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Commentationes Mathematicae Univers i ta t i s Carolinae 

8 r 4 (1967) 

NON-HOMOGENEHr OF /3 P - P 

Zdeněk FROLÍK, Praha 

This i s to anawer a question I háve been aeked repeat-

edly by my colleaguea aince my proofa (independent of the 

continuum hypotheais) of non-homogeneity of flN ~ N were 

preprinted. I t turns out that both methods, that one depen-

ding on the author's eatimate of the Cardinal of the se t of 

a l l r e l a t i v e types of a given point of flN - N (aee C U ) f 

and a l so that one depending on the author's non-fixed point 

theorem (see ÍZl and [ 3 ] oř £4j),work in generál s i tuat ion* 

What i s needed in addition i s not too much,howeverf perhaps a 

l i t t l e b i t aurprising, see Lemma and i t s Corollary 2 below* 

Non-homogeneity problemr for extremally disoonnected spacea 

w i l l be traated in a forthooming páper. 

The main resulta are two proofs of the fol lowing theor«mf 

without any asaumption concerning the continuum hypotheaia. 

Theorem 1» I f P i s not pseudocompact then fl P - P 

i s not homogeneous* 

Under an addltional asaumption that P ia l o c a l l y com-

paot Theorem 1 was stated and proved by W. Rudin Í5J; h i s proof 

heajvily dependa on the Continuum Hypotheaia (the existence of 

P -points in /3 N - N ) • Using the samé method ( i n p a r t i -

oular, using the continuum hypotheais) T. Iaiwata C6J f ormula-



ted and proved The ořem 1 obové* Our proof dependm on Corolla-
ry 2 of the f olXowing lemaa, and the theory of t^nes of ultra-
fi l tere* 

íeSUuŷ  Let X he a completely normally embedded count­
able subset of m completely regular space P . Let Y c /S P 
be a countable set which is aemi-separated to X (i«e« 
(X rs cl Y ) u (Yn o, lX)*0)>Then X and y are func-
tionally separated ín /3 P } i.e. 

• cl Y n &4 X> - 0 • 
Trootm The seta X and Y are countable (hence Linde-

lof) and semi-separated, and hence separated, that means there 
exist two disjoint open seta U and V in fiP such that 

U D X , V 3 y , h l F « P - U , Since X i s countab­
l e , there exist a a zero set Z in P which is disjoint to X 
and contains F • Since X i s completely normally embedded, 

X and Z are functionally separated In P , Hence X 
and F are functionally separated in P , which impliea? that 
fii X r\ & £ F ** 0 (because of the characteristic 

property of 8ech-Stone compactifieationa). Now observe that 

c i y c a Z F • 

Corollary 1. Let X be a countable lnfinlte completely 

normally embedded set in a space P . Iř x ff c i X - X 
(in (b P ) i s in the closure of a countable set Y with 

cJt Y c / 3 P - P , then 

x € c ZX Yr> al X > 

?gr^laVY ?- L e t X be a countably infinite complete­
ly nbrmally embedded set in a space P , and let x € C Jt X -
~ X . I f y i s a countable discret* set which i s with i t s c lo­
sure oontained in fi P ~ P 9 ® d l ř x e e ^ y - / ; thsa 
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X čf C £ Z - Z for soae Z c V n c «£ X • 

The proof of C oř o 11 ary 1 i s easy, and Corollary 2 i s a 

part i cul ar čase of Corollary 1* 

Now we are going to derlve immediate conaequences of Co* 

r o l l a r y Z for types of u l t r a f i l t e r s . I t i s not necessary to 

introduce aaiy notát ion and def in i t ions ooncerning typ e s , how— 

ever, i t seems to be convenient t o do that , and ala o, the theo-

ry of types might be of some interest in i t s e l f» For the d e f i -

n i t i on of types see [ 1 ; 1 . 1 ] . Roughly speaking, two u l t r a f i l ­

t e r s on countable s e t a , say 5B on X and y, on y , 

are defined t o be equivalent, i f there ex i s ta a b i j ec t ive map-

ping f between X and Y such that -f L X1 « % j 

now, the types would be the equivalence c lassea i f there were 

no set - tbe oret ica l troubles . 

Def ini t ion. Let & be a space, and l e t X e 0, . Con-

s ider the c o l l e c t i o n 771^ of a l l countable normally embed-

ded d i s ořete s e t s M such that ,X e C Í M - M * Thus 

the intersect ions of the neighborhooda of X with any M 

i n T t ^ form an ul traf i l t e r oc^ M on M f and the 

type of thás u l traf i l t e r i s ca l led the type of X with r e s -

pect t o M • I f S C Q , then the t^pes with respect t o 

eubseta M ly lng with the ir closure in S are ca l led the 

types in S ; the types in /3 P - P are ca l led the i -

deal type a. 

The ořem Z* Let X be a countable inf i n i t e d i screte 

completely normally embedded set in a space P and l e t 

x € e l X - X ( i n a • /3 P ) . Then 

A* The cacdlnal of the se t of a l l ideál types of X i a 

at most 4*{t> H0 • 
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B0 The type of x with respect t o X is d i s t inc t 

from any ideál type of X • 

Proof» Let t be any ideál type of X , say with r e s ­

pect t o V . B y Corollary 2 there e x i s t s a Z c Y n 

A e i X such that X € c t Z » Clearly the types 

with respect t o Y and Z coincide. Thus every ideál 

type of »X i s equal to the ideál type of M in C £ X -

— X . Since C Z X i s a fiech-Stone compactif i cat ion 

of X j both statements fo l low from the corresponding s t a ­

tements for the particular cast P m N j for A see 

Theorent C in C13, for B see Theorem in [ Ž ] or Theorem B in 

t i ] , or Proposition 2 in [43-

ifroof of Theorem 1 . As sumě that P i s not pseudocom-

pact . I t fol lowa that there ex i s t s a countably i n f i n i t e d i s -

crete completely normally embedded X in P . F o r each 

X i n / 3 P - P l e t 1 ^ denote the se t of a l l types 

o t f X in / 3 P - P . 3f Jh, i s any homeomorphism af 

fi p - p onto i t s e l f t and t f M,X m *f then T^ » T • 

ffow l e t X e e X X - X . We want t o f ind a <y. in 

C<£ X - X such that X + T , . Now l f we want t o 

apply the assert ion A in Theorem 2 , we piek a t^pe t which 

i s not in T^ (the cardinal of the set of a l l types i $ 

Gčfv Oqv *9 ) , and then we s e l e c t a nf in c & X - X 

•uch that t c Tj^ . I f we waritto apply the asser t ion B , 

we piek an ^ in e ^ X - X such that the type of X 

with respect t o X belongs t o 7 ^ . . Since t ^ Tx by 

B f neeessar i ly "T̂  * X . 
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