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7, 2 (1966)

REMARKS ON REFLECTIONS
Miroslav Hu3ExX,Praha

Recently there have appeared several papers dealing
with modifications (reflections or coreflections) of ob-
Jects of a category in 4its subcategory. Almost simulte~
neously there were obtained several theorems concerning
the existence of special modifications (Y, ¢ ) (£ is
mapped on an identity by a given functor). In special ca-
tegories (of clesure, uniform and proximity spaces), this
problem was treated by Frolfk in [1] by means of projecti-
ve and 1nduct.{ve generation. This method was carried over
to general categories in the Notes of [1] and in the aut~-
hor ‘s Thesis. Kennison used a slightly different method in
[2]. Unfortunately his proof of the main general theorem
2.8 is based on lemma 2.6 which does not hold under the gi-
ven conditions, but theorem 2.8 is true in a more general
form. The aim of this paper is state this generalization.

First we shall state theorem 1 on the existence of spe-
cial modifications (see above). By a method similar to that
used in (2], this result is then extended (by means of theo~
rem 2) to theorem 3, dealing with the existence of general
modifications in categories, Because it is sometimes neces-~

sary to investigate modifications of some object only, theo=-
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rems 2 and 3 treat the case of modifications of precisely
one object. The last part of this paper is devoted to ex-
amples in categories of closure spaces (e.g. in compact
spaces)s Some resclis differ conaiderabiy from the known
for topological spaces.

The assertions are stated for reflections (upper mo-
difications) only; the corresponding assertions for core-
flections (lower modifications) are dualizations of those
stated. )

The notation and terminology from [1l] will be used. Let
‘ua mention some which will be used more frequently.

Let ¥ be a functor (we omit the term "covariasnt") from
a category X into a category M . The functor F# 1is said
to be product-stable if a product of a family {A;? exists
in X whenever a product of {FX; ? exists in AL and if
& preserves these products (we shall work only with pro-
ducts of non-void families). There is given the following
quasi-order &g on the class ofy X :

X€.Y if $¢= ey for some fe Hom,.<X,Y)
(the inverse images of identities will be called F- identi-
ties). V
In the sequel, the classes % '[A) are always taken
. with this quasi-~order.
Now, we can define an upper (lower) F -modification of an
object X from X in a subcategory X’ as the least (grea~
test) object from X’ greater (smaller) than X .
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Theorem l. Let 5 be a faithful functor of & cate-
gary X into M, let X'/ be a full subcategory of .
Assume that, in X , produsts of objects from X’ e~
xist. Then each object X of X has an upper F -modi-
fication in X’, which is (with the corresponding §~ -
identity) @ reflection of X in X', if and only if

(a) the embedding of X’ into X is product-stable;

(b) for each X € 06f X there is a monomorphism
from X into an object of K’ ;

(c) for each X € 0¢f KX  there 1s a down-cofinal
set in the class € {Y|VYeobi X', X &g Y 3 ;

(d) each monomorphism f with E+f e obi X’ cam be
factorized as ¥, o f, where f, isan F =identity
end f, 1s a morphismda X’ .

Proof- The neceasity of (a),(b),(c) and (d) is obvi-
ous even without any assumption on the existence of pro-
ducts, Now, let X € off X - ofi K’ , 1let M,
be a down-cofinal set in the class £ {Y | VY €
eobi X)X 6. YI( My + B by (b),(a), Y’ & product
of M, , Ye ol K’ (this is possible by (a)), ana
£: X — Y’ the reduced product of the ¥ =-identities
X — Y. By () there exists an object Y” € oi X',
X $4 Y” such that { can be factorized over the F =
identity X — Y” .

Bvidently ¥” 1s an upper & -modification of X in X’
Hence it 1s sufficient to prove that each morphisgm g ¢

:X—Z,Z e o X’ can be factorized over some # -iden-
tity X — ¥, Ye off X’. If g is a monomorph-
ism, one has case (d). In the opposite case apply (4) to
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the monomorphism 4 : X — Z x ¥Y” , being the redu-
ced product of g. ad an K =1dentity X = Y7,

Remsrk. (1) If it is not supposed that X’ is full in
X ,one must add, as a further assumption, that every in-
vertible F ~identity Y, — ¥% , Y € o0& X', is a
morphism of X ‘ (this is fulfilled e.g. if each invertib-
le ¥ -identity is an identity, i.e. £, 1s an order).

(2) If the term "monomorphism" is omitted in (d),
then it need only be supposed that there exist products
of families {X;{ from off X’ such that card E{FX;§=1.

(3) Assume that & preserves monomorphisms and that
projective generation by m;)nomorphiam obtains in X . Then
condition (d) means that X’ is # =~hereditary in the fol-
lowing sense: if f 4s a monomorphism with € f e obi X',
then there is an object of X ' projectively generated by f.

In the sequel we shall investigate general reflections
by means of theorem l. Sometimes it is evident that X ‘ is
not reflective in ﬂC , but we desire to recognize those ob=
Jects of X which do have & reflection in X ’. Hence we
shall consider rather the subcategory %, of X for fixed
Xeoi K- o@"f', described by:
o(y.‘ﬁf'-og. X'w(X), X' 1is a full subcategory of ¥
Hm%<x,x>.4x and Hm#;‘ <X,¥Y)=tom <X,¥), Hna;o;x»u
for Yeob X’.




Clearly the problem of existence of reflections of X in
K’ has the same answer in X as in X, .

If ¥, £ ) 1is areflection of X in X’ then ¥
is an epimorphiem in X, which is "least” in the class
€{g | g 4is an epimorphiem in 5’(:‘, Dg=X, €g € o K’}
Therefore we shall construct a further category ﬁx’ JT'X
is the full subcategory of the category of morphisms from
X4 (which is sometimes denoted by C’C‘z o Morph Xy or
([— 3,7()} )y see [ 3])generated by all epimorphisms g uf‘
X, with 99. = X end by a}vl identities of X ‘.

Let & be the functor from X, imto X, assigning If
to e obf X, (% is faithful and preserves mono-
morphisms). Denote by 56; the full subcategory of ‘%X
generated by o&f ifx - P ) . Now we summerize what was
indicated above.

Iheorem 2. The following statements are equivalent:
(1) X has a reflection in &'’ ;
(2) 1x has an upper §y -modification in 96’;’ which is
(with the corresponding 5; -identity) a reflection of 1x
in gé; § -
(3) 1y has an upper' % -modification in D'CX’ and each
te Hom, < X,Y) Yeéoli X can be factorized as 4, o t,
with , € obj dnfx’ .

Erog. If <Y , £ > is @ reflection of X in X', then
(#,<1 ; #5> 1s areflectionof 1, ia X, ; and also

X
conversely. The equivalence of (2) and (3) is evident.



We are prepared to apply theorem 1 to the general ca~
se (we shall use remark (2), because in ix there need
not exist products of objects from fxl even in the case
of a product-admitting category X ). The direct procf
‘may be simpler than thet exhibit.

Theorem 3. Assume that in X products of objects
from X’ exist. Then X hes a reflection in X ‘ if and on-
ly if

(a) the embedding of X' into H is product-stable;

(b) me<X,Y) * B for some Y e ofi X ;

(¢) there is a cofinal set in the class ")}"[XJ-(”X);

(4) each f € Hom, . <X,¥>, ¥ & off X', can be fac-

toriged as f, o f, where f, € .7;‘('4£XJ - ).

Remark. (1) Under some additional conditions on K~
and fx , thia theorem follows from the "adjoint functor
theoren” of [ 3] (cofinal sets of .f;"L'XJ - 1) are so-
lution sets). It is easy to generalize theorem 3 to the
case of existence of left adjoints for faeithful functors
T aﬁch that évery T-"02] has a least element and
t/hat every T 4is some Tg, with given €g -

(2) In special cases it is possible to improve theo~-
rem 3, mainly conditions (c) and (d) (e.g. under certain
assumptions on hereditariness of X' in X one may re-
strict FX" [ X] to the epimorphism in X ).



Examples. (1) Let X = CZ be the category of olo-
sure spaces, /i a non-void productive and hereditary full
subcategory of (£ such that, for each closwe space X,
?;'('4[ X1 ocontains only surjections; and let X'= A n lompn
be the full subcategory of (£ generated by compact spa=
ces from A . (E.g. take for A the categories (£, CLy ,
CLsy (the category of semi-uniformizable or symmetric
spaces), czr’ 1CLge, » €4, (uniformizable spaces), Top’
Topr, s Tofgy » oty 5 Tofgey o) ‘

Hence, by theorem 3, a closure space X has a feflec-
tion in A A Clompr  if and only if for each continuous
mapping £: X — Y  with Y€ 08i (A nComp ) the sub-
space £ X1 of Y 4s compact.

Consequently if one can embed each space from A into
a compact space from fl,thm the closure space X has a
reflection in A n Comfr if and only if its reflec-
tion in A is compact ( A 1s reflective in (4, e.g; by
theorem 3)s We shall show that this situation obtains for
all categories A indicated above except for A = Tofo,m’,

(here X has a reflection in A n Compr  if and only
if its uniformizable modification is compact), and possib-
ly excepting A = &CM .

Broof. The case of A = £L, = Top, is known
Just as the cases of A = Ton, Tor»-,;;Toﬂs”, Tvﬂa.q (here
it is sufficient to take one-point compactifications with
some neighborhood systems of the ideal point). A similar
one~point compactification may be performed also in the

- cases of closure spaces. However, for these categories A
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we shall construct augmentation-separated compactifications
(this is not possible for topological spaces). Let P~ <P«
be & closure space, § = E£E{ X | X is an ultrafil-
ter on P without limit poinmts in P}, let € =(8,7) be
@ compact separated space such that P~ @ = B and that
there exists @ one-to-one mappfng ¢ of § onto & . Now
it is sufficient to put R= Pu G, R~ (R, w, where 7
is an open subspace of R , and the neighborhood system of
@® in R is the smallest filter in R containing
both £ and the neighborhood system of ¢ & in ( . The
closure space R is compact and each point of & is sepa-
rated from any other point of R.

(2) Let X = (4, X'-Cl.,i . The category X ‘' 1is
reflective in X ; this follows e.g. from thearem 3. Here
" we mmy resirict 3;" LX) to surjections ( see remark 3
following theorem 3) which form a set. But we shall show
that the equivalence classes (f b,; £, £ i,; £ ) 1in the
whole f;"f X1 form & class. Epimorphisms in X, are
continuous mappings onto "topologically dense” sets (i.e,:
for £: X — Y 1t is the case whenever fL[ X1 1 dense
in the topologiéal modification of Y — Y is the only
closed set containing f [ X1). Hence if Y is topologi-
cal then €[ X1 = Y ana thus caed ¥ € eepn expeand FLX]. .
Ir Y is not topological, ¢a¢d Y may be arbitrarily large.

Proof. Let X be a separated space having an infinite
set of ;zltrafnt.ra without limit points., We shall con~
struct a transfinite sequerce of separsted spaces { Y /o €
€ Ordl? suchthat ¥, = X, for « > Y5 isa
topologically dense subspace of Y, and caed M, >
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> caxd Mg  where M, =€{ 2% | X is an ultra-
filter on Yx  without limit points 3 -

Assume that all Y3 for B < o have already been
constructed.
(a) If &« « @ + 1 take for Y% the space R from the pre-
ceding proof, where R = ¥, and Q is a discrete space.
Evidently caxd M, = een etp card Mg -
() If @ =sup{B Ifp <oc 3, put Y = U{Y, |B<oc}
with the closure structure of Yx 8o defined that every *
ﬁ is an open subspace of Y¢ . In this case cakd M, 2
Zeawd Y. (because each filter {Fy I8 <o} in Y,
such thet Fpc Y/ - Yy for f<oc eam F, < f
for 3 < < o¢, has no accumulation points in PAE
Now it is sufficient to take for Y, the space construc-
ted from Y, as in (a) Y from Y -
Hence caedl Y > cawd Y  starting from eome of, & Oed.

(3) Let X =Cf, X'= €L, n Comp . A1l the con-
ditions of theorem 3 are fulfilled except (¢). Indeed, ac-
cording to the preceding two examples, the equival ence clas-
ses of ?)r'"EXJ may be a class; if there were a smallest
element in ?;"[XJ = (1, ), 1its range would have to be
of greatest cardinality. This is the case if X is a sepa-
rated space having an infinite set of ultrafilters without
limit points. Bach separated space with only a finite set
of non-converging ultrafilters (such spaces exist) has a
reflection in c'th n Compn the space Y, from
preceding example. (Evidently a closure space has a ref-
lection in CI«Tz n Comp if and only if itse
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upper modification in Cl-,—z has such a reflection.)
This result implies the following interesting theo-

rem:d

In the category (L, N Comp , all injective spa-

ces are one~point spaces.

Proof. Let I be an injective space in CL.En Comqr ,
caxd 1 > 1., Let € be the full subcategory of (4
generated by closure spaces which are projectively gene-
rated by mappings into 1 (i,e. qwof (1) in the no-
tation of [1]). It is almost obvious that L‘th A Comp
is & subcategory of ¥ and that each object of € has
a reflection in C'L.& A Compn ‘ (by the same method as
used for construction of the Cech~Stone compactifica-
tion). But this is a contradiction, since the infinite
discrete space is an object of € and, by preceding, has
no reflection in C.C.rz A Comp .

A‘ch.racter:lzgtion of projective objects in Cl.rz n Comp
is the open problem (it seems that only finite sprces are
projective in Cl.rz n lmp ).

(4) Except theorem 2 I 4o not know any general theo—
rem on the existence of reflections (or coreflections) in
the case that products (sums, respectively) in X do not
oxiat.\

Let X be @ categary of closure spaces with one-to=-
one eontimuous mappings as morphisms. In this category the-

re do not exist sums of families (of non-void spaces)
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with cardinality greater than one. Fer the full subcatego=-
ry &' of X generated by the compact spaces, conditions
(a),(b),(e) and (d) of the dual to theorem 3 are fulfilled,
but no non-compact space has a coreflection in X ’. On the
other hand, e.g. the full subcategory X’ of df‘.generated
by dense-it-themselves spaces is coreflective in X (this
example is due to Kat&tov).
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