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Commentationes Mathematicae Universitatis Carolinae
8,4 (1967)

MEAN VALUE THEOREMS IN THE THECRY OF IATTICE POINT'S WITH
) WEIGHT
Bretislav NOVAK, Praha

§ 1. Introductiog. Let 4 be a natural number, x 2 2,

and let X
Q) = 15:;4 Qpy “e Ly

be a positive definite qugdratic form with integer coeffi-
cients and the determinant D . Let further M, M, ..., M, -
be natural numbers snd 4, 173 yeee s VA integers. For
arbitrary real numbers oc,, x,,..., o, ad X >0

17
let L& .
Al(Xx) = A(xj;ag)= S AT %

where the summation is over all systems «(,, «,,..., 4, of
resl numbers satisfying
wu; = by (mod Mg )
(4 =1,2,..., 1) ana
0 (uy) &€ x .

Let us put as usually
M x%‘e”‘g " l’/

ref+1)

%h

w
(M= D‘ 4M,' 5 =1 if all numbm 0C4M1,¢1:Ma)"'"
ceg®y M, are integers, J = 0 otherwise) and let us

consider the "lattice rest"
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(1) Plx)= Plx;az)= AlX)~ V(iX).
As is known (see [5) pp.11-84), we have
.x
P(x) = 0(x¥ ™)

and (If A(x) ¥ 0 - we shall exclude from our considera-
tions the case where A(X) = 0 identically)

n-14
P(X) = (x %) .

In the papers [61 = [111 there were proved the follo-
wing results:
Io Let 1 > 4 .,

a) There always holds
Pi(x) = O(.x!t"’) .

b) If o«,, ck,,..., %,  are rational numbers we ha-

ve either

%-1

P(x) = N (X )

or
1
‘3'75)

P(x)= 0(X

¢) If at least one of the mumbers o, ot,,..., %, 18
irrationsl, then
Pex) = o (x ¥y

d) If @(x) 1s = positive non-increasing function,
P(X) =0(1) , there exists a aystem oc , of,,..., &, such
that

-1
P(a()’O'(.x&") and P(Xx)= ._fl_(.x-i (X))

" hold.
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e) For almost all systems or,, o€, ,..., %, (in
the sense of tl_;e Lebesgue measure in the , -dimensional
Euclidean space E, ) there is

L3
P(x) = 0(x™ 29> x)

(see [6], Theorems 3,4,5 and [10J,p. 6¥).
II. Let « > 5, K, =, = .., =K, = O, and let o =
= ¥ (o) be the supremum of all numbers B >0 far
which the inequality

min lak-pl & —,%;-

1 onlegen

is satisfied for infinitely many natural 4k ‘s, ¢ being a
positive constant depending at most om oo and 3 . Let us
put

- (& 2y+1
f (‘I—%) >+ 1

(for = +c0 put §= %- 1 ) Then

Pix)= 0(x**®)y

farevery € >0, If &y=ly =...= b, =0 , thenwe
have, fa every € >0,
. P(x) = 1 (x¥%)

(see (7], Theorem 4).
From the results presented above there follow corres—
ponding O =-estimates of the function

T(x) = VM (x)V /X,

where

X
M) = (1P 1*dy .
0
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The direct Investigation of the function M (X)  provides
often results which are even sharper:
III. It is always

tim it e > 0
and thus

Mixy = L x¥t1y
Furt her,

MXx) = O0(x*")
for 2 & &,

M(x) = 0(x2Lg x )
far n =3 and

M(x)= O(x )

faa = 2.
(See [9], Theorem 3.)

These results cannot be improved as it may be seen from
the following assertions:
IV. a) Let the numbers ot ,, &, ..., o, be rational.
Then

L M) = H, X* w0 (x*T)

for n = 4%,
M(X) = H,x24g x + 0 (x2Lg " x)

far M =3 , Where H, are nonnegative constants depen—
ding onlyon & , Mz, &y andav; (G=1,2,.,1).%

- e emtn S e em e : 2
1) We have H, > 0. if, euge, Ly = Ly =, =4, = O (see
[7), Lemma 9 and L91,Theoren 1),

-%14-



If we have for some form (b and suitable numbers My,
v; ad a; (4=4,2,...,2) » H, =0 , then

) ?
even 2

¥4

M(x) = 0(x ) .

b) For almost all systems ot ot o (again

?2 22°°°2 L
in the sense of Lebesgue measure in E, ) there is

M(x) = O(\x%**lg,"“’.x )

(See [91, Theorems 1,2 and [8], Thecrem l.)

The main aim of the presented paper is to complete the
results on the () =-estimations of function M(x). Our
examinations will be based on the following Theorem, which
shall be proved using Jarnik s method (see [1] L—[3J ):

Main Theoreg. Let ( be the form conjugated to @&,
~and, for a natural number & & let

. Mg
Ry = mwna(—ﬁ:—a-;-h) ’

the minimum being taken over all systems mm,,mm,,..., MMy
of integers. Then

M(x)= omigﬁﬁm*'*(ﬁ ’ gib) é )

- -

2) Let us remark that in this case Walfisz ([11]) has shown
with help of the theory of modular forms that for 4 &
2 4 even M(x)= K, .x'j*ip- O(x* lg.‘.x )

b4

K, Dbeing a positive conmstant depending omly on @ ,
Mj, & ad o; (3=1,2,..., 8) (see 1)
and [10], Lemma 11).
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(for A=0,B20, put min (B, x Y=B ).

§ 2. Notations and auxiliary Theoremg In the whole
p@er we shall preserve the following notations and agree-

ments:

The letter ¢ means (eventually also various) po-
sitive constants, which depend on &, M;, £y and oy
(3 =4,2,.., ). c(e), ¢ (/3; ), respectively, eto.
are positive constants (various) depending moreover on £,

B, Bayeres By , respectively, etc. The symbols O
o and have the usual meaning, i.e., they refer

)

to the limiting process X — + @ and the constants
involved are of the "type" ¢ . We express the validi-
ty of the reiation 1Al £ ¢ B shortly by A. << B.
m, &, &’ and 4" mean natural numbers, m,,

Myyoery My, b, B, A", . integers. If fr and 4
( %/ and &k’ etc.) are to appear simultaneously then al-
vayas (M k)=1 ((,h',,k,’)- 1 etc.)e Foar areal ¢
let <t > be the distance of t to the nearest in-
teger, i.e., )

<t>> = m1t¢‘{rb lt-n) .
Further, let us put

%:ﬁml‘ <oc3- Mi‘k' >..
It is easy to show (see [6], Remark 2) that

P,: << R, << R} .
It; the whole work it will be assumed that the mumber x 4s
sufficiently large, i.e., X > ¢, Let us put
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Miy) = M, (),
and let |
My (0 = M gy
For & complex mmber S, Re §> 0 , let

3
B(s)=O(s;ay )= = 3™ +by)eamifE, of (mg Myely )

where the summation is over all systems m,,m2,,..., M, .
As known, the function & (s) 18 a holomorphic func-
tion in the half plane Re § > 0 . By an integral we al=-
ways mean the (absolute convergemnt) Lebesgue integral; for
real Q@ we put

L4
mff'(s)ds- i [fa@+itrat
) -%20

and (for 5:%+£‘t, —0 &2 Q£ YUgs+00)

& &
wf#(s)dt-@ff(%*if)dt ,

if the integrals on the right hand sides exist.

Let us remind some known properties of the Farey s frac-
, i,e. the fractions of the
form ’h’/k , Where & £ Vx (see [5] ppe249-250):

h'/ ’ h V P
Ir k' < Y/ < /A are three sueceeding frac-
X B n

tions of this form (i.e. between A and v /4
lies just one Farey’'s fraction corresponding to VX =~ that
is % ) then necessarily .hk'- Wk =1, h'k -
- kR =21, R+R >VX, h+ k"> V/x .
If we put thus, far & £ VX ,

tions corresponding to V.;
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‘. v
Bhu = <2 PR 2w F

then, for t € ;6'4,,@ , the relation
2k 2
), It -85 1 & &vx
holds. The intervals %, . are, of course, disjunc-

tive and they cover the entire real axis. If we put

_ 2ar
W= [xi+1

(for real ¢ , [t1 is the integral part of the number
t ) then clearly

%, = {-w, w) .
At the end of this paragraph let us present several auxilia-
ry assertions.

Lemmg 1. Far @ > 0 and & >0 , we have
F¢ /) ’
Mz(‘)‘)‘—"#?wj; ‘[;E?%IGSL?F e****Ysds’+ 0(x),

where }n
2mi £, o4 by —
Flsy= G(S)-M—e—-s—az——i'd”, G(s)= F(3")

The m‘_q_q[/can be carried out almost in the same way as in the
papers [1] -[3].
Lemma 2. Let ssi"-!-it . It t << 2 - then

(3) —F(g"-’l << .xlhi .
_If It - %E"L"l << 7!.‘175? (this being accomplisheqd,ac~

eording to (2) for ¢ ¢ Kf‘v’h dand h + 0, then

~ Y48 -



— ¢ Rae X
% Rttt 228 j2)

(4) F(s)<<‘;§' (1+X‘/t-%é/’ﬁ .

Analogous assertions hold for the function G (s’) .

Proof. See [8], Lemma 3 and (9], Lemms 7. Let us remark
‘that, if 0= 1, then neceasarily R, =0 forall

& ‘s.

Lemma: 3. Using the notation of IV.a),§ 1, we have, far
K E 4,
2 2 ' 2
H M= x . Sa.e ,

L YT F’(-,_"*) lu%(mm A%ro R3x-2 s

where
-zm':;" Rz Mi+by)+ 2#"’%41 @y My+0y)
€

LT —“'ﬂa'lwua‘h 4

and H 1s the least common denominator of the numbers

L3
M, xgMy, i, ®y M, . I£ (H2DTT M3) = 1,

there is Ish,~|=k'i for R = O(mod H) .

Proof. See [91, Theorem 1 and [6], Lemms 2 and Defini-
tion 2.

Lemng 4. Let n = 6, oy =K, o« ... =X, = KX and let

the inequality

<ot ko> >> 7;’-;

be satisfied for all & ‘s (and thus B & 1 )e Then

- %49 -



) ol
S (x50, MM, M %_ min?” ’(“"",—a)<<xf" # g (x),
where 9«(0‘)- lg,x for 2 =6 and ﬂ: 4, 9.()():
= 4 1in all other caames. :
Progf. See [7], the proof of Theorem 1 (relations (36,

(37),€41),(44),(49)=(51) and b) of this proof).

§ 3. Broof of the Malin Theoreg. We shall follow the

oomiderafionl of the Paper [8). let us always write

8= -§-+i1‘,s'~§+it’, t and t’ being real numbers.

From Lemma ) (for @ = & = % ) we have, taking regard

to the obvious relation
&X(S‘fs ) << 1

F¢
(£) My (0 <<_// | 222 | at azre 0(x)

Beoause of the symmetry of the integrand we can write

(6) M (X) << T +T,+ T, +0(x),
where v 2w
= /) .. dtdt |
2w -2w

' § - ff..dtdt' S at ar ,

g -w

- Y20~



@ 0

/ “* ’
TS [oarats [/ dt a

(the integrands which are not presented are the same as those
in (5)). According to (3), there is

be2 P F. at’ B £ |
N T << S S e << X ‘

To estimate T, and -l; , let us first of all consider
1

the following assertions: Let B =c¢c, B3 2 7 - Then

_.L
e -

* N Mw(‘w')
@ | e <<f(m S <<

% te >4
2 1
—%(Q-‘m B=7
If however &*0

f\fi ‘Q,G(OR lxl X
gt xtaf '& s CRQ-X o MRt
j (1+ x22)B du<<( ) f—k’(’f'*'x%‘) e

The last integral, far /3 > §  can be estimted by means

, We can write

of the expresaion

/28 _ .
/ cdw+(—°%%5>"y%/a%“:m << Gk
&

(Lor £=20 there is gce'°f<< 1 )i For

s > -1— , B = c, we thus obtain, according %o (8),
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e c Rag x oy
9) RVx Skt (1+x24,3) d < 3 ( .'L hlﬁ . )
<9 —'e———————(1+ XEwi)p U <<mm (y ,_—‘fR*p- LS

Firet of all, let us estimate T, . Let us remark that,
aceording to () far t € G, h >0,t>2w,I¥|sw, we
)
have
ls+s'l>>j% and If'sl>>%-L .
If we now use (3) and (4) (we decompose the integration path
into intervals "%h o and in each of them we use the
?

corresponding estimate (4)) we obtain, according vo (9) (for

A= %’-’@>%,1.e., for %2 > 2 ) or aceording to (8)

(fxr B = 7'%- = % , lee.y forr 1 = 2 ), successive-

1y (making use of (2)) P o Raa x
(4

w 0 ‘_éé' A W ®1+x24%)
Te<x®i/s S S R 4 <<

’
:

&
1 4 X7
R e R
An easy rearranging provides

(10) T<<o®'s mntt Lok .

a L‘V"“ R

Let us pass over to the estimation of "I; . Obviously,
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L4
Fes) F(57) . FRIFGIPHIEGIE ¢ qe7
..,];,/' ey lat dt’ < <w/{——__—-)-f-—l-'ss,(sm, Watar”
and an analogous inequality is obtained also for the second

integral appearing in ‘T; . From the symmetry of the inte-
grands there follows that

( ? 1F(s) 1?2+ 1F(5))? ‘ .
T <<v/'y T At

Analogously as in [8] (relations (29)-(33))we find easily

that, for t 2 w ,

” dt’ x
< -~
and thus substituting into (11) we obtain

@ 2 =2

We ggain decompose the integration path into intervals

G, 4 (h >0,k £VX) mdineach of them we use

the corresponding estimate (4). According to (9) (for 3=

= %‘ > %‘ ),we aucceasively obtain (for ¢ e %na’h)

> 0 , we have, according to (2), ¢t >> F

x )
e Rae X
asl 2 z’%' , WA +x8uiy
_';<<\x&.’%l gqﬁ;ék’f (1-}“3“2) du <<

(12)

[2Z] 1 . 4 Land
<< X AE,“ ' mn (37 Rf';&’—}x )<<

- ¥23-



o 44 ox 4
<< \X“‘Z\:&mwn (k"Rb)!V% .

Let us now denote

¥ : X &
Flax)= &% > omin | (k‘fi_g;)\/&‘

Obviously (R, << 1)

I O A I

According to (6),(7),(10) and (12) we can write (F(x) >>X
by (130

(14) Mo (X)) << F(x)

The function M (x) being non-negative and non-decrea=-
sing, we have

R 4
MxYs L [Maprdy=L (M 4x)-M, (x))
X
and, according to (14),

(15) M) << 4 (F4o)+ FexD

Now we hsve
Fvy < 2Bl s mn 4 (4 L)% <<

34 -3
<< X *h 1.mf lff‘:ﬁ)t’% =

- Y2y -



- Fx)+ xE > m*“(ﬁ,%>\g < <

Vi<l $2Y5

%-1
<< F(r+ x5 'ngrz<< Foo+ x24

VX <fe§ 2Vx
and thus, aceording to (13),

F(#x) << F(x) -
Finally, we obtain from (15)

Rl

: % . %7 X
(16) M(x)<<-§(-F(x)=x"h%,__‘m (ka;gl)

this proving the Main Theorem.

§ 4. Copsequences of the Main Thegrenm, First of all, let
us present two "exceeding" consequences of the relation (16).

It always holds
73

go b o; far =2,

< =
M(x) < ocunzmzm— << x4dgx tor k=3,
X1 for £ 2 4,

and thus the relation (16) yields immediately the ( -esti-
mates presented in III,§ l. On the other hand,

Meo<<sd = om << & 3, Hom

if at least one of the mumbers o, of,,..., ot is 1y~
rational (amd thus R «# 0 for all _k ‘s). This relatipn
was the starting point fopr the ( =-estimates IV.b),§ 1 in
the peper [8].

- ¥25 -



Let us now rearrange the relation (16) in the follo-
wing way : because of

4
mzén*"(é- 1 >§sm*"(é k”—)

&2 Rg P
(1 R‘Lao or RQ#IO and /2 £ T%;._ , ‘the e-

Quality takes place; if &'* o, X2 > 'é’—‘ 5 i.e.,

*

for&'< R wehaveb4_1<——q—4-, on
=3 * 7 VX R%% Re

the left hand side, and the inequality takes place),we can

write

% 4
an  M(x)<< ﬁh%mwm*‘cﬁa,ghD .

From the assertion I.c),§ 1 there follows, for A > 4:
If at least one of the numbers o, ,ot,,..., X, is ir-

rational then

(18) M(x)=0 (x*"*") .

Far A = 4 , we camnot derive this result from the results
of the paper [ 6], Therefore we shall use the relation (17).

Thegrep l. Let 2~ 2 4 and let at least one of the
numbera of,, 0C,,..., %,  be irrational, Then (18)
holdse

‘Broof (analogously to [6],Theorem 3). According to the
sssumptions, there 18 R, <+ 0 for all 4k ’'s and £ -
-2 & 2, If we produce, for every X > ( , a natural num
ber 4 (X)) such that

- ¥26 -



l & -1
h.?v(a) &,_ -.’ A, i@"‘ <hiz-;(x)ﬂ iii.m.’ ’

then 4 (X ) 1s pom-decreasing function, m. y(x) =

= 4+ oo . But aceording to (17) we have

%, < £-1
M(x)<< X S;;wao - + X hgﬂa)fzt)<<

<< ac"'(z;—‘x-i-;y-'l(‘-)—'(-))- o x*") ,

and the Theorem is thereby proved.

The estimate (18) cannot be improved generally. Using
the known method of categaries 3 an assertion analogous to
I.d),$ 1 can be stated:

Theorem 2. let 4 2 4 emmdlet o (x) be a
non-inoreasing positive function, ¢(x)= ¢ (1) . Then the-

re exists = system o, K, ,.., O, such that (18) ta-
kes place and
(19) M(x) = 2 (x*'Tg@cx))

holds.

Eroof. Let 771 be a set of all points («,, 4Ly, ..
oyl Y6 E, ouch that 06 u; & ML; (= 1,2,y &),

L let be a set of all pointe foom 99% having rational

- - - .-

3) The first one who use@ this method for ML -estimates in
the theory of lattice po@ta was Jarnfk in the paper [4].
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coordinates. For a natural 21 , let L,  be a set of
alX points (3,, B,, ..., (3, ) € W° (= Int DL 1
such that, for a suitable X = X (m, /39- ) > m , there

is

M(x,33)
X% (x)

From the sontinuity of the function ™M (X 5 /3,- ) fa a
steady X - on the set 27¢° (let us remark that, for
(Bay (Bay e B )€ L, there 18 A (xy B, )= Plx;3; ),
and the function A (x; B; ) 1s, for a steady x , con-
tinuous in the entire space E, ) there follows thet e~
very set ¢, 1is open.

Let €L Dbe the set of all points (/3, [3,,..., /3, )6
& 720° auch that, for the least common denominator H

of the mbor:,p,M" BaMgyeees By My we La-
™ (H-,.z..'nél'l" M; Y= 1 Aceording to the Lemme

3 and the assertion IV.a),§ 1, we obtain that, for every
(B4, Bayeey By )€ €L , there is

Mlx; ;) 2 e (By) o™

for X > ¢([3;).Thus, choosing a natural 72 . we have,
for every (f3,, 3,,..., B3y V€ €& ,

Mixs B3) e (34
gy = g T

for all suffieiently large x > ¢ ( /3,' ) N and 1t immedig-
tely follows that €L c /) 9t,. . . Sines the aet €4
15 obviously dense in 79 ,_alk the sate 7% ape



dense in m, toa.
Conclusively, the sets 77 - 7L, ~ are nowhere den-
se in W , and thus the set

N o wm-mro O (wt-t,)

Nsqg
18 of the first categary in WL ; leeoy,( 9 i & com-
plete apace) there exists a point
0
(dy, Bgyerry By ) € (B~ ) A 9, .

The relation (18) thus holds. Since (a&,, &, ,..., X

«) €

o0
eﬁo W‘L” , ‘the inequality
M (x)

X* e (x)

-

is satisfied for every m for a suitable X = X (d,’ )

m)>m, md (19) holds, too.

Let further o, = o, = ..., =, = o« be an irre-
tional nmumber. From II,§ 1, it follows (in the notation in=
tooduced there), far % & 6 , the estimate

L, it £ qﬁjx(x) £ 2¢f+1 .
Par & o 4, 5§ , we obtain, using the estimate from the
paper [ 7], weaker resultis:

2@ M(x)

. 4 '

for = § and

. Lg Mo
mmw 190( & 3

‘?20"



for £ = 4 , Considering (17) we can prove the following

generalization:
.Iheoren J. Let 2~ X 4, q s =...> K, = ot Let
(20) <o S >> 7:7‘

far all ¢ ‘s, Then
‘ 28+4
-1) 32 4+ q
M(x) << x‘*’ ! *~9(.’<),

where g(x) = dg X for kx4 and 31, gx)=1
simultanecusly in other cases.

Proof. According to (17) and § 2 (R >> 413 ) we
can write

M) << &1 B, "(f; ,—,’L,—) ,
Ae

i.e. .

MlxI<< x 8,  (x,0,M, M,..., M MM, . M)

1r00s M,
and the assertion follows from Lemma 4.

Connecting the )l =-estimate III,§ 1 and Theorem 3,
we obtain the following result:

Iheorem 4. let f = 4, a=o0c,= ... = @, = cc.Let(20)
with the value B3 = 4  hold for all _f ‘s (i.e., if
{ a,, 2, Q,... $ 1is the continued fraction expressing
the number o, then @, << 1 )e Then

. X)
0 < a&?&m’—%— x-y&a <+ .

X Al x

Bemark. a) If at least one of the mumbers x.,

- ¥30 -



‘ &y 500,y Ky 1s irrational then it follows from (17) that
1

M(x) << uaf.n RE
Jsing this estimate in the paper (8) we could slightly im-
prove the (O =-estimate IVDb), §1.

b) An assertion analogous to Theorem 2 can be stated
for £ = 3 :If ¢ (x) 1is apositive and non-increa
sing function, & (x) = o (1) ) there exists a triplet
of numbers o, , x,, o such that at least one of

3
them is irrational and moreover

Mix) = O (x2¢g(x)Lgx)

(and obviously M (X) = 0(x? ,eg_x ) )e The proof
is to be carried out analogously, we have only to mention
that the constant H,’ in IV.a),§ 1 is non-zero if the
least common denominator of the numbers ac’M’ ) %y M2 )y M’
is relatively prime to 2DM; M3 M} .  The validity
of this assertion follows from Theorem 1 of the psper (9]
md Lemma 2 of the paper [6].

c)Ifoc,,eccz-,..=or.~-ac md if 4 is
defined in the same way as in II, § 1 we obtain from Theo-
rem 3 (and III, § 1 in the case of a Tational oC ) the es-
timate

M(x) = O (“244-14‘1)

(for an arbitrary € > 0 , the constants in the ( -esti-
mate are of the type ¢ (&) J.

d) The proof of Theorem 3 could be carried out direct~
ly, analogously to the proof of Theorem 1 in the paper L[7J.

- %34 -



It ie anyhow interesting to compare (17) with this result
(see (6], Theorenm 2): Let A& > 4  then

%-1 3t x4
P(x)= O(x . mim” " (gea ,rh)-ég.’h .

&
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