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ON CATEGCRIAL EMBEDDINGS (F TCPOLOGICAL STRUCTURES INTO
ALGEBRAIC
Zdensk HEDRLIN and Aled PULTR, Praha

J.R, Isbell investigated in [3] the categories which
can be fully embedded into a category of algebrasand -
later on ~ he has proposed to call such categories bound-
able.

The aim of the present paper is to rove that catego-
ries of a certain type are boundable. Among these catego-
ries are (under an assumption on non-existence of measu-
rable cardinals): the category of topological spaces with
continous mappings, category of uniform spaces with uni-
formly continueoa mappings, the category of proximity spa=
ces with proximity mappings, category of topological al-
gebras of a given type with continuous homomorphisms, tri-
vial category of ordinals etc. -

To show the main idea of this paper we shall discuss
as an example the category of topological spaces with con=
tinuous mappings. Denote by P~ the contravariant functor
associating with every set X its power set P (X) and
with every mi)ping £: X—>Y anapping F: P(Y)—
—+P(X) defined by F(Y,) = £71(Y,) for every ¥ c Y.
A topology T on X may be considered as a unary relation
Z on P(X), namely, X, € # if and only if X, is
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open; a mapping f:(X,7) — (Y,6) 1is continuous if and
only if P~(£) 4s compatible with relations just des-
cribed. Similarly, some other categories studied in mathe-
matics are given in the following way:

given a set functor F and a type A , the objects are
couples (X, R), where R is a system of relations of

" the type A on F(X) and f: (X,R) —(Y,5) is & morph-
iem if and only if F(£) 1s compatible. We shall show
that if the functor F has a certain property - we call
it selectivity = then the category described above is
boundable. Roughly speaking, a set functor F is selecti-
ve, if there is a canonical relational system on the sets
F(X) such that ‘tho compatibility with respect to this
system selects exactly the mappings of the type F (+)
‘among all uppin@ g: F(X) — F(Y) .

The categories defined by reletional systems have been
studied in [1]. There has been proved that any such a cate-
gory can-be fully embedded into the category of algebras
with two unary operations - denoted by ¥/ (7,1) = or in-
to‘the category 22 (the objects of 7 are sets each
with a binary relation and morphisms are all compatible
mappings). In fact, 7 1s the category of directed graphs
and their graph-homomorphisms. This result will be help-
full for the proof that categories we have mentioned are
' boundable. We remark that from [1]also follows that a cate-
gory is boundable if and only if it is isomorphic with a
full subcategory of 72 ( YL (1, 1), resp;).

,  The paper is divided into four peragraphs. Paragraph 1



contains conventions concerning notation. In the paragraph
2 we define the notion of a selective functor and prove &
few theorems about it. rurther,‘ in the paragraph 3 we show
that certain functors are selective. It is also given an
example of a functor which is not selective. Paragraph 4
contains some. consequences of the previous ones with appli-
cations of the theory to some often discussed categories.

Among the results of this paper there are also new
proofs of two thearems by J.R. Isbell - to whom we thank
for a very stimulating correspondence - namely, that a
dual of a boundable category is boundable and that the tri~-
vial category of ordinals is boundable. We are indebted to
P, Vopénka for vnl\mble advice and to L. Bukovsky, who cal-
led our attention to a paper [4], ore part of which con~
cerns the selectivity of the functor P~ .

§ 1. Conventions concerning notatiog. Throughout this
paper we mean under & set functor any functor from the ca-
tegory of sets into the ca‘tegory of sets. The identical
functa from the catdgory of sets onto itself will be deno—-
ted by I.

It @, are categories, we write R =, if
there exists a full embedding of R into 3£, i.ec R =»
=3 X means that there exists a one-to-one covariant func-
tor which maps @A onto a full subcategory of L. If we
want to express that a functor § has this property, we
write O : @ =3 X . If there is any (covariamt or con=
travariant) one-to-one functor whishmaps @ onto a full,
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nubeitegory of £, we write (A 2% X , The dual cate-
gory to a category (R is denoted by o @ . Evidently,
it holds

Q =X &= dR =>dL ,

R 2 L =y B=> X or a@ = X .

A type A means a sequence A = {; l/3<'a':} , Wlere

o, B,V are ordinals. The sum of the type A ,Z A,

means > %3  in the usual sense of the sum of ordinals.
A<y

e o = {oo;; 1B < ’3"" § are types indexed by ordi-
nals ( <Jd~, then the sum of these types % A, 1isa

type A ={a<,ﬂ 1< Z ¥“f, where Freupp = o(f/'j holds
for every o = Z{¥*IA< L }-

Let ‘2 be an oL =nary relation on a set X , A an
oL -nary relation on a set Y. A mapping f: X— VY is cal~-
led 1A ~compatible, if the following implication holdas:

{x ltL<axler =m{f(x)lt<x}ec ».

Under a relational system R of a type 4 ={og, |3 < 7f
on a set X we mean a system R -—-{m/‘|/3< ?+ } , where
every #, 1s a o -nary relationon X . If R = {x,$
(5={b,,}, resp.) is a relational system of the type & on
aset X ( VY, resp.), then f: X—>Y 1is called RS =
compatible, if it is /b’; /bli -compatible for every /3 < .

The following category will play an important role in
this paper:

Categopy T {F., o, 1L € J}): Let J be a set,
F, (v € J) set functors, & types. The objects of
PHFE ,0, 1L €J}) are systems ( X,{R_ | L € J§) , where
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X 18 a set and R are relational systems of the type 4
on F (X). Morphisms from (X, {R_}) 1imto (V, {5 })
are all mappings f: X > VY such that F (f) 18R S -
compatible if F, 1s covariant or F_ (f) 1s S R -con-
patible, if £ 1is contravariant = for every L € J , Ex=
actly, we should say that morphisms are triples < (X,
{R§),4#,(¥,{S, 1)), vut certainly there is no danger
of misunderstanding.

Remarks. 1) Sometimes we shall write 7°({F ,s }) in-
stead of P({F ,48, lLeJ?), if 1t is clear which set J
is meant. If J 1is a one-point set, we write simply
TF,a).1e J'=Ju{} we write often 7'({ F_,
A, 1L edf, (F, ;4. )3) instead of T({F,, 8, 1L €J}) ete.
A void type, i.e. {o, |3 <0}, is denoted by # . Evident-
ly, 7°(1,#) = 7", where 7’ denotes the category of
sets. -

2) The category 7°(I1, A) 1ie the same category as
R(a)in the notation of [1).

31 F,=F for LeJ'cJ, then PHF ,0 ILedi)
is isomorphic with the category ?'({F , a L eJ~NJU'},
rE, = {A VL eJ’)) , where the last sum is taken by a
well ordering of the set J’ -

4) Evidently, the categary of topological spaces with
continuous mappings is isomorphic with a full subcategory of
PP, {1}) .

§ 2. Selective functors. The symbol o will denote the
obvious forgetful functor from the category 7°({F ,4 It eJ3)
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< lective for every type A

into r LI ) 5
Definition 1. One-to-one set functor F into will s
called A =selective, if there is o' and a functar

- P:P(L,A)SP(1,A") such that

O = Fer- .
The functor F will be called selective, if it is A =se-

Theorem ). Let functors F and Gl be naturally equi-
valent and the functor F be A =selective. Then G 1is
A =selective.

Progf. Let T: F—>G and T': G - F be transfor-
mations such that T o T’ 4s the identity transformation
of G and T’e¢T 4s the identity transformation of F .
Let $:7(1,a)S7(1,8") amd Oed = Foo . If
(X,R) 1e an object of 7’(1, A ) , we have § (X,R) =
=(F(X),R). Let A’ = {felox<y3.It R={kK,?>
then %, c (F(X)% . put

Re=T™(R), R={R.1 >
and define ¥ (X,R) =(G(X),R), ¥(f)=G (). Further,
we shall give the proof for G contravariant (and, hence,
F contravariant). Por covariant G the proof would be
similar. ' :

Let £:(X,R)—>(Y,S) be a morphism. Then F(f):
(F(¥),3) = (F(X),R) 1s a morphism. Let {x 3 € A& -
Then X, = Ty (n4,), where {qy } e 3‘ and we get
{G(#)(x Vi={G(F)e Ty (y N T e FNy YeEpe {F(#)(y i€ X, -

Thus, ¥ 4s & functor from- ?°(I, A) into 9(1, &),
‘Y 'h evidently one~to~om and it remains only to prove



that it maps 7"°(1, &) onto a full subcategory of
(1, 4"). Let g:(6(¥),8)—(GX),R)  be a morph-
toms Put § = T o g Ty . If {X } €A, then
{g°Ty (x,)}e Z,. Ae T and T’ are mutuelly inverse
transfornations, { Ty e g T, (x )i € &, .  Hence,
g:(F(Y),g)—)(F(X), R ) 1s a morphism and g =F(#),
where £: (X,R)— (¥, S) is a morphism. We get
F(4)=1;'°9.0Ty and . .
9= To F(F) e T/ = G(£)eT, o T, = G(£) -
The proof is finished.
Theorem 2. A composition of a finite number of selec-
tive functors is a selective functor.
Progf. It suffices to consider only two functors. Let
F and G be selective functors, A a type. There ex-
ist
$: P(1,A)SDSV(1,s’) ama¥: 7(1,8)%57(1,4")
such that D o P=Feg anmd O ¥ = G o3 . We have
¥ed: V(,a)2 (1, 8")
and O« ¥ e d = Gce Do d = Ge Fopo .
- Theorem 3. If there exists a contravariant A -selec-
tive functor, then /
d?7(1,a)= R (=> CL(1,1) ete.de
Proof. Let F be the contravariant A -selective
funotor, { the corresponding functor from 7’(I1, A)
into (L, a"). @ must be also contravariant, and
we get -
dP(1,a)=.P(I1,8’) (= R(a’) in [1]).
It 1s proved in (1) that 72(A’) =3 R . We get
d?(l,a)= R
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Theoren 4. If F,  are A -selective functors, then
VHG,a,1)=PHF-G ,a3)
for some types db .

Proof. Let &, :2'(1,8, ) % 9°(1,4,) be functors
such that Mo P = F ea. Let (X,{R_{) be an object in
7({G,, A 1) . For any relstional system R_ on G, (X)

" we choose R\ such that

®, (G, (X),R) = (CF=G)(X),R,).
Put P ((X,{R I =(X,{R[}), which is an object in
T({FeG,a,3), and $(f)=f, If ¢ 1s a morphism
from (X,{ R, }) into (¥,{S, }) then G, (f) 1s either
R S, =-compatible ( G, covariant) or § R_ -compatible
( G, contravariant). Hence, (F o G )(f)= § (G, (f)) 1s
either R, S/ -compatible or S R{ -compatible. Hence,
$()=+ 1s a morphism from (X,{R. }) into(Y,{S.})
and @ is a functor from ?°({G,, 8,}) into 7?({F oG ,
4% 3). & 1s evidently one-to-one. It remains to prove
that its image is a full subcategory.

Let £: (X,{R.D (Y, {S, }) -be a morphism. Then
§, (G ($N=(F o G)(£) 18 etther R! Sl -compatible or
S, R! =compatible. There must be g, : G, (X) — G ()
(g : G (MG (X), if G, is contravariant,resp.)
such that g; 1s either R S, -compatible or S R_-compa-
tible and P, (G (f)) = @ (g, ). Since $, 1is & one-to-
one functor, we get G, (f)= g, and G, () 1s either
R, S, =-compatibe or S, R, _-compatible. Thus, S = ¢ (+),
where f: (X,{R . § — (¥, {5, }) is a morphism. The
Proof is finished. .




Theorem 5. Let F be a (3 =-selective functor, F,
be arbitrary set functors. Then

PUFF,a) > THF ,a.R(1,8) for sQme A .
If F 1s covariant, we may write =» instead of < -

Proof. Let &+ =y 7°(I,5 ) be a functor such
that god = F ( F is. (@ -selectivel). Denote by Ry
a relational syetei such that & (X) = (F(X), R ). Let
(X,{R,_}) be an object in P’{F, o F, &5, §) . Put

GUX, {R, 3N =(F(X){R ¢,R\), G(£) = F(f).

Evidently, G((X,{R,}?)) 4is always an object in
THEE,0,3,(1,8)).12 £:(X,{R3¥)—>(Y,{S,}) 1sa
morphism, then F(+) is R, Ry-compat:lble (or Ry R, =
compatible) and (F o F)(f)=F (F(f)) 1s R_S, -compe-
tible (or S R_-compatible, if f 1s contravariant).
Thus, G is evidently one-to-one functer into 7'({F , o {,
(L,a)). Let g ¢ (FCX),{R, },R)—=(F(¥),{S 3, R,)
(if F 1e contravariant, then g.: (F(Y),{S, 3, R, )+(F(X),
XR,_ $, Ry)) be a morphism. As g 1s Ry Ry =compatible
( Ry R, -compatible, resp.), g =F(f) for some f: X Y.
Since F, (g) = F « F(#) 18 R, S -compatible ( S R =~
compatible, resp.), we get £: (X, {R_})— (Y, {S 3})
and g = G(+).

Theorem o. Let F, be selective functors. If there
exist selective functors G, such that G cF, = F, then
T{F,a, t = R (= C(1,1) ete.).

Pprogf. By theorem 4 and remark 3 in the paragraph 1,
TUR,8,D=~T(F,a), vhere a =~ 3 4 .

By theorem 5, 7(F,a)2 2°((1,a), (1, &%) .
.
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Hence, by remark 3 in § 1, ')"(F,A)Zv\’l’(l,a’),'here 1t
suffices to put A'= A+ A", If F 1s covariant, then
?’(F',A);—”J"(.L,A’),and by [1], P(F,ad)=> R . 1Ir
F 1e contravariant, then d?°(F, A) =+ 7°(1,a’) and
T(F, A)=d?*P(F, A)Qd?”(l,.a').&a F 4s selective and
contravariant, we obtain, by theorem 3, £ 7°(1,48") => R .
" The proaf is finished.

Corollary 1. Let F,, F,, ..., F,, be selective func-

tors. Then
F,a

Tf(F11A1);(Fi‘E7A227"" (Fre Bager o8, 0 = ®r.

§ 3. Seme special fupctors. Functor @A : Let A be a
non-void set. If X 1s a set, we put G, (X)= XA (1.e. the
set of all mappings from :A into X ); if f 4s a mapping
from X into Y we define @, (f) by

B (f)(p) = fop -
(4 1s evidently one-to-one functor into.

Regarks. 1) If A 1s a one-point set, then (), 18 na-
turally equivalent with the identical functor, if A is a
two-point set, QA is maturally equivalent with the funec~
tor G, which is defined by Q(X) = X =< X ,Q(F)=fx£.
~ 2) Evidently, if caxcd A=card B, then @, is na-
turally equivalent with @, -

Theorem 7. , 4s a selective functor.
Proof. By previous remark and by theorem 1, we may as=

sume that A is an ordinal number O~ (i.e. the set of all
ordinals less than J° ). Let A~ {B, /X <3 and let
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A" be sequence of the length 0, every element of which
1s the number 2. Let (X, R) be an object in' S(I, A ),
R={#,}. For & <7, define X%, by
{g ek, e=>{% (03 1, -
(We remark that 0 die an ordinal, and therefore it is an
element of A .) Put A =A + A", Further, define
Kypya ,TOF @€ A, by
(S, W)€ Kyppoq ™= @)=y (0) .

Thus, R = {#,, £ <9+ " § 1s a relational system of
the type A on @ (X) -

Let £+ (X,R) — (¥,S) be & morphism, and {& j€ /Z.(,
& <7, Itmeans { ¢ (09)j€ x_ . Thus,
{@, (£)(.0)C0)3={f o9, (0f= {£(, (0))} € S and {@,(F )G, )} e -
Let (g,v)e»?,.fd; hence, ¢ @)=y (0) amdfoy@)="~foy (@),
Loe. (G ()G, By (F)(w)) € hpy, . I £:(X,R)I(Y,S)
is a morphism, we put & (X, R)=(@,(X),R) ana $(£)=Q,(f).
Evidently, & 4s a one-to-one functor from 7°(I, 8) into
7€1,a’). As 0d < Qo , it remains to prove that
® maps 7°CI1,a) onto a full subcategory of rc1,a’).

Let g : (@ (X),R)>5(Q,(¥),5), g(@) = y (&) .
Take 7 € Q, (X) such that 3 (0) = ¢ (a) . \Hence,
(g, ylek,,, @ X)e Xy, . Since g 1is RS -compa-
tible, (9(0), @ (Y€ Bypy, G W), @%7)€ Epop -
We have g(g)(a«)-g.(z)(m‘e gy) (&), It xec(a),
we define a mapping f: X = Y by f(x)=g(y)(a). Evident-
ly, for every X there exist ¢ and a such that x =
=¢g(a). By previous considerations, g (¢)(a ) is defined
uniquely. It holds: feg (a)=g(y)(a) for any ¢ endc.
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Hence, g = B, (£). It remains to prove that the mapping
{ we have eonstructed is R S -compatible. Let {x, f € £ .
Define a mapping ¢, : A —>X by ¢ (a)=X, forall a e
€ A.Hence, {9 je i, and{feq ! =1{g0) e A -
Pinally, {#(x, )} ={f°@, (0)} € 4 . The proof is finished.

Definition. If X 1s a set, we put PUX)={X, | X, X§.

If £: X> Y 1s a mapping, we define PTf): P(Y)—> P7(X)
by P (f)(A)=F"(A), where £ '(A) denotes, as usu-
al, the preimage of the set A by the mapping f -

Remark. The functor P~ is naturally equivalent with

functor F , which associates with every set X the set
2* of all mappings from X into 2 ={ 0,13 , end with eve-
ry £: X—> Y a mapping from 27 into 2% defined
by F(#)g)=gef tawall ge2” .
Theorem 8. Designate by (M) the following assertion:
(M) There exists a cardinal ¢ such that every o -ad-
ditive two-valued measure is -y -additive, 7~ any cardi-
nal.

If (M) holds, then P~ is a selective functor.

Proof. First, we remark that the condition (M) may be

formulated also in the following way: There exists & cardi-
nal 0" sudh that any ultrafilter, which is closed under
the intersections of® o sets, is trivial (in another termi-
nology fixed).
Let o={fclax<y?, &={1,2,5+13;put &a'= &8 +a".
If (X,R ) 4e an object in S (I,A), we define relations
om P (X) ihy:for x < 3,

{X,3€ R e=>((x, &X, forevery o )=b{X 3}¢ %),

-



Ae/zr@A-¢7

(A,Bler,, & A=C(B) (1.e. A=X\B ),
{Aler e Ap= N{A L <0}
Put R ={%, I <3-+3} P (X,R)=(P(X),R ). Let f: (X, R)—>
+(¥,S) be a morphism, oc< o, {Y, } € 5, . Let{#"()ﬁ 3¢ 7, -
Hence, there are x € f '(Y) such that {X, { € 4_ . Then
we have {f(x, )} € A, and f(x, )€ Y, = a contradiction.
The cases « = ¥, 3"+ 1,9"+2 are obvious.

We get: P~ s a (evidently, one-to-one) functor
from 7°(I,a) into ?°(L, &”). It remains to prove that
it maps 7°(I, &) onto a full subcategory of 7°(1l, a’d.
Let g : (P~ (Y), 5)=(P(X),R) be a morphism. Sime g
is A /&, -compatible, for o = -, ¥+ 1, +2 we
derive easily:

g (CCY,N=Clg (¥,

gM=X,9(N{Y, la eAN=N(g(Y, lac A) gor card A £ I,
FMoY=9MIug %), Y cY,=gly)cg()),

Y: , Y, disjoint =g (%), g (¥, ) ' disjoint,
Thus, the family {9 ({%3}) Iy € Y} contains only mutually
disjoint sets. We shall prove that this family is a cover
of X.Let xe X.Put J={ZIZcVY, xeg (Z)} .

J 1s an ultrafilter on Y, closed under the intersec-
tion of 0" sets. By the assumption, J is trivial and
contains a one-point set {4 j. We get x eg ({y ). Now,
det'ne f: XY byf(x)=g¢>xeg ({y}). By the
previous considerations, {f is well defined, ‘
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I XEFT(Y,), then f(X)= gy € ¥ and xeg{yi)c
cg,(%). We get 'f"'(Y.,)c:g, (Y ) forevery Y% c Y.
Bspecially, C(£7'CY, N=F1C(Y,)c g (C(Y;D=C@G(¥,)) ana,
finally, 9 = P~(4).

It remains to prove that f 18 14 4 b ~compatible
< foar every of < 7. Let{x ¢ex., {f(x )} € A, . Then
1¢f(x, )€ A, , and, consequently,{f ((x, N} € kc -
But X, € {-1(""("‘4. )) , and we have got a contradiction.

We remark that the last proof uses the same idea as the
proofs in [5] and the proof of 2.5 in [2].

Degipitiop. If X is a set, we put PY(X)={X,|X,c X§.
Iz $: XY, we define P*(£): P*(X) P*(¥) vy
P*H($)(X,) = -F(X,):“L){1{f(x)}

Theorem 9. The functor P* is not selective (even not
P =selective).

Remark. At this point we must emphasize that we work in
the Godel-Bernays set theory with the axiom of infinity. Of
course, if we assume the negation of the axiom of infinity,
the functar P* would be selective.

Eroof. Assume P* is selective. Then there exists a
type &0 =Bl <y § and a functor F: =5 7°(1, A),
such that 1o F = P*e O . We denote d=card sup {3 | <33
Let X be an infinite set such that cawZ X > 2%, choose an
arbitrary x, € X and a mapping ¥: X =+ XN{ x,? , which
18 one-to-one onto, Define g : P*(X) > P*(X) by:

gX) = £CX,) tor catd X, & 27 ,
¢ K =d(X)U{%} for card X, > 27 ..
Bvidently, g # P"(h)for any b : N> X .
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Let F(X)=(P+X,'{I(“}. There exists ot < )~ aml
{X,3€ n, suchthat {3 (X Ji¢ 1. 1t caed X, & 27
for every L , P* (f) would not be %, % ~compatible.
Hence, catd X > 2 for some ¢ .-
Pat X*= U{X_| L < 33 . We define a system L of
subsets of X* by:

Acl «=> A= N{A le < Bc} >
where every A, is either X, or X*\ X, -1t 1s ea-
sy to see that €L forms a disjoint cover of X* .
Define ¢4 =4 A | Aeth,Ac X, 7. Evidently, X, =
= Ut . Further, define
o= {AlAet, , card A% 273, el = o~ A
e ULty Iu< [3]i=12.51nce card Pk & 27 we have
cand X, > 2= G2+ g .
I Ae Ch, card A >2f; choose any fixed @ € A . Since
card £(A)=card(A-{a3),there exists fr, : A—>F(A)u{ X3,
which is onto anmd -h, (@) = X, , Denote ¥=(X SxHoUeL’
and define A : X =Y py:

Alx)=Ff(x) tr X € Y,
hix)=h(x)tr x € Ae A? .

It cawd X, & Z‘f, we have X, = Uﬁz and

P*R(X )= b (U{AIA e !} = ULhCAIIAc )=

SUL#CAIAe Uy =fX )= g (X).

1t eaxd X, > 2""7 then €L’ 1s non-void end we have
P*h(X)eULh(AActt v U{Ah(A)IAe L} =
=UffCANAE O] 30 Uff (Alu{x, 3 A€ QL2 =F(X Iulx, 3= g (X)-

Thus, P*h (X)=g(X,) for every . and, hence, P*h
is not compatible. We have got a contradiction.
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A

§ 4. Applicatioms, As the assumption (M) will be
frequently used in this paragraph, we remark that (M) is
consistent with the Godel-Bernays set theary and is not
in contradiction with the existence of inaccessible car-
dinals.

Theorem 10. Assuming (M), the dual to a boundable
category is boundable.

Proof. The proof follows immediately from theorems
3and 8 ,

Thecrem 11. Assuming (M), the category of topologi-
cal spaces and all their éontimous mappings is boundable.

Proof. As we sketched in the introduction, this ca-
tegory may be considered as a full subcategory of
TP ,{13) .

Theorem 12. Assuming (M), the category Y (A ) of
topological algebras of the type <& and their continuous
homomorphisms is boundable.

Broof. If & ={«<, I3 <2, put A’:{ocﬂ-!-ﬂl/l
Evidently, an algebraical structure of the type <& 1is a
special case of a relational system of the type a’ R ahd
the property "to be— 8 homomorphism™ is the same as the
ecmpatibility with respect to the corresponding relational
system. Similarly as in the proof of the previous theorem,

Y (A ) can be considered as a full subcategary of
PP,{1}, C1, &7)) .Hence, by thearems 6 and 8,
Ya)=—» R .

Theorem 13. The category o ‘of closure spaces([4])

and their continuocus mappings 18 - under the assumption



(M) = boundable.

Proof. We shall show that o =% 9(P~,{2J).Then the
theorem will follows from theorems 6 and 8 .

Let X be a set, 4L the closure function on X . We
define a relation «° on P~(X) by:

(A,Ble ' e=> A > (B).

By definition, a mapping f : (X,« )—> (Y,1 ) is continu~-
ous if and only if ¥ "(v»(A) 5 « F '(A)) for every Ac Y,
1.0 Pf(v»(AND> « CP°f(A)) ., The proof will be £i-
nished, if we prove that 4 1is continuo\.:e if and only if
P-4 18 v’u’ -compatible.

Let # be continous, (A, B) € 7 ', Hence A >4 (B)
and P~#(A)> P f (v (B))>u (P¥(B).Thus, (P £ (A),
Pf(B)) e u_’, and P~ f is v '«  -compatible. Now, let
P~¢ be v w -compatible, A c Y. We have (v'(A),A)ev-'
and (PF @ (AY, PF(ANe w’ , 1t.e.t Tw(AN>uCAY.
The mapping ¥ is continuous.

Theorem l4. Assuming (M), the category & of proxi-
mity spaces and all their proximal mappings is boundable.

Proof, If (X, d7), (Y, d;) are proximity spaces,
( o relations "to be proximal”), then, by definition,
$:(X,d5)=% (Y, 6} ) 1is a proximal mapping if and only
. .
(1) CA,Bledy => (£CA),f(BNed;
for every A, B c X . Dencte by Z , o-’: the complementary
relations to 0 amd o] . Evidently, f:(X,d;)— (Y,d})
is proximal if and only if ,
(2) (A,B)ed, = TA)+7(BNEed tor alL(A,B)e I},
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Thus, if we describe the proximities by complementary rela-
tions "to be far", the category @& can be considered as
a full subcategory of- 77CP~, {24 ) . By theorems 6 and 8,
R=R. .

Theorem 15. Assuming (M), the category %  of uniform
spaces and theiﬁ uniforaly continuous mappings is boundable.

Progf. If we describe the uniformities by means of sys-
tems of neighbourhoods of diagonals, then the uniformity on

X 1is a unary relation on P e @ CX). Sinee #s(X,U)>(%V)
1s unfformly continuous if and only if P° Q@ (f) is VU -
compatible, 2% can be considered as a full aﬁbcategory of
T(PeB,{1}) . Hence, by theorems 2,6,7 amd 8, %L =+ 7.

Remark. Theorems 13,14,15 could be strengthened in the
sape way as theorem 11 in theorem 12. Thus, e.g. the catego-
ry of uniform algebras of the given type with all their uni-
formly continuous homomorphisms is boundable etc.

Theorem 16. Let 7% denote the trivial category of or—
dinals, i.e. the objects are all ordinals, morphisms all
couples (o, /3) where o € (3, (3,9 )e(x,B)=(xx, ’J‘"
Assuming (M), 740 4s boundable.

Proof. venote by 70’ the full subcategory of 7°(P,{23)
generated by objects (o, k. ), where o are non-zero ordi-
nals, 1, binary relation on P~ (<) defined by:
(m,m)er, e=> either m =0 and m = o or

me F+1(<x) emdm nm-'{ff
We are gomg to prove that 74’ 1s isomorphic with 7% -
It suffices to prove that, for f+ %83, P (f) 1e

Ky % -compatible if and only if « & A and f(7)= 7"

for all Yy < &£ .
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Let < & 3, f1o —» 3 defined by f(y) =
for all " < . Hence, P"f(a)satn a for every ac /3
Let (m,m) € Kpg. It m =0, then m = /3 and further
(enm ,xnw)=@,0)€ L .1t n c A -, we have m = "+
+1, Y€EM. Tus, 7 2 o¢ amd(axnm,wnm) = (,0) € Ky
Fipnally, let m=y+1,y<ov, m nm = {3}. Then(xnm ,dNm)=
,(m,gonn)eﬂ&, a6 {Fjomna m € 7~ and we get MmN (kXN
Am)={y}-

Iet f: 0. — /3 be a mapping such that P~ { 1is ry rg =
compatible. First, we shall show that 3y < 0 < o implies
f(y) < £(0"). We have (f(y)+1,{f(y)})e #y.Sime 7€
€ PFUf())), TEPF(£(3)+ 1), Lo fl) & F(3)+ 1,
and consequently, f(3*) < £(0”) . Thus o¢ & 3. Let
be the least element in o such that f(r) . As f 18
inereasing, we get F(3) >y, Pf({»3) =0 aod P f(7+)s
= ¥, Sinoce (y+1,{r})e 1, , weget (7, 0)e r, ama
= & . This is a contradiction, as 7 € o, Hence £(7")» 7
for all 9 < & . The proof is finished.

Refinition. Let A be a non-void set. We define a cate-
gy Y(A) by: The objects are couples (X, x), where X
1sacet and £ € AX (i.e. 7 1s & set of mappings from
X 1into A; the set . will be called an inverse A -rela-
tionon X ); a mapping f: X— Y will be a morphiem from
(X,n) into (Y, ») 1f and only if g-f e £ fLor everyypes.

1) The notion of the inverse relation and the correspon-
ding choice of mappings can be considered in some sense as
a dual notion to the relations and compatible mappings. ic-
tually, an  ~-pary relation is a subset of X* (here



X® 1s the set of all mappings from oc into X ), and
the compatible mappings are then exactly the mappings
$:(X,n) = (Y, ) which fulfill the condition f° g €

€ A for every @ € X« .

2) Topology can be considered as an inverse binary
relation. Let A = 2={0,1}.If T is a topology on a
set X, put T s the set of all characteristic func-
tions of open sets. Evidently, f: (X,7)—=>(Y,0) is con-
tinuous if and only if f is & morphism from (X, T ) in-
to (Y, &) 1m Y(2).

3) Similarly, a differential structure on a manifold
is essentially an inverse £, -relation. Let M anmd N
be two differentiable manifolds, % ( /5 resp.) the set
of all differentiable mappings from M ( N resp.) into
the real ling E, . f: M — N 1is differentiable if
and only if o f € £ for every ¢ € A .

Theorem 17. Assuming (M), (A) is boundable for
any set A .

Proof. Evidently, if catd A= caxrd B, then Y(A)
and Y(PB) are isomorphic. Thus it suffices to prove
that Y (<) 1ie boundable, where « 1is any ordinal num~
ber.

We shall prove that Y (k) =3 7(P ,{x 7). Let (X,~x)
be an object in V(). We define on P~ (X) an

& -nary relation Z by:

{m,lff< o } € & (==> there exists ¢ e z such that

m =g (B) tor every B < o -

Il
Fow, let £: (X, £)~—» (Y, »),{m § &€ 5 . Then there



exists ¢ € » such that m = g~ "¢3) for every
B < o . We have PUf)imy, )= PUENG~(5))=P($) P )(B))=PTgef
(BN=Gpef)(B). A8 @ o fen, we get{PTF)(my)}e k.
Let f:(X,R) — (Y, %), Q€. Then{ygB)If<xjer,
and {P(£)(GBN} = {(@ef) ()} e Z. Thus there exists
Wenr suchthat (geof)'(R) =3 '(3) for every
A < <. Now, we easily derive ¢ o f = v .
The proof is finished.

Corollary. Assuming (M), the category of differentiab-
le manifolds and all their differentiable mappings is bound-
able.

Amendment. It follows from § 2 that the selective func~
tors play an important role in full embeddings into catego-
ries of algetras. However, the fact that P* is not selec-
tive does not mean e.g. that 7(P*, A) cannot be fully em-
bedded into 72 . Now, we are going to show that the concept
of selectivity can be generalized in a natural way. By this
generalization we shall show as an example that 77 (P*, 2)
is boundable.

Return for a moment tt; the definition of a selective
functor. The reason why we have used the categories 7'(1,n)
in the definition is the faot that we knew beforehead that
?(1, o) is boundable. Now we have a wider supply of bound-
able categories. It turns out to be worthwhile to define a
move general notion. ,

Let @ =7({F,o,1vel}, L=({Gy, . t2¢ € R3)

be categories. A set functor F is called selective from
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@ by means of £ , if there 18 $: @R > £ euch that
CQedsFeg and F 1s one-to-ome.

An evident analogon of theorems 5 and 6 is:

Theorem 18. Let F be a selective functor from
P{F,a,teJ}) by means of ({Gy; D |2 € K})-
Then 7({F,, A lLeJ},(FaN™ DG, 5,0 €K (1,80

Theorem 19 P* 1s a selective functor from 7° by
means of P ((P-, {13, (1,£1,33%)D -

Progf. If X is & set, f+ X — Y a morphism in
7, we put $(X)= (PHX), kg, Ko, £*), B (£) = PH(£)  where:
#, is a unary relation on P*(X) defined by X,e 1, &=
> X, ={x? (1,6, X, 1s a one point set; x, is a terna-
ry relation on P*(X) defined dy:

{Xg3 Xy s X33 € = X o Xy = Xy 5
A" is a unary relation on P (P*+(X)) Aefined by:

i O eP=CP* (X)) (1.0, YL 18 a system of subsets of
X ), then {fe2* 1f and only 1f {x; e Y, i e J,
wmplies U {X;3€ CL (i.e. 1f T4 contains a famly of

one point sets, then it contains also its union).

Evidently, if f: XY, then P*(f) 1e compatidle
with &, apd x,, P(P*()) 1s compatible with ~* .

Let ¥: P+*(X) = P*(Y) be compatible with %,
and X, , P-(f) be commtidle with £ *. Considering
compatibility with /%, , we get that the image of every one
point set ﬁndar F 1s a one point set. If a € A , then
Av{ai=A, anl - using compatibility with #, - ¥ (Adu
v¥t{ah)= F(A), te. FA) o U F({a}) for evers Ac
¢ X . The proof will be finished if we show that
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Z(A)-Qg‘?({a,}) for every A c X . Assume F(A) N\

\‘%JAf({a})#: Z . Let & be a system of all non-
void subsets of U ¥ ({a}) .  Evidently,{%}e r*.

Hence the image of 2 under P~(¥) mst be also in the
mnary relation ~*. But {ete P () (6) for everyacA
and A ¢ P (f) (% ). We have got a contradiction. The theo-
rem is proved.

It followe from boundability of P~ , theorems 18,19
and corollary 1:

Thearem 20. Assuming (M), 7°(P*, A ) is boundable
for any type

Observe, that this way we have obtained a new proof
of Theorem 14, as the category of proximity spaces is a
full subcategory of 7°(P*,{23%).

A very general notion is defined in [4]._ namely a me-
rotopic space. It is easy to see that the category of me=- -
rotopic spaces and ali their merotopically continuous map-
pings is a full subcategory of ?2'(P% P*, {13) . We are
going to sketch a proof that alsoc this category is (assu-
ming (M)) boundable. It is possible to show - applying two
times & slightly modified proof of Theorem 19 - that P*. P+
is selective from 77 by mem’ot’d"((P';'{'l,'I}), (1,41,1,1,3,33)).
First, we consider only systems containing one set (we dis-
tinguish them by means of a unary relation on 1 ), then
we distinguish systems containing only one one-point set
and repeat the proaf of Theorem 19. Then we proceed to o'ya-
tems containing mare sets and apply once more the proof of

theorem 19.
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