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FLONS. AND PERIODIC MOTIONS
Otomer HAJEK, Praha

Essentially, -this paper consists of the application of
well-known fixed-point theorems, and others recently obtained
in [4-6)], to the existence problem of periodic solutipns in
abstract flows.

Section 1 gives the necessary definitions. The main part
is section 2, Here there appear, first, two rather general
theorems,9 and 10; it will be apparent that theorem 9, in so~
me form or other, is well-known; theorem 10 was suggested in
{7). The remaining theorems 11,12,15,16 treat more special si-
tuations, possibly not covered by the preceding results. Sec~-
tion 3 then contains only notes and remarks, and its latter
part may serve as a link between flow theory and dynamical
system theory. Its presence at the conclusion of the paper was
dictated by the wish not to intersperse the preliminaries to
section 2 with details not absolutely necessary .

For integral m > 0, R™ denotes euclidean = -space,
C“ its subset of points with non-negative integral coordina-
tes, (E?)% " the Hilbert parallellepiped, S™ the = -sphe-
re, all with their natural topology; the first two are also
taken with their natural additive structure and partial order.

P usually denotes a topological space; if triangulable,
M (P) 1s its g- th Betti number, and g (P)= X (-1% =, (P)
its Buler characteristic. The composition of maps say f and
g 1s usually denoted by f o g , so0 that foe g (X)=£f(g(x)).
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, 1. FLOWS.

Convention 1. A semi-group shall mean a topological qua-
si-ordered semi-group (in the usual sense) with unit element.,
(Also see section 3.)

Constructions such as "the semi-group R " will be pre-
ferred to the more correct (but, for our purposes, unnecessa-
rily pedantic) "the semi-group (R, +, 2, t) " wih R a
set and +, > , t the semi-group, quasi-order and topolo-
8y structures on R . In & similarly vague, but' possibly ob~
vious, sense we will say that a semi-group R is, e.g., a
group, or is discrete; if fhe moximal relation on R is taken
as the quasi-ordering (i.e. o« > 3 .always; this is indeed
a quasi-order), then R will be termed upordered, Typical
examples: R™, C™, R™ taken unordered. The unit of a semi-
group R 1is often denoted by o , elements of R by lower-
case Greek letters.

Definition 2. Let P be a topological space, R a se-
mi-group. A semi-flow T of P over R is a mapping with
properties 1° - 3° listea tsiow.

1° T:{(«,BleRxR:#> 3} x P—> P is conti-
nuous, in the induced topol®gy. For fixed &x > B in R,

T defines a continuous mep P - P, standardly denoted
as .ch $ using this notation we require further that

2° T, =1 , the identity map of P, for € R,

3°‘1;“."TT.‘TT fe x 3= 7.

If R 1is unordered, T 1is called a f£low .

Further terms: If R is discrete, T itself will be

called discrete. If, forall « = 3, & = o,

.qugua =¢T/; ?
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then the semi-flow T will be termed giatjonary. For fixed
xe€ P, T defines a continuous mep T,Xx:{fxeR:ux #c}->P,
assuming the value 41;.)( at o 2 o ; this map will be
called the golutjon (of T ) through X .

Remark. Probably it is evident thet a semi-flow is, essen-

tially, a special type of covariant functor. Thus,let P, R be

as in def. 3. Denote by R" the category with objects

« € R , morphisms [oc,{SJeRxR with o« >3, anmd

iti
compos on [“-’/3] [/3,7'3" ["’TJ .

Let P" be the category with P as sole object, and conti-
nuous maps P — P as morphisms. Then a semi-flow T on
P over R defines a covariant T* : R* —» P*?
A
T " Lx,1= acTﬁ ;

conversely, a covariant functor T%: R”A —» P?

by

similar-
ly defines a discrete semi-flow on P over R (taken dis-
crete).

Example 3. In a Banach space P, let ®
__—jg = A(8)x (xeP,0eR")

be a (homogeneous linear) differential equation with A (8)

a linear bounded operator P —> P depending continuously

on 0.
For «, 3 in R! let U(x, ) be the corresponding resol-
vent operator [10, p.150]; then T = U (x,/3)

, <p
flow on P over R7 (necessarily taken unordered).

defines a

Slightly more generally, let

dx
(1) Z_G— =‘F(J,g’

be a differential equation with f: Px R’ — P  continuous,
and with global existence and unicity of solutions, and con- '
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tinuous dependence of solutions on initial data (if P is fi-
nite-dimensional, the latter condition follows from the pre-
ceding). Take any x € P, «,3 € R? , and determine the
unique solution 4 of (1) which satisfies a4 (3) = X ; then
set
‘T/; X = y(x) .

Obviously this defines a flow on P over R"; flows of this
type may be termed differential. It may be noted that it is
stationary iff { 1s independent of 6 .

There are many other interesting and natural examples of
flows, e.g. in ergodic theory (e.g.[9], or[2, chap.XVI]);
(see also dynemical systems in section 3). However, example 3

is to be considered as the fundamental one for the purposes

of the present paper,

Lemma 4, If T 4is a flow on P over R , then every ‘T/:‘
is a homeomorphism P =~ P and
T'. T .
¢ “p A
(Proof: ‘T'/’E-‘T‘-"' /;l;oa'l;t”-)
Definition 5. Let T be a semi-flow on P over R, and

assume givena T » ¢ in R . Then T is said to admit
the period T~ if, forall « 2 7
(2) T =T o T .

L+T o «< o T o

Examples 6. Every semi~-flow admits the period o . A sta-

-

tionary semi~flow T admits all periods T » o :
TeTa TeT = T

£ To &LeT T TO <+T O
As & partial converse, a flow admitting all periods is statio-

nary: using lemma 4,
-q
‘1;, - xTv (/sTrJ
_for all « , 3, so that
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= Toel T)'a Te Toel(To ) -
xX+0 3+8 xt@ 0 pef o <o fo

-
-
-
L]

T
‘1; 8o o8 op « f3
A differential flow (cf.(1l), example 3) admits a period T » o

iff, for each fixed x € P, f(x, 8) has period = in & .
(This may be proved by showing that the latter condition is e=
quivalent to: a4 (8+7) is a solution of (1) whenever 4 (6)
is._) In the first case of example 3 this is, of course, the
familiar Floquet s theorem (e.g. [12,III,§ 2]).

Lemma 7. Let T be a semi~flow on P over R , admitt-
ing a period T = ¢ . Then T also admits all periods =nn T ,

m > 0 integral, and
(3) T - T hie .

nrY o T o

If R 1is an unordered (topological) group, thenthis holds
for all integers M without restriction.
" (Proof.) Using (2) thrice one obtains
T = T = -
L2y o (k+T)er O ‘-o-tTo ‘1'1; _‘T; L T; = Ty’ T
and by induction,

(4) “mr‘l; = T o M‘r’ for m =2 0 .
Hence, for «< = * ,
= T o 2
me+a)r o T o my o

so that, by induction, T o T™ . with (4) this comple-

tes the proof of the first statement.
Finally, if R 'is an unordered group, then from (4)

(5) s\j; " (c—-nt)wuf-ra = x-w;ro ° "l‘rTo- ’
end in particular T = T °7 (cf, lemma 4), Thus from (5),
-nT & nt o
T = T o T—q = T © P
X=-nT o <o mnro x o -n7Y o

as was to be shown.

Remark. It may be remarked that for flows, property (3) is
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equivalent with stationarity of the "sampled" flow on P o-

ver -C* , defined by

. 1
J (m >m in (") .

2, PERIODIC SOLUTIONS,
Throughout this section P denotes a topological space
and R a semi-group (cf. convention 1 and section 3).
As may be expected, a solution T_x 1is called 7 -ped o=
dic ( T a semi-flow on P over R, x€P, T > o ) if

94_?’7;.:( = ﬂ;.x for all 6 = o .

(This is current usage if R = R’ is taken unordered; if
R = R?" with natural order, the term is so used in Laplace
transform theary.) Obviously, a <t -periodic solution is
n v =periodic for all integers =n > 0O -

The main tool used to obtain conditions for existence of
periodic solutions is the following

Proposition 8. Let T be a semi-flow on P over R
admitting a period ¥ ? o . For x € P, the solution '1;x
is ~ -periodic iff Xx is a fixed point of _T : P —> P.
(Proof.) This is direct verification. If T, x is 1 -pe-
riodic, then , T x = glyx farall 8 > o ; for

§ = o one obtains T x = X , a fixed point of T .

Conversely, if TT; X = X , then

T T x T x
0+'r-r;x—aa'1,-a 30” ?

i.e., T X is < -periodic.

Proposition 8 will be applied, without further reference,
in reading off existence of periodic solutions from various
fixed-point theorems. In each pair of theorems 9-10, 1l1-12,
15-16 there appear similar results under varied assumptions
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on the semi-flow and its carrier space.

Theorem 9. Let T be a semi-flow on P over R , admit-
ting a period % 2> & . If there exists an X ¢ P which
is a retract of (E")% andhas T X c X , then the-
re exists & < =periodic solution.

(Proof.) Partialised ol X =X is continuous; ap-
ply the Schauder-Tichonov fixed-point theorem [1ll, p.263).

Note that the conclusion obtains, in particular, if P
itself is a retract of (E')¥ . .

Theorem 10. Let T be a semi-flow on f over R , ad-
mitting a period 7 2 0 ; assume that P 4s triangu-
lable with 7 (P) 4 0 , and that {8 e R : 6 > o }iscon-
nected.

(Proof.) Denote by J (f) +the Lefschetz invariant of a con-

tinuous map f : P— P  (cf.[1l, p.598], or [4]). By assump-

tion, ;f; depends continuously on & > o ; from [4, lemma

7] it then follows that J( aTa ) also varies continously

with @ . Since J(f) 1is integer-valued and {8 e R: 8 >0 f

connected, "J(a"f;) is constant. Therefore
J(a'l;)=J(o_7;)= J1)=3(P)+0 .

By the Lefschetz-Hopf fixed-point theorem, there exists a

¥ =-periodic solution of T .

Remark. Theorem 10 applies a fortiori if R is arcwise
connected, e.g. for R = R7, In this case the proof may be
simplified, omitting all reference to [4] and lemma 17, as
follows: use the assumed path from o to o in R to show

that T = 1  is homotopic to T  ; then again J(, T )=

v o ?
=J(1) % 0 . This was the idea of [ 7, theorem].
Theorem 1l. Let T be a flow on P over R , admitting

a period % > 0 ; and assume that P 1is triangulable with
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1&€me< = g Py .
(Proof.) From lemma 4, T' is now a homsomorphism P =~ P ;

T
apply corollary 5 of [61).
Thegrem 12. Let T be a semi-flow on P over R ,admit-

ting a period * # o ; assume that P @ is non-odd. Then
there exists an n T -periodic solution with 1 = n £

= erq'(P)s x (P).

(Proof: (5, theorem 2].)

Remark. Non-oddness is a concept introduced in [ 5, defini-
tion J : P is non-odd if ”29,4-4 (P)=20 for all ¢ ,
i.e. if all odd-dimensional homology groups are periodic. In
particular, then, each semi-flow on S¥" adnitting a period

T »0€R has a 27T -periodic solution.

Before presenting the next two theorems, it will be neces-
sary to introduce and illustrate another concept. A continuous
map F: P> P will be termed a sympetry of P if FZ = 1;
necessarily, then, F: P~ P  homeomorphically.

Definition 13. Let F be a symmetry of P, and T a
semi-flow on P over R . Then T will be termed [ -symmet-
ric if each T,  commutes with F .

Exapple 14. Let T be a differential flow on a Banach
space P over R’ , defined by a differential equation (1) as
in example 3 . Also, let F be a linear symmetry of P. Then

T 4s F -symetric iff Ff(x,8)=f(Fx, ) for all
x€P, 0e R" (nint: show that Fy is a solution of (1)
iff 4 is). E.g. the flow described by dx/d 6 = A ()X
18 F -symmetric for F defined by Fx = - X .
Physical systems with m degrees of freedom are often des-

oribed by differential equations such as
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d*x
dez—{-‘(.x,aw,e) (x €R™, 8 e R,
These may be "reduced" to systems of type (1) by a fami]_i;r
device,
d dn _
(6) ;['ei='f"7 :t—g'-—‘F(""‘f"’e)

with [x,51] € Rzﬂ' . If, as sometimes happen,
$l-X,11,8) = -F(x,0,8), ([x,p,6]eRI™*T)
then (under the appropriate conditions on ¥ ) (6) defines
aflowon R2™ over R’; this flow is then F -gymmetric
for F  defined by
FLx,nl=1[-x,n1.
Theorem 15. Let F be a symmetry of P, am T an
F ~symmetric semi-flow on P over R, admitting a period
T » 0. If there exists a subset X € P with X a retract
of (E")®  ana

(7) ,,T,X"-'FX;

then there exists a 2 7 -periodic solution of T .
(Proof.) Recall that F = F 7. partialised Fo T : X = X,
80 that (Schauder-Tichonov) there is a fixed point X of

F e T, . Then also ), X = Fx , md, wing lemm 7 and

F -symmetry,

- F =
211;‘* 'ra ‘r-l;x=c-';° x-FoJ;x x
is a fixed point of T .

2r o

Remarks. This is an abstract form of the Poincaré symmet-
ry principle for dynamical systems in R?Z [ 12, p.145]. Ob~
vicusly (7) s satisfied if X = P, 1,e. it P itself is
a retract of (E')*% .

Theorem 16. Let F be a symmetry of S T an
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F -symmetric semi-flow on S2™ over R , admitting a period
+ ? 0.1 F has no fixed-point, then T bhas at least two
2 ¢ éperiodic solutions.

(Proof.) From theorem 11, T has at least one 2 7 =-periodic
solution. These are in 4~ 1 correspondence with the fixed
points Xx of h_T' ; from F -symmetry there then follows
2+1," FXx=Fx, 80 that Fx = X  if there is only one 27 -
periodic solution. This c%radicts the assumption on F and
concludes the proof.

Remarks. The assertion may also be formulated thus:either
there is at least one non-constant 2 7 -periodic solution, or
there are at least two constant solutions., In the case that F
is a negative symmetry (i.e. degree F = - 1 ), the existence
of one 2T -periodic solution also follows from [ 5, thexrem
3l.

3. ADDENDA,
For definiteness in convention 1, a semi-group means some
(R, +, =z, t)
where R is a set and +, > , t are structures as follows.
The + 1is a semi-group operator, i.e. a binary associa~
tive operator on R ; there exists a unit oo € R (o +0 =
= 0+X = always). For integral m >0 and o« € R we
write .
M&E& = K+ + -+ (n terms), Ox = 0.
The #» is & quasi-order in R , i.e. a reflexive and transi-
tive relation ('laxly speaking, a partial ordering less the an-
ti-symmetry condition [2,I,§ 4]). The advantage is that a sing-
le formilation serves for both the interesting cases, of > a
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partial order, and also of >  the maximal relation on R
(c > 3 always); in the latter case the semi-group was ter—
med unordered. Lastly, t is a topology on R .

We require, further, these compatibility conditions:

(1) « > 8 eand x’ > B’ implies x +ox'2 B+ B’ ;

(1i1) + is continuous, considered as a map R x R - R
(in the induced topology);

(111) the set {[ax,Bl: x 2 B} is closed in
R x R .

.

Since exchange of coordinates is a homeomorphism of R x R ’
{[x,Bl:83x} 1s aleo closed.

Lemma 17. Let R be a partially ordered semi-group. Then

1° R 1is a Hausdorff space,

2% i R is connedted and {6 : & > ¢ § open, then
Ry =46: 82 0 f 1s connected;

3°%for « = 0 the set {ma«}, .+ is discrete.
(Proof.) The diagonal in R = R is the intersection of
closged sets

{[lx,pfl:x=2PB}t, {Lx,B)l:B 2x},

and hence is also closed. Thus the Bourbaki conditbn is satis-
fied and one has 1° (cf. theorem 13 in [2, chap.IV)).

Next, assume R+ 1is not connected. Since it is closed,

as a sectionof {[x,B]: x 2 3} over o , there e~
xists a non-trivial decomposition into closed aeté,
R_'_ -~ AubB » o ecB .

Set C =R - R, , so that one has the decomposition
R=AuvBu(C) .

As R is connected, to obtain a contradiction it suffices to

show that A N C = @ . Agsume ¢; ¢ C, o — y€ A.Since
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o B, >0 and hence is in the open set {8 : 8 > & § ;
then 9} >0 for some i, contradicting 9; € Cc R-~R_ -
This proves 2°.

For 3°, assume 4k, =+ 0, h,x —> 2 with R, 7
fceC*,acarr.Take any s » 4 ; then A o > s« for

large m , and hence
txée— R,y x > s 2 £x .

Therefore soc =z« forall s » # ,and {ne<f .+ 18
discrete.

Definition 18. Let P  be a topological space, R a semi-
group. A continuous map T: Px {8 e R : 60 2>0]—> P (to

be written as a binary operator) with it/ propertes
XTo = X, (XT68)7+ 08 =x7T0'+8)

(for all x e P, O>0 « 6’ ) is called a gemi-dynamical

pgysteg on P over R ; dnd, if R is unordered, a dyvga-

mical system on P over R . (For the case R = R’ see
"unilateral” in [ 7], and "global semi-dynamical” in [8].)

Lemma 19. A stationary (semi-) flow T defines a (semi-)

dynamical system T (bothon P over R ) by
xT6a T x for xeP, 8207 .
If R is a group then every (semi-) dynamical system T defi-
nes a stationery (semi~) flow T , bothon P over R, by
"l;x-.x-r(ac—/!») for xe€P, x>/ -

(Proof: direct verification).
On passing to a different space, even non-stationary flows

may be described in terms of dynamical systems:
Lagmg 20. If T 418 a (semi-) flow on P over R, then

(8) [x,] 768 =1L[, T x, 8+ e
(xeP,xeR,8 > 0 defines a (semi-) dynamical system T
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‘og P x R over R ; the solution a"l; X .. is then the
projection of [ x,c]J T & -
(Proof: direct verification)

In this connection, P is sometimes called the phage
gpacg of T , and Px R 1ite golution space. The semi-
dynamical ayeteﬁ defined by (8 ) is somewhat singular; thus,
if R = R1 then there are no critical points nor cycles
(in fact, P x (0) is a section generating P < R7 )"

References .
[1] P.S. ALEXANDROV, Combinatorial Topology (in Russian),
Gostechizdat ,Moscow-Leningrad,1947.
(2] G. BIRKHOFF, Lattice Theory,?nd.ed.,New York,1948.
(3] W.H. GOTTSCHALK, G.A. HEILUND, Topological Dynamics,
AMS Coll,Publ.,Providence,1955.
[4] o. HXJEK, Homological fixed point theorems, CMUC 5,1

(1964),13-31.
(5] ' II, CMUC 5,2(1964),85-92.
(6] ) III, CMUC 6,2(1965),157-164.
(7] —— , Critical points of abstract dynamical sys-
tems ,CMUC 5,3(1964) ,121-124.
(8] —— , Structure of dynamical systems, CMUC 6,1
(1965).

(9] K. JACOBS, Ergodic Theory (Lecture Notes),Mat.Inst.
Aarhus Univ.,1963.

[10] S.G. KREIN (ed.),Functional Analysis (in Russisn),
Mathematical Handbooks, Izd.Nauka,
Moacow,1964.

(11] X. KURATOWSKI, Topologie II,Monografie Matematyczne
XXI,Warszawa=-Wroclaw,1950.

- 177 -



[12]  v.v. NIEMYCKII, V.V. STEPANOV, Quantitative Theory of
Differential Equations (in Russian),

2nd.ed.,Gostechizdat,Moscow-Leningrad
1949.

- 178 -



		webmaster@dml.cz
	2012-04-27T15:49:12+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




