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COMPLETION OF CERTAIN _A - STRUCTURES
Kemil JOHN, Milo# DOSTAL, Praha

1° In this paper, a linear space (E ,7".) will mean a
vector space E endowed with a separated (i.e. Hausdorff)
locally convex topology J . In general all continuous
structures which occur in the sequel are supposed to be se-
parated. We denote by v (E, J) the completion of the
space (E,T) . The following concept of .\ -structures is.
due to Prof. Kat&tov: Let X ©be a set and denote by AZF '
the free modul on X  over the real numbers, i.e. the vec-
tor space of all finite formal linear combinations ,é": A Xy
where A; are real numbers and Xx; € ¥ . If (A¥,T)
is a linear space, then the pair (¥ ,7) will be called a
A =-structure or a . -spice. We say that (¥, 7)) is a
weak or Mackey A\ -structure if 7 is the weak or Mackey
topology on A ¥ , respectively. There is a 7 -1 corres-
pondence between the mappings of the set X into a vector )
space E and the linear mappings of A& into E . The
linear mapping f: A¥ — E which corresponds to the
mapping Hh : ¥ — E ig called the linear extension
of /v, and we write f = A f .. We say that a'mapping
£ (%,T) = (Y, ¥) is A -morphic if its extension
Af: (N2, T) =AY,¥) 1is continuous. Often (but
not always) we will not distinguish batween Af and f,

thus omitting the letter A 3



2° Wwe will consider some \ -structures which are defined |
in the following manner. Let & be endowed initially with
some topology or uniformity i and let ¢ Dbe a suitable
subspace of the vector space of all ¥ -continuous functions

on &£ . Then one may define in a natural manner a duality of

“the pair {AX , 9} : For x -_ﬁ; A %, e AX
fed pu
(}) (X,'@)'i% ?u-;f(x,;);

(evidently ¢ must be such that for every xel , X eAZ,
there is @ f € @  with (X, ¥ ) # 0 ). Denote by
the Mackey topology of the pair {AX , & } , and let»
be the finest topology on A X  such that (AF, v) is
a linear space and the natural imbedding of X (with the
continuous structure induced by ¥ ) in (A¥ ,») is a
homeomo::phiqn. Now a natursl question arises, whether it is
possible to describe in a simple way the completions
T(AE, ) ama w(AE, ») 7

3° The following special but important cases were mentioned
in (1]:

a) Let & be a compact space and ¢ = (X ) the spa-
ce of all continuous functions on ¥ . The proof of

(2) (AR, ») = €(2)
was sketched in [1], and it was there stated that also
3 r(AE, ) = €U(Z),

slthough in gemeral @ 1is strictly finer than » . For a
detailed proof of (2) _séo [2). (The proof of (2) and (3) was
also given by S. Tomé3ek and will appear in this Journal.)
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b) Let £ be the segment { 0, 1> of the real line with
its usual topology, and let ¢ = € (%) where € (%)
is the space of all infinitely differentiable functions on
0,1 . According to [1],

(4) FNE, ) = E(X)

where £'(¥) 4is the space dual to (€ (X ) , i.e. €/(Z)

?
is the space of all distributions on Z . We shall give an-

other and simple proof of (2)., Then, following an idea of
Prof. Kat&tov, we prove (3) and finally (4). In the course '
of this we obtain some further generalizations. The proofs

of (2) and (4) are based on the well known

4° G;'othgggigck's.thgorgg,[.'ﬂ. The completion of the linear
space E is (algebraically) isomorphic to the vector space
of all those linear forms on E’ which are 6 (E7, E) =
continuous on every equicontinuous set ip E’ . -

An immediate consequence of this theorem is N

5° Corollary. I (E, ), (E, a,) are linear spaces,
(E, ) =(E, &,) and , c &, ,then 7 (E, )
is algebraically isomorphic to a subspace of ( E, (¢, ) -

We begin with the 3°, case a).

6° Let £ be an uniform space and let ¢ be the space of
&ll uniformly continuous functions on £ . Raikov [‘4] proved
the following

Theorem. Let £ be the system of all weakly (i.e. pointwise)
bounded uniformly equicontinuous sets of functions from ¢ .

Then 3 is the topology of the uniform convergence on the
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system X and (AZE, ») = ¢p.

It should be emphasized that one must distinguish be-
tween uniformly equicontinuous sets in ¢ and equiconti-
nuous sets in (AX , v ) = A ¢t He ¢ is called &
uniformly equicontinuous set iff for every € > 0 there

" is @& neighborhood ’U's (of the diagonal in the uniformity
on £ ) such that 4
Uc{lxy, X JEXX T 1 If (%) -F(x,)I<E for all 6 ¥, F

Denote by ¥, the system of all sets of the form
MAH) for He # .(Here AH ={g=Af:feH}?
anda "(M)  denotes the convex hull of M.) Now the "
set L c (A¥, »)’ 1is equicontinuous iff there is a
neighborhood (of 0 in (AX, ) ) U such that L c %°.
The system of all these sets will be denoted by &, . Now
Ralkov s theorem states that H, € ¥, ;tt’t\ﬁere exists
a Hye ¥, such-that Hyc Hy° , i.e. ¥, = #, .
7° Broposition. If (% ,¥L) 1e a totally bounded uniform
space and if § is the space of all uniformly continuous
functions on £ , then

A(AE, v) =¢ .
Here ¢’ is the space of all linear forms on ¢p con-
tinuous in the norm topology ( N+ 1= m I£(x)1).

Brogof: Let ¢ € ar (A 2R, ») - Using the theo-
rems of Raikov and Grothendieck we see that ¢ ia
(¢ , AX ) -continuous on every H € ¥, . Let £

20,deec Uyl = pufy 14,(x) 1= 0« Put K,
‘m {8 dnps v {0} ; evidently H, ¢ %, so tnat
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AH, € %, for AH, € (F(A H, )°° and F(AH,)e
€ ¥,.Now f,, — 0 in the topology € (¢ , $’) and
thue also in the 6 (¢, LX) =topology, and the %,
belong to a set from o, . Ne conclude that ¢ (%, ) 0,
lce. ¢ € 43’ .

Conversely, let ¢ € ¢’ and H-€ #, .1 f e H
(L e J ) is a net converging to zero in the topology
6 (¢ ,AX ), then by [3, chap.III, § 3, proposition

5] our net converges to zero uniformly on all totally boun-

ded subsets Y c¢ A X ; in particulor for Y = & we
obtain N f | — 0 , so that @ (f ) — 0 , i.e.
& € r (A3X, ») by Grothendieck’s theorem.

8° We recall an interesting theorem of Pték,[53}:
Theorem. Let & ,%  be completely regular spaces, &
pseudocompact and 'y- countably compact.Then every bounded
separately continuous real function B on X x y- can be
extended to a separately continuous bilinear form B on
€/(%) = €'(Y), in the following manner: Let A be

the mapping of % into ¢ (¥) defined by the relation
{x, R(y)>=f(x,a) . Extend every h(y)to ¢(X)
and then, for 1 & ¥'(X) , put <A lp),ud>= ‘
=<, k(y)> (yeY).Then 4 is a mapping of €'(ZE)
into ‘€ (%) ; extending every A (f1) to %’(ﬂ) put
Blh,9)=<h(p),q> .

9° Propogit jon. Let £ be a pseudocompact completely regu-
lar epace, and let E be & linear space which ;lkcomplete

in its Mackey topology ¥ (E , E’) . Then every
-97 =
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continuous mapping f : ¥ —(E, 6 ) , where 6 =
= §(E,E’), may be extended to a linear continuous mapping
b+ (X)) —> (E,6).

Proof: First let E be a Banach space; then we may re-
gard E as a subspace of € (%) for some compact % -
"( Y is the unit sphere in E’ with its week topology).
Since f (¥) c ¥ (%) is bounded, the function B (x,y )=
=(£(x), 4 ) is bounded and evidently separately conti-
nuous, and may be extended to a bilinear form B (71, Q) =
={Ah(n)yg)> on ¥(X) =< €(Y). Now A is ob-
viously an extension of ¥ on ¥‘(X) and is weakly conti=-
nuous. The set AX is dense in ¢’(% ) so that
h(€(E)NcE=E since the weak closure of the con-
vex set E coincides with its closure and E is complete.
In the case of general E one imbeds (E , =) into the
product of Banach spaces and then proceeds in the obvious

mannere.

10° Proposjtion. Let X be pseudocompact completely regu-
lar space, ¢ = €(ZE) . Then, in the sense of algebraic
isomorphism, T (AZX , ) = (X)) .

Broof: According to 5° and using 7° where the uniformi-
ty projectively generated by € (X) is taken for (£, it
is only needed to show that there is an injective mapping
of €/(X) into sr(AZE, «) . But this is an immediate
consequence of 9%, since for O * § e €' (X) there is
an fe €(&X) such that (£, § >+ 0, and A¥
being @ (€'(X), €(X)) - dense in ¢€'(¥), there

18 (£, h(E)>= tim <, A(E)>mlim<t, 6 5=CF §>#D
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Whel‘e g‘ €A£ ’ g‘_‘,g .

11° Now we turn to the case b) from 3% Let £ be an 7 -
Put ¢ =
= €(X),i.e. ® 1is the space of all infinitely differen-

dimensional cube in euclidesn m -space E, .
tiable functions on X . We consider € (X) in its Fréchet
topology ) defined by the seminorms.fn, (f)= sun IDt£(x)]

where ( 1s an arbitrary multiindex and D‘ the correspon-

ding derivative. We denote by = the Mackey topology of the
pair {AX 9 ¢ 3.

12? Proposition. Let £ be a complete linear space. Then
the following conditions are equivalent
(a) The mapping + : ¥ = E is 00 =differentiable
(b) The mapping NAf: (A X, ©) — E 1is continuous.
_Proof: (a) ==> (b): Suppose that f is oo -differenti-
able. It is sufficient to prove that for every ¢ € E”
the form ¢ o A f is weakly continuous on A ¥ , since
AZ has the Mackey topology. But for every ¢ € E’ f.:he-
reis gy of = 3 & €4(X¥),and thus from the uniqueness
of the linearization it follows that ¢ o Af = Alpe f)=
-AX e .('A'x’t.)" )
(b) ==> (@): We shall prove by induction the existence
of derivatives D“f for all multiindexes L . For (, =
=(05...90) there 48 D'f = £ ; we proceed to prove the
existence of g%; + (the general case is similar). Choo-
se a fixed x € X and put
g (h) = (F(x + A)=Ff(x))h"
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for a;.l h =Lk, o,,..i, 0] for which X+.A ¢ £ and
heO.Now @ of g €(Z) for all g€ E’ since Af
is continuous and ¢ o AF = A(pof) € (LX,2) =€ (X).
A twofold application of the mean-value theorem yields

lg @ h)-g(A' NI & C, mac(lhl, Ih']) where (, is a con-
stant depending only on ¢ . The set {3 e E: g =(h)-
-~ g (h") (mac L1, 181)", xehe B, x+h'c E, h+0+ 1’}
is therefore weakly bounded &nd also bpunded in E , which
means that {@(h)i, 4 c%®, heo 18 2 Cauchy net in E.
From completeness of E there then follows the existence of

y —a; L af- a o
m"(‘h)'ax,f(")'hm @ Aé—;;- ./\-9—;1(9’ )

there follows the continuity of the mapping A gg— and
1
We can continue as above,
13° Proposition. Every set H © ¢  equicontinuous with res-

pect to the topology © is bounded in the Fréchet space ¢ (T).
Proof: It follows from Argela theorem that 1y, (H) =

= Aufl [f(x)| < o0 . We must prove that for every multi-
feH
index L there is N (H) < oo . It suffices to prove

this for L =T[1,0,..., 0] since the general case s again
similar. One may suppose that H = M (A H ). Let E be
the subspace gonerated by the set H in ¢ . For f € E
put 14|, = sup {I£(x)|: x € H* 3 , so that
1$l, & 1¢=> feH -

Recall that HM® 1is a neighborhood in A ¥ and thus it
"swallows" each point of A ¥ , especially each point of &
so that I+ig = 0 implies § = 0 and so | 'E is
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really the norm. Denote by F the completion of the conju-
gate space of E with the norm I§L=supfi<f,E>:Ff€
€ Hi. Now the canonical mapping of AX into F ,which

we denote by X — d; (d; is the evaluation at X ,

(f,d; > = £(x) , 80 that for x € ¥, g, is in fact
the Dirac measure at X ), is continuous: for x € H?°
there is |0} I =" ¢ .

ere is x;'ml (X)) = 1 By the preceding

proposition this means that x —»> o isa o -differen- :
tiable mapping of & into F , Now compute D% of —5——d"s 0=
. ddx - >
L | 522 = (S ] | = me#IG(mh) £ G 0 - 2 #60,

>0

and thus, uniformlym-f- (4, .g..{_-" >-<§—,d'>

The following implications hold: d; is oo =differentiable

Ox a0,
= b—;(f is o0 =differentiable = 3-3({— is a continu-

ous mapping of (A ¥, %) into F (see 12°), The mapping

9 dx .
—5-;"(; is therefore bounded on the weakly compact subset %

of AR, i.e. 4:.‘__1(H)- m{la% (x): xe £,fe Hf<+@.

14° We have just used the following fact: the topology T/p
coincides with the usual topology f on F . (Evidently ’l’/x
is coarser than © and (¥, @) 1is compact. Thus (£, 7/ )

ie also compact and T/x = £ )

15° Proposition. Under our assumptions we have the algebraic

equality
mr(AE, T) = €(X)
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where ‘€’(X ) 1is the space dual to ‘€ (&) , i.e. the
space of all distributions on % .

Proof: Let ¢ € €/(X) and let H be a 7 ~equicon-
tinuous set in ¢ . Then by l3°, H 1is bounded and thus rela-
tively compact in 2 (¥ ) (the latter space is a Montel
space), and therefore the topology induced by ¢ (¥) in H
coincides with the topology 6 (¢ , A X ) ., Using Gro-
thendieck’s theorem we see that ¢’ (¥)c o+ (A% , = ) -
Conversely, let ¢ be a linear form on ¢ which is
6(¢ , L&) =~continuous on every < -equicontinuous sub-
set of & . If J, —» 0 in 4 (%) , thenH=" (A3,
is bounded and thus relatively compact in ¢(%*) and also re-
latively compact in 6 (¢ , A¥ ) ; but this means that H
is 7 =equicontinuous in ¢ , and evidently 6 (4, )~ O -
By Grothendieck s theorem ¥ (A X , 2 )c 2%(%E) .
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