n e r e M*i i s joined by an edge with <u.. for i » 

=- l , . . . , p - 1 and 44p, i s joined with At^ , we put (JU+ , 

u4+tP/* ^ e f' * N o w l e * Q De a n o d d n u m D e r » Divide a l l 

components of G with q ver t i ces ( i f any) in to d i s jo int 

pairs ( i t ic poss ib l e , because t h e i r number i s even). I f we 

have a pair \ C'? C" ] , the v e r t i c e s of c ' are v,9 ••>> vx , 

the ver t i ces of c " are 1/j" >*., v" (going along the 

c i r c u i t ) , we put (v/1 v" > € f for i = 1 , . . . , 4 . And 

obviously we put also (.X, -X ) € f for each vertex x of 

G • The s e t s IT and U have the same number of v e r t i c e s , 

the tolerances f and f' are both regular of degree 2 , 

so the tolerance spaces (Uff ),(U'7f) are isomorphic. If 

we map ( li' , £ ' ) isomorphic a l l y onto ( U , f ) 9 the graph 

0 i s ev ident ly isomorphically mapped onto a jr -tolerance 

4.raph (because G ' i s a | ' - t o l e r a n c e graph, which can be ea­

s i l y proved) . 

Note. In t h i s proof the subscripts at u are taken mo­

dulo k . 
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