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NON-HOMOGENEITY OF B3P - P

Zdendk FROLfK, Praha

This is to answer a question I have been asked repeat-
edly by my colleagues since my proofs (independent of the
continuum hypothesis) of non-homogeneity of AN ~N were

preprinted. It turns out that both methods, that one depen-
ding on the aathor’s estimate of the cardinal of the set of
all relative types of a given point of BN =N (see [11),
and also that one depending on the author ‘s non-fixed point
theorem (see [2) and [3]) or [4)),work in general situation.
What is needed in addition is not too much,however, perhaps a
little bit surprising, see Lemma and its Corollary 2 below,
Non-homogeneity problems for extremally disconnected spaces
will be treated in a forthcoming paper.

The main results are two proofs of the following thearem,
without any assumption concerning the continuum hypothesi a.

Theorem 1. If P is not pseudocompact then B3 P - .P
is not homogeneous.

Under an additional assumption that P 1is locally com=-
paot Theorem 1 was stated and proved by W, Rudin [5); his proof
heavily depends on the Continuum Hypothesis (the existence of

P =-points in BN - N ), Using the same method (in parti-
cular, using the continuum hypothesis) T. Isiwata [6] formila-
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ted and proved Theorem 1 above, Our proef depends on Corolla—
ry 2 of the following lemma, and the theory of tyyes of ultra-
filters.

Lemma. Let X  be a completely normally embedded count-
. able subset of & completely regular space P . Let Y c B P
be a countable set which is semi-separated to X (i.e.
(XnedY)Yu (YA edX)=0).Then X and Y are func-
tionally separated in (3 P , i.e.

| by AnelX=40.

Proof. The sets X and Y  are countable (hence Linde-
18f) and semi-separated, and hence separated, that means there
exist two disjoint open setes U and V in B P such that
Uo X, VoY ., Pat F=P-U, Since X 1s countab-
le, there exists a zero set Z in P which 1s disjoint to X
and contains F .Since X is completely normally embedded,

X and Z are functionally separated in P ., Hence X
and F  are functionally separated in P , which implies that
cd X ne LF =g (because of the characteristic

property of Jech-Stone compactifications). Now observe that
¢cld Y cedF .

Corollgry 1. Let X be a countable infinite completely
normslly embedded set in a space P It xeed X-X
(In BP ) 1is in the closure of a countable set Y  with

edY ¢ AP~ P , them
xeclk(Ynal X)

Corollary 2. Let X be a countably infinite complete~
1y ndbrmally embedded set in g space P , and let xe e Z X -
~ X . If Y is a countable discrete set which is with its clo-
sure contained in B P~ P , andif xe e £ Y- Y, then
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xeeceldZ -2Z ftosm Zc Yneld X .

The proof of Corollary 1 is easy, and Corollary 2 is a
mrticular case of Corollary l.

Now we are going to derive immediate consequences of Co~-
rollary @ for types of ultrafilters. It is not necessary to
introduce any notation and definitions concerning types, how-
ever, it seems to be convenient to do that, and also, the theo=-
ry of types might be of some interest in itself. For the defi-
nition of types see [1;1.1). Roughly speaking, two ultrafil=-
ters on countable sets, say & on X and %Y on Y ,
are defined to be equivalent, if there exists a bijective map-
ping ¥ between X and Y suchthat L X1 = Y ;
now, the types would be the equivalence classes if there were
no set-theoretical troubles.

Definition. Let (O be a space, and let x € @ . Con-
sider the collection 71,  of all countable normally embed-
ded discrete sets M such that x € ¢ M -M , Thus
the intersections of the neighborhoods of X  with any M
in M, form an ultrafilter o, M on M, and the
type of this ultr&ilter is called the type of X with res-
pect to M ., Ir S c @
subsets M 1lying with their clesure in S are called the
types in S ; the types in @B P — P are called the i-
deal types. v

Thearem Z. Let X be a countable infinite discrete
completely normally embedded set in a space P  and let

x€ececld X-X (in @ = BP ). Then

A, The cardinal of the set of all ideal types of x is
at most &xfr &, .

, then the types with respect to
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B, The type of X with respect to X  is distinct
from any ideal type of X .,

Broof. Let t Dbe any ideal type of X , say with res-
pect to Y . By Corollary 2 there existsa Z c¢ ¥ n
ned X suchthat X € ¢ £ Z . Clearly the types
with respect to Y and Z coincide. Thus every ideal
type of X 1is equal to the ideal type of x in el X -
- X . Since ¢ & X is a 8ech-Stone compactification
of X , both statements follow from the corresponding sta-
tements for the particular case P = N ; fa A see
Theorem C in [1], for B see Theorem in [2] or Theorem B in
{3), or Proposition 2 in [4].

Proof of Theorem l. Assume that P  is not pseudocom-
pact. It followa that there exists a countably infinite dis-
crete completely normally embedded X in P . For each
X in BP-~-P let T, denote the set of all types
of X in BP~-P. If 4 is any homeomorphism of

AP - P onto itself, and if KX = 4 then T, =T .

¥
Nowlet X € e L X « X , We went tc find @ 4 in
ed X =X suchthat'\;al-"\'*. Now if we want to

apply the assertion A in Thearem 2, we pick a type + which
is not in Ty (the cardinal of the set of all types is

e wn R, ), and thenwe select a 4 incl X - X
such that t € T,_ + If we wart to apply the assertion B ,
we pick an 44 in ¢ £ X —= X  such that the type of X
with respect to X belongs to Ty o Since t & T, by
B, necessarily T, + T,,_ . )
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