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Comment ationes Mathematicae Universitatis Carolinae 

7, 1 (1966) 

COMPLETION OT CEBJIAIN A - STRUCTURES 

Kamil JOHN. MiloS DOSTXL, Praha 

1° In this paper, a linear space ( £ , T ) will mean a 

vector space' £ endowed with a separated (i.e. Hausdorff) 

locally convex topology T . In general all continuous 

structures which occur in the sequel are supposed to be se­

parated. We denote by TC ( £ , T ) the completion of the 

space (E9T) . The following concept of A-structures is 

due to Prof. KatStov: Let X be a set and denote by A3? 

the free modul on X over the real numbers, i.e. the vec­

tor space of all finite formal linear combinations .2- \± x^, 

where «\ are real numbers and .X^ € & * If (A-3£fT) 

is a linear space, then the pair (X , T) will be called a 

A -structure or a A-space. We say that ( 3£ , (T) is a 

weak or Mackey A -structure if (T is the weak or Mackey 

topology on A 3 f t respectively. There is a 4-1 corres­

pondence between the mappings of th* 3<»t J£ into a vector 

space £ and the linear rnnppings of AX into £ • The 

linear mapping f 5 A3? —• £ which corresponds to the 

mapping M? s X —•* £ is called th* linear extension 

of Jfa f and we write f « A Jh, - . We say that a'mapping 

f * (X f T) -• (fy, *$) is A -morphic if its extension 

A f : (AX , T) -*(Ay , ̂ ) is continuous. Often (but 

not always) we will not distinguish between A f and f f 

thus omitting the letter A » 
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2 0 We will consider some A -atructurea which are defined 

in the following manner. Let X be endowed initially with 

some topology or uniformity / and let $ be a suitable 

subspace of the vector space of all if -continuous functions 

on X • Then one may define in a natural manner & duality of 

the pair (AX 9 0 } : For X » X ^ ^ 6 A J > 

f e <$> put 

(1) < *,* > - 4 2 *4 * ̂  ; 

(evidently <f) muat be auch that for every X e 0 , X £ A3? > 

there ia a «£ € CJ) with <X, 4 > 4 0 )• Denote by pi, 

the Mackey topology of the pair {AX 7 <j> } $ and let *> 

be the finest topology on AX such that (AX 7 V ) is 

a linear apace and the natural Imbedding of X (with the 

continuous structure induced by if ) in (AX 7 >> ) is a 

homeomorphism. How a natural question arises, whether it is 

possible to describe in a simple way the completions 

srCAX, (u„) and irrCAX, i> ) ? 

3° The following special but important cases were mentioned 

i a t i j t 

a) Let X be a compact space and (J> « *f (X) the apa­

ce of al l continuous functions on X • The proof of 

(2) 7T(AX} I» * Vtt) 
mm sketched in [ l ] , and i t was there stated that also 

(3) ?r(A$$ (to) - €'(%), 
although in general £*& Is strictly finer than V . For a 

detailed proof of (2) see [2 ] . (The proof of (2) and (3) was 

ad so given by S. TomASek and will appear in this Journal.) 
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b) Let £ be the segment ( 0, 1 > of the real l ine with 

i t s usual topology, and l e t <p » % C3£) where %(£) 

i s the space of a l l in f in i te ly differentiable functions on 

< 0 , A > . According to [ 1 ] , 

(4) 0 - G t a ? , ^ ) * f(X) 

where %'CX) i s the space dual to "iCX) f i . e . «£'C#) 

i s the space of a l l distributions on £ .We shal l give an­

other and simple proof of (2 ) . Then, following an idea of 

Prof. Katgtov, we prove (3) and f ina l ly (4) . In the course ' 

of this we obtain some further generalizations. The proofs 

of (2) and (4) are based on the well known 

4° Grothendieck #s theorem«F3 J . The completion of the l inear 

space E i s (algebraically) isomorphic to the vector space 

of a l l those linear forms on E' which are erCE'f £ ) -

continuous on every equicontinuous set Ip. E . -

An immediate consequence of this theorem i s * 

5° Corollamf> If ( E , (U^) 1 CE 9 ^u^ ) are l inear spaces, 

C £ 7 (U>4 y m CE7 (tcty and ^ c ^ ; then ?r CE , <u,t) 

i s algebraically isomorphic to a subspace of ( E y (U,^ ) # 

We begin with the 3°, case a ) . 

6° Let X be an uniform space and le t <p be the space of 

Sill uniformly continuous functions on 3? • Raikov £MJ proved 

the following 

Theorem. Let £ be the system of a l l weakly ( i . e . pointwfse) 

bounded uniformly equicontinuous seta of functions from <f) . 

Then %> i s the topology of the uniform convergence on the 
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ayattm 3£ and (AX9 v)' ~ <f> < 

It should be emphasized that one must distinguish be­

tween uniformly e qui continuous sets in (p and equiconti-

nuoua aeta in (AX , vY m Jltp t H c <j> i s called a 

uniformly equicontinuoua aet iff for every 8. *-* 0 there 

la a neighborhood V^ (of the diagonal in the uniformity 

on 3? ) auch that 

t^c{Cx i ,XaJc£x,<p/ I f f V - f f x ^ U E , for a l l -f € 2£} 

Benote by Ht^ the 8ystem of all sets of the form 

rCAH) for Heae,(Here A H * f ^ « A f : ^ H | 
and T C M ) denotes the convex hull of M •) Now the 

aet L c (A3? , V ) ' ia equicontinuoua iff there is a 

neighborhood (of 0 in (AJE , V ) ) U auch that L c 71°. 

The system of al l these aeta will be denoted by 3i?2 . Now 

Ralkot's theorem atataa that H1 € dt% i ff there exists 

a H ^ e ^ auch-that H% c H*° ; i . e . Xi -~'VC% * 

7° Propoaltlon. If ( X f tH ) ia a totally bounded unif orm 

space and if (p la the space of al l uniformly continuous 

functions on X , then 
sr(A3E, v ) m $' . 

Here <p* i s the space of all linear forma on (p con­

tinuous in the norm topology (Jl-f I * *J*^ / f Cx)J ) . 

3̂ £Ofc: I#et ^ € i j r C A J B , > > ) • tfaing the theo-

rams of Raikov and Grothendieok we as* *n*t .9? ia 

*rC# f AX ) -continuous on every H € Wz * Let 4,-* 

-*t) fl.e. i f^ l - **^ l . * * ^ ' - * ° * Put fi * 
'•^^f-aa-t w ^ } ) evidently H* * * > ao that 
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AH0 € Xt for AH* c CrCA HO))0C andfrAHe)€ 
e 3gf .Now tn; —* 0 in the topology #(<p f <J>' ) and 

thus also in the & ($ 7 A 3£ ) -topology, and the "^ 

belong to a set from Xz - tie conclude that <p(t^ ) —* # , 

i . e . y € <j> ' * 

Conversely, l e t #> € 4>' and H- € 2 ^ , If f; e H 

( t e J ) i s a net converging to z^ro in the topology 

& (0 7AX ) ; then by f 3 , chap . I l l , § 3, proposition 

5 3 our net converges to zero uniformly on a l l t o t a l l y boun­

ded subsets V c -A. X j in particular for Y - £ we 

obtain H t I - t 0 ; so that y> ^ ) - * 0 , i . e . 

cf e fr(A»X? %> ) by Grothendieck's theorem. 

8° We recal l an interesting theorem of Pt6k, |^}*^ 

Theorem. Let X f ty* be completely regular spaces, X 

pseudocompact and If countably compact.Then every bounded 

separately continuous real function B on 3B x. ^- can be 

extended to a separately continuous bilinear form & on 

"€' (X ) x *€'(% ) , in the following manner: Let A be 

the mapping of ^ into *t (X) defined by the re lat ion 

< Xf A Cy,) > ~f (*9<y.) 0 Extend every ACy) to <€'(%> 

and then, for -ft £ € ' f # ) ; put < Jh, (<fv> ,y>m 

- <fuf A <*/,)> tye y.) , Then A i s a mapping of tfY£-> 

into *t (%) * extending every A(p) to ^'(ty) put 

Bt-ft-fc) « <A(<p,)t q, > -

9° .Propof.it ion. Let X be a pseudocompact completely re&*» 

lar ©pace, and l e t E be m l inear space which i s complete 

in i t s Mackey topology x (£ $ E ' ) • Then every 
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continuous mapping f i 3? —* ( E f & ) , where 6* * 

«* &(Ef £'), may be extended to a linear continuous mapping 

jh, • *£'CX) - W E , * > • 

EPQ.o£: First let £ be a Banach apace; then we may re­

gard £ as a subapace of *€ (If) for some compact -̂ • 

' ( 1f is the unit sphere in £' with its week topology)* 

Since f f-«)c < i ^ ) is bounded, the function B f x . , y ) « . 

m<f(x), /y,} is bounded and evidently aeparately conti­

nuous, and may be extended to a bilinear form B (fi*, £,) -= 

«• < Jv (<fv>, £ > on < ' ( « ) x f r y ) , Now A isob-

viously an extension of -f on *€'(X) and is weakly conti-

nuoua. The aet A3? is dense in *£'(X ) so that 

M, (*€'(£)) c E * E since the weak closure of the con­

vex set £ coincides with its closure and E is complete* 

In the case of general E one imbeds (E , tr ) into the 

product of Banach spaces and then proceeds in the obvious 

manner* 

10° Proposition* Let X be pseudocompaet completely regu­

lar space, 4> **€(£) . Then, in the aense of algebraic 

isomorphism, JT (JVX f (U,) ** *€'(X ) • 

£rj|o£: According to 5° s<nd uaing 7° where the uniformi­

ty projectively generated by *€(X) ia taken for UL , it 

is only needed to show that there ia an injectite mapping 

of ^'(X) into tr(AX 9 (U.) , But this is an immediate 

eoasectuenee ©f 9°, since for 0 + f e *€' (X) there is 

m f € *€ (X ) such that < f , f > + 0 , and A3T 

being c(*€'(X> , >£(X )) - denae in <€'(£), there 

ia <f, JtCf )>- Mm, <*^(f«)>"Mm<+f§A>*<*,$>+0 
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where f^ € AX , fK - * f • 

11° Now we turn to the case b) from 3° . Let X be an m, -

dimensional cube in euclidetfn /n, -space E/IV. Put <f> « 

* *i(X) f i . e . <j> i s the space of a l l i n f i n i t e l y dif feren-

t iable functions on X . We consider *&(X) in i t s Fr^chet 

topology CJ defined by the seminorms fyCf)** Aug IDL-f(x)l 

where t i s an arbitrary multiindex and J>L the correspon­

ding derivative. We denote by T the Mackey topology of the 

pair f AX , 4> } • 

12° Proposition* Let £ be a complete linear space. Then 

the following conditions are equivalent 

(a) The mapping f : X - * E i s ex? -different iable 

(b) The mapping A f : ( A 3 ? , f ) -^ E i s continuous. 

£rc.o£: (a) *-»> (b): Suppose that f i s so -d i f f erent i ­

a t e . I t i s sufficient to prove that for every y> e E' 

the form y> © A f i s weakly continuous on A X f since 

AX has the Mackey topology. But for every y> e £ ' the­

re i s y © f •* ;£ e %(X ) f and thus from the uniqueness 

of the l inearization i t follows that y> o A+ ~ A(cp + +) * 

~ A% e (AX , t)' . 
(b) --«-> (*): We shal l prove by induction the existence 

of derivatives B L f for a l l multiindexes t • For Lm « 

* ( 0 ? . . . , 0 ) there i s J)4** f • f ) we proceed to prove the 

existence of K - J - f ^ h e general case i s s imilar) . Choo­

se a fixed x € X and put 

9,6*1,) ~ ff (x + Jhl-fCxDJh,;* 
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for a l l Jh> •» tJ%>ff 0 , .**-f 03 for which X+Jl m JC and 

Jh * 0 - ^ w y * # c <fe C# ) tor all g> e E' since A f 

i s continuous aal g> • A-P - J l f ^ o f ) e CAJ?, ?*>'.» ĝ ( # ) . 

A twofold application of the mean-value theorem yie lds 

IcrtyC&y-tyWVl * C#mAM.(ih,\fih'i) where C# i s a con­

stant depending only on y . The set { *, c £ t $*> • (9-fAJ-

-9,6*1/)) (ma*lJhl,\4i,'nmi
}x-+Jtc. X, x+Jh!e £, Jh, +0+Hi 

i s therefore weakly bounded aTad also bounded in £ , which 

means that -f q,( Jh, ) \ M + j ^ ^<$ Jh+0 i s » Cauchy net in E# 

From completeness of £ there then follows the existence of 

there follows the continuity of the mapping -A. jr~ and 

we can continue as above. 

13° Propoai-tiori. Every sat H c <£ equicontinuous with r e s ­

pect to the topology f i s bounded in the Fre*chet space *£ (&)• 

£r£o£: It follows from Am,ela theorem that f i t (H ) -» 

• Afjg \f Cx ) \ ** <*& . We must prove that for every multi-

index t there i s -fî  (H ) < a? - I t suff ices to prove 

th i s for t^ • T 1 , 0 , . . . , 0J since the general case i s again 

similar. (Me nay suppose that H ~ P ("A H ) . l#et £ be 

the subspace generated by the set H in <J> . For f 6 £ 

put I 41£ » ,*o-ft, { 11 fx ) I * x e H* $ » so that 

liecall that H* i s a neighborhood in A 2* and thus i t 

"swallows ** each point of A t ? especial ly each point of^f 

so that l + ig * 0 implies f « 0 and so I • lg i s 
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really the norm. Denote by F the completion of the conju­

gate space of £ with the norm / § tp ~ *wp, {\ < <f , f > s 4 € 

€ H I . Now the canonical mapping of A.X into F »whioh 

we denote by X ~± cQ ( c£ is the evaluation at X , 

<* , c£ > » 4 Cx ) , so that for x € J? , c£ is in fact 

the Dirac measure at X ), is continuous: for x e H° 

there is I o£ \p » * £ ^ t f Cx ) I * 1 . By the preceding 

proposition this means that x —» oC is a a? -differen- * 
tX 

tiable mapping of X into F . Now compute ^cfc*g~-<£\ D* 

and thus, uniformly in f, <+f Mk > « < Jx~ , o£ > 

The following implications hold: c£ is oo -differentiable 

"* J3?7 is °* "diff«r«ntiable -*-> ^~* is a continu­

ous mapping of (.AX, f ) into F (see 12°). The mapping 

9<Cc 

Sjf* i s therefore bounded on the weakly compact subset 3t 

of J\% , i . e . -ft fH) - * o M l r - C x ) | ; . X 6 i , - f £ Hi<*flO* 

14° We *have just used the following fact : the topology t/g 

coincides with the usual topology p on £ . (Evidently ^/^ 

i s coarser than p and C3?; p ) i s compact. Thus C& ? f/^ ) 

i s also compact and ^ / g * J0 •) 

15° Proposition. Under our assumptions we have the algebraic 

equality 
if CAS, vy - t'CS) 
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where %'(X ) i s the space dual t o % CS£ ) , i . e . the 

space of a l l d i s t r i b u t i o n s on 3£ . 

£r£o£: Let cp € *£' (3B ) and l e t H be a t -equicon-

t inuous s e t in <J> . Then by 13° f H i s bounded and thus r e l a ­

t i v e l y compact in *£ C & ) ( the l a t t e r space i s a Monfc e l 

space ) , and therefore the topology induced by *i C£) in H 

coincides with the topology (T C<$> 7 A 3£ ) , Using Gro-

thend ieek ' s theorem we see t h a t t'Cg) c rr CA £ , f ) * 

Conversely, l e t cp be a l i n e a r form on <p which i s 

&C<p } A. X ) -continuous on every f -e qui continuous sub­

se t of <J> . I f Jh^ ~* 0 in ^iCSB) , then H - r t f A ^ ?,-.**> 

i s bounded and thus r e l a t i v e l y compact i n %C36) and also r e ­

l a t i v e l y compact i n £"C<J) ,A3£ ) ; but t h i s means tha t H 

i s f -equicontinuous in <£) , and evidently VCJi^) —> 0 • 

By Grothendieck's theorem *r £ A # ,??)<=. t'-C£ > -
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