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TERNARY HALFGROUPOIDS AND COORDINATIZATION
Véclav HAVEL, Brao
(Prelimimary commumication)

§ 1. Definitiom 1,1, A termary halfgroupoid is a
couple ( S,7 ) where S is a set with card S 2> 2

and T is a mapping of some momrempty set Jomain + =
c 5 S =<5 into S . If Domam == Sx S=xS we
get a terpary groupoid.
Defimitiom l.l.@ . Let T = (S, T) ama T =
= ( S’, ©‘) be ternary halfgroupoids. An igotopism
6: T —'T 48 a quadruple (6;,,6,, 6;, 6, ) such
that 6,: S — 5 (¢2=1,2,3,4) 41s a bijection,
-{(a/ﬁ,a,(;‘,a,bd’)l (a, &, ¢)e Domain ¥ = Qomain, v’
ana ’(a%, 5% %)= (v (a, e N% goran
(a, b, cd)eDomain v, For T = T’ we get an au-
totopism. For 6, = 6, = 6, = 6, we obtain an isomorph-
isp which becomes an automorphisg if T = T 7.
Definition 1,2. A Z.p. presystem 1 1s a quadruple
(P,L,1,/) where (1) # and &  are nonemp~
ty sets of elements called the 29.121&. and the lineg res-
pectively, (41) I is = binary relation between J°

gep. = with generalized parallelity
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and S  such that for each .o € P (£ e X ) there
exists a line £ (apoint 2 ) with nn I £ and
(111) /7 1s a decomposition of &  with members

L e & such that, for each 4. € 7  there is at
most one line £ e L with p I £ .

Definition 1.2, a. Let P = (P £, I, /) and
P'= (P, &’ 1’, //*) be g.p. preaystens.
An jsomorphism o : P — P’ 1s a couple
(p,, P, ) of bijections @ : P— P’ © : £ —+ £’
satisfying the following two properties: (1) o I £
s ﬁp' I 2%
member of yal it l, m belong to a common member
of // If P = P’ , we get an automorphiam.
Definition 1.3, A 2D, systeg is a triple (P £, /)
where - R is a nonempty set of elements called the points,

ana (11) 2" ) m 2 belong to a common

&, 48 a nonempty set of distinguished nonempty subsets of

f  called the lineg ana /= (L ) 4, .. is a
family of nonempty subsets in & such thatbe %Liam //Lb= £
and each member of //  1s a decomposition in 2. If
A L_/;zﬂ Whenever o * 3 we get a parallel
system.

Defipition 1.3, 2. Let P = (P, &£, /) ana P’ =

= (P, s, /") be g.p. systems. An igomerphism o P—
— P’ 1s abijection © : 5 —» /P’  having the fol-
lowing properties: (1) it Z e ¥ then £° ¢ £’ ama
if £ e £’ then there is aline £ ¢ &£ with £FP-=
= &

; (11) 2%, mP . belong to a common member of
Y/ S 7 belong to a common member of / .
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If P = P’ we get an automerphism.

Conatructien 1.1. Let T = (S, T ) be a terna-
ry halfgroupoid. First we introduce some denetations:
M‘j > (Qom,ajm,& 7~ ) is the projection of

Qomain ebtained by the emissien ef the com-
ponents with prescribed indices <, 4 = 1,2, 3 o
A& = 1,2,3 respectively. Image,, = 1s the set of
all 7z (X, ag, 4 )  such that (X,%,«) e Domain v
with a fixed « € Jomawn, & . A,  1is the set ef
all (e, v )e S =< S with « € Jomaim, ¥ am
v e Ynage, T - New put P= Jomain,, z ,
£ =/A,, anddefine I s P = L by (x,
Y)I (w, ) e T (X,M,4)= v Lor all admissible
(x,14, ) € Qomain ¥ v € Image, T . Further, set L, =
={,rde Ay | v e JImage, T % for every
@eﬂo'mcu'/n,s’c‘ and /={L_lu e Domacn, ¥ 3} -
Then ( 7P ) £ ,1,7) 4is a g.p. presystem which is cane~
nically determined by T~ and will be deneted by
PCT) .

Censtructien 1.2, Let a ternary halfgreupeid
T'=(S,T) bve given, Put P = Qomiﬁbq’z z
L,,=$(x,) e Domaim, , ¥ |v(x,y,u)= v}
for each (w,v)e N, L={L, ,tu,»)eN }, L5
={4, |veImage v} for eash w < Jomaim, v ,
I= (Ll ¢ Qomain, > - Then (P, &L, /) 1s a g.pe

system which is canenically determined by T° . This
—
g.p. system Shall be deneted by P (T ) .

=571 -



Censtructien 1,3.Let a g.p. presystem P= (P £ 1,/)
be given where P c S =< S fer a sufficiently large
set S . Then we can cheese injectiens oc : / — S and

B.: L—3S8 (ter L € / ) and define 7 by

T(X, g, u)= Ve (X,y) I BT (v) for all admissib-
lo (x,y)e P, e (/) amdvef_, ( o)) .

This T is well-defined on a certain subset of S x
> 5 > S se that a ternary halfgreupeid ( S, = ) is
ebtained, It is canenically determined by P, oc  and
(3. )le, » @nd it will be deneted by TR, Be)
Censtructien 1,4. Let a g.p. system P= (7P Z£,/)
be given with ® = S =< S, S being a sufficiently lar-

ge set. Then we can cheese injectiens ot :domain /— S

emd 3 : L — S (ter L € Domain / ) ama
define T by (X, )= v (X,4) € R ,W>
for all admiseible (x,y)e P, ueax /), vep o)),

We ebtain, as in Censtructien 1.3, a ternary halrgroupoid
( S, ) which is canenically determined by P, o ,

CRLDL e 2omaim 4 » o0nd which will be deneted by

T(p7°{';(ﬁ;g.)ac$ovnaén//)'
Cengtructien 1,5. Let P= (P, X, I,/ ) ve
={ne P 1l 27 te
each 2 € &£ . Define 2L astheset {Z | Z e £7.
Further cheese a bijection oc : J—> /  where J 1is

a g.p. presystem, Put .Z

& cenvenient index set. New let /7 denete the family
o ( {Z | £ €ex(t)} Lor all
teJ. Then (P, E /) is a g.p. system which

(R—?'E))MJ where
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is canenically determined by P and oc . This g.p.
system will be deneted by ﬁS Py .

Censtpuctien 1,6. Let T = (S, T ) be a terna=-
ry halfgreupeid satisfying the middle cancellatien law:
It T(X, ) = T(X, 4 , 4 ) for (x,y,,«),
(X, Yy, ) € Domain then 4 = 24 . Define
T OBy TUX, U, ) = Y = T (X, Y ) = fer
all (X, Yy, «) € Jomain T . Then T° is well-
defined en seme uniquely determined subset of S S =< S
amd T= (S 7°) 1sa temﬁ halfgreupeid sa-
tisfying the right cancellatien law: if =° (X, «, 2 )= "'
= TOAX, u, V) Ler(X,u,;), (X, ) e Domain 2
then 7, = v; . Cenversely, if T = (5,7 ) 1s a ter-
nary halfgreupeid satisfying the right cancellatien law,
we may define by %(x,/y/,u_)='v'¢=r T (X, )=y
for all (X, 4, v ) € Domaim = . Such 2 is well-
defined on seme uniquely determined subset of S < S < S
and the ebtained ternary halfgreupeid ’?": (S, ) satis-
fies the middle cancellatien law.

Remarkg. It P = (P, &£ ,1, /) is a g.p.
system then P (T ( Pooc, (BL)ey ) is isemerph-
icte P It P= (P, £, 7) is a g.p. system
then P (T (P, ok, (B hegomaing)) =P . It
'P and P’ are isemerphic g.p. presystems then also

(P) PP are igemerphic. If T'=(S 7)) ie
& ternary halfgreupeid satisfying the middle cancellatien
law then define =% by THuw,v;X)=ny &> (X, i, 0)= v
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for all (X, &, ) € Domaim = ° .  The ebtained
halfgreupeid T * = (S , %) 1s said te be dual te T \ _
(and alse I-ﬂsl("l"), PCT*) o PeT), P(T*) respec-
tively can be said to be mutually dual). Clearly ( T *)*_
=T .

§ 2. Prepesitien 2.1. Let 6 be an autotopism of a
given ternary halfgroupoid “T° = (S5 ,7 ). Then the map-~
pings (Xx,ny) —-y(xbw‘, fyq ) for (X,n) e W1’2 T
and (e, ) — (%, »%) tor (u,v)e A, de-
fine an automorphism of PcT)y .

Proposition 2,2, Let a g.p. presystem P= (P, Z,1,/)
be given where 7= 5 > 5,  for some sets S and 5,
with card S5 22, card 5, > 2, Let 5 amd S,
be arbitrary sets such that there is a bijection o : /— 5,
and there are injections 3, : L — S (for L e / )
with LEL.}/BL(L).-:S andwith/&L(L_)r\BM(M)=ﬁ

whenever L ; M are distinct members of // . Then
each coordinate automoi-phiam 2 P P— P  induces an
autotopism of T (P cc , (B ) o, ) . If, moreover,
X € / -with ﬂs’x (x (&) = & for & € 5,

then 6 lc =6 amd 0% =0 far 0 = w(X).
*.Sz 2

——— e o

2
i.e., an sutomorphism of P preserving X as well ag Y

where (and ‘also in the following)
X={{(x,4)€G =G ly=billre 5%, V= {{(x,y)e
€8 =Sl x=ajla eSS -
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Propogition 2,3. Let P = (P, £,/) be a paralell
systemwith / = (L,) s and with ® = S =< S
for a certain set S , carcel S 2 2 ., Let X = Lo
for some element O € S and caxedl (g (0)n L) =1
for each £ € £ . Then there 1s a T' = T ( P, identi-
ty, (3_)_eg ) such that every coordinate automorphism

o : P— P induces an autotopism 6 of ‘T' with
0% =0 and 6, = 6, . Conversely, each autoto-
pism 6 of T with 0% = 0 1induces a coordinate
sutomorphism of P .

Proposition 2.4, Let P = (P, L /) be a parall‘el
systemwith / = (L_) .5 end with (1) P= S = S
where S is aset, caxd S = 2 , (1) X=1L, for
some element 0 € S | (1i1) card (g (Q0) A L ) = 1
forall £ e £, (Wd={(x,4)eSxSlx=nel
for some element ’l‘ € S and (v) each point of 4 (1)
is contained in a unique line through (0, 0) and
each line through (0, () intersects .y ( 1) in
exactly one point. Then there is a T'= T (P, x, (3 ) o)
such that every coordinate automorphism of P <fixing
(0, 0) and (1,1) induces an automorphism of

T fixing O (amd 1 ). Conversely, every auto=-
morphism of T° preserving 0 1induces a coordinate
automorphism of P fixing (0, 0) ama (1,1).

§ 3. Definition 3.1. A parallel system P=(R &, /)
is said to be patural if
() P =S5=<S foraset §, card S = 2 ,
W) Domain /=8 , e /=(L )es >
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() X =L, for some elenent () € S , ‘
(@) card (X(@)n L) =card (g (a)n £ ) =1 far
all 2 € S and £ e LN (XU Y) and
(e) d ={(x,y)e S=xSlIxemyieL .
Definition 3.,2. A ternary grouwpoid T = (S,7)
ie said to be natural if (1% ) for « , 4, ,7 € S with
u7=f=u2 there exist x, 4y , Yy, € 5 with o, + 4,
such that ¥ (X, Yy, AL ) + TIX, 2%, , &4, ), (27)
the equation ¥ (X, ,4L )= 2 has a unique solution
xeS(yeS) for any given 4, 4,7 € S  with
a £ 0 (x,a,v € S), (3%) there is an element
0 e S with ©(a, &, 0)=v(0,4a)=4 tor all a,
& € S and (47) there is an element 1 € S such
that © (a,a,1)=0 forall a € S.
Proposition 3.1. If T'= (S, T ) is a natural
ternary groupoid then (A) O =% 1 , (B) from
1(x7%,u1)=qq¢e>rg(x,ry,)u1)=v for fixed

2
(g, v, (uy, 05 ) € S =S it follows (w,,?; )=
=(u,, v, ) and (C) T'® s characterized by the fol-
lowing conditions:

(5%°) for w,, &4, , v e S  with 4, + 4, there

is an x € S  such that ©°(X, 4,2 )+ ' (X, &y, ),
(6¥°) the equation =° (X, &, v ) = 2y has a uni-
que solution X € S (2 € S) for any given ., -,
yeS with u + 0 (X,y, ue ),

(7T°) there is an element O € S such that

T(a, 0, &) =70, a, &) forall a, eSS am
(8%°) there is an element 1 € S  such that

- 576 -



x*(a,1,0)=a torall a € S -

Proposition 3.2. If T = (S, 7 ) 4s a natural
ternary groupoid then ';T)‘ (T) is a natural parallel
systeme. If P = (P £, /) is a natural parallel sys-
tem then there isa T'= T (P,oc, (3 ) .o ) which 1s
natural.

Propogition 3,3. Let T = (S_ 7 ) be a natural
ternary groupoid. Define the derived binapy operations

¥, wafbow@ 1,4 a =xCa,t 0.
Then (5, £) 4s aloopand (SN{0}, ¥ ) dsa '
groupoid having the right mnity and admitting the division
from left; further it holds a + = 0 = 0¥a =0 far all
ae€S.

Proposition 3.4. Let T = (S ,T ) be a ternary grou-
poid satisfying (7%°) ana (8%°). Let the linearity property
(9%°) =* (a, r,c)=a o I for all a,&,ce S
be valid. Then T' is natural iff (S, ) s a loop,
(5 N{0}, ¥ ) is a groupoid with the right unity and
with the division from left and, for ., *+ w, , the
right multiplications Ru1 X — X ?'4,,1 s Ryt X > X 'f'uz
are distinct. :

Proposition 3,5. Let ( S, + ) be a loop with
cancd S 2 2 . Then each natural ternery groupoid
T =(S,7) with T = + and with (9%) nay be
constructed as follows: Choose an injection ¥ : S —» s*®
such that 5= (0}, €¢(a): § — S 1s a bijec-
tion for each a € S N\ {0} and £(1): S—= §
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is the identity mapping. Define the binary operation -«

by X . = xf® for all X, ¢4 € S . Then
T s determined by o = » .
Proposition 3.6. Let T = (S, 7z ) be & natural

ternary groupoid. 1"  satisfies (97) and {s, £) 18
& group iff there is a group of translations 3 o P=
= F «T) acting transitively on o).

§ 4. Definition 4.1.Let T = (S, T-) be a ternary
groupoid satisfying (6%°), (7%°) ana (8%°). T'° is said
to be grdered if there is an ordering * < on S such
that

(10™) vy <y = 2 (X, U )< T (X, 4L, v ) am
(%) 12 x,, 4,1, &4, , v; €5 satisfy

My < w4, and TOX,, L,V

2
)= T(X,, My 5V )

then x 2 X, = v* (X, 4,7 ) § (X, 4y, V5 ) -

Denotation: (5, ©', < ) ; conditions (6%) to (8%")

are here required automatically.

3 i.e., of coordinate automorphisms of P which preserve

each o (a), a € S

4Anmu.ngona set S 1is meant here as a binary rela-
tion { on S such that @ < & = a + &; a <&
and ﬂ(c:#a,<c', a+b=>a< & o <
< QA .
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Proposition 4,1. Let T =(S 2, < ) be an ordered
ternary groupoid. Then (5%7°) is valid, and the elements
0,1 from (77°) and (8%") respectively are determined
uniquely.

Propogition 4,2, Let T = (S, T°) be a ternary
groupoid with (6%°) to (9%°) and such that (S\{0}, + )
1s a group. If < 1s an ordering on S then (10%) is
equivalent to
(12;,‘2') a<tb=>aic </€f-f'c, c¥a<e i o
and (11%") is equivalent to

(13%") for AL, < 44, , the mapping X — T x 'E"u_z
.: X = , is monotonically increasing.

Propogition 4.3. There exists a ternary groupoid
(S, ) with (6%°) to (9%) and with an ordering <
on S such that (S5 N\ {0}, 7") 1s not a loop and that
one of the following three alterratives takes place:
(1) (10%7), (127") are valia; (127°) 1s not valid,
(11) (0%, (12:'2') are valid; (11%°) is not valia,
(111)  (10%"), (11%°) are valid.

Let P= (7,5, #) be a natural parallel system.
By Q(c’d’) , we denote the set {Lec L\ VYi(e,d)e L3
for (c,ad)e S < S . Each ordering < on S
determines naturally the induced orderipz on every oy (a),
@ €S5S onevery G € /N{Y} andoneveryQ,,,,
(c,ol)e S =5 . 4

o Let P=(P £,/) beanatural

parallel system. P is said to be ordered if there is
an ordering < on S such that (1) each mapping
@ —y(a) Aaefined by £~ Lnay (a) for
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A@, e /IN{YI, a e S preserves the induced or-
dering, (ii) each mapping @(ﬂ’d) — y (a) defined
vy £ — Ln /g,(a/)' for (c,a)e SxS, a«€
S, a < d preserves the induced ordering and (iii) each
mapping @, o, — Y (a) defined by £ —
+Lnag(a) for (c,d)eSxS,aeS, a>d

reverses the induced ordering.

Proposition 4.4, If T ' = (5, T°, < ) 4s an or-
dered ternary groupoid then P (T) is ordered by
<. If P=(5=<5,%,/,< ) 1is an ordered na-
tural parallel system then (T (P))’ is ordered by

< .
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