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Commentations* Mathematicae Universitatis Carolinae 

6,2 (1965) 

FLOWS AMD PERIODIC MOTIONS 

Otomar HAJEK, Praha 

Essentially, this paper consists of the application of 

well-known fixed-point theorems, and othera recently obtained 

in [4-6], to the existence problem of periodic solutipns in 

abstract flows* 

Section 1 gives the necessary definitions. The main part 

ia section 2. Here there appear, first, two rather general 

theorems,9 and 10; it will be apparent that theorem 9, in so­

me form or other, is well-known; theorem 10 was suggested in 

[!]• The remaining theorems 11,12,13,16 treat more special si­

tuations, possibly not covered by the preceding results* Sec­

tion 3 then contains only notes and remarks, and its .latter 

part may serve as a link between flow theory and dynamical 

system theory* ltd presence at the conclusion of the paper was 

dictated by the wish not to intersperse the preliminaries to 

section 2 with dtt .t i . le not absolutely necessary . 

For integral *n > 0 ; R*1 denotes euclidean *fi -apace, 

C its subset of points with non-negative integral coordina­

tes, CE*)*° the Hilbert parallelepiped, S** the n-sphe­

re, all with their natural topology; the first two are also 

taken with their natural additive structure and partial order* 

P usually denotes a topological space; if triangulable, 

rta(P) is its g-th Betti number, and \(P)- Zf-f >**%/P) 

Its Euler characteristic* The composition of maps say f and 

9, is usually denoted by 4 • $ , eo that 4 • $, (x)*f(g(x)h 
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1. FLOUTS. 

Convention 1. A semi-group shal l mean a topological qua­

si-ordered semi-group ( in the usual sense) with unit element. 

(Also dee section 3 . ) 

Constructions such as "the semi-group R " wi l l be pre** 

ferred to the more correct (but, for our purposes, unnecessa­

r i l y pedantic) "the 8emi-group f R ) + » ^ t ) " wdBh R a 

set and + , > -, t the eemi-group, quaai-order and topolo­

gy structures on R . In a similarly vague, but possibly ob­

vious, sense we wi l l say that a semi-group R i s , e . g . , a 

group, or i s discrete; i f tine maximal relat ion on R i s taken 

aa the quasi-ordering ( i . e . at & fi always; this i s indeed 

a quaai-order), then R wi l l be termed unordered. Typical 

examples: R4*, C*\ R* taken unordered. The unit of a semi­

group R i s often denoted by o , elements of R by lower­

case Greek l e t t e r s . 

Definition 2 . Let P M a topological space, R a s e ­

mi-group. A semi-flow T S& P over R i s a mapping with 

properties 1° - 3° l i s t e d tattiwr. 

1° T*{C«c,/S3«R*R r 4 * * / i } x?-+P i s conti­

nuous, in the induced topolUgy. F°r fixed at * fi in R, 

T defines a continuous map P -* P , standardly denoted 

as T j using this notation we require further that 

2° JT^ * 1 , the identity map of P, for cc e R, 

3° T • T m T for *, * fi » T ' 
* A /» r * r 

If R is unordered, T is called a flow . 

Further terms: If R is discrete, T itself will be 

called discrete. If, for all oC & fi , & & o , 
£+$ fi + $ * fi ; 
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then the semi-flow T wi l l be termed stationary. Per fixed 

*€ P f T defines a continuous map "£.x ; fece R :<K *<r}~* P, 

assuming the value T x at oC > o- • this map w i l l be 

called the solution (of T ) through *x . 

Remark. Probably i t i s evident that a semi-flow i s , essen­

t i a l l y , a special type of covariant functor. Thus,let P, R be 

as in def. 3 . Denote by RA the category with objects 

cC € R 7 morphisms toCf/JJ 6 R x R with oc > fi 1 and 

composition 
[oc, fll lfl,r J - c<*, r J • 

Let PA be the category with P as sole object, and conti­

nuous maps P ~¥ ? as morphisms. Then a semi-flow T on 

P over R defines a covariant T A : RA - » P* by 

conversely, a covariant functor T A ; RA —-> P* similar­

ly defines a discrete semi-flow on P over R (taken d i s ­

crete) . 

Example 3* In a Banach space P 7 l e t 

4-g- -= Ar^)A Cxe Pf 8 6 R') 

be a (homogeneous linear) differential equation with A ( ^ ) 

a linear bounded operator P —> P depending continuously 

on 9 . 

For <t 1 fi in R1 l e t Ute, fl ) be the corresponding reso l ­

vent operator [10, p . l50j; then TA * U (ct . /3 ) defines a 

flow on P over R* (necessarily taken unordered)* 

Slightly more generally, let 

(l) ft •*(*.!> 

be a differential equation with f t P x R1 -* P continuous, 

and with global existence and unicity of solutions, and con-
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tinuous dependence of solutions on initial data (if P is fi­

nd te-dimeneional, the latter condition follows from the pre­

ceding). Take any x e P , <*>, /& e R^ , and determine the 

unique solution /y. of (l) which satisfies <y (ft ) m X ; then 

set 
T A a <VL (cc ) . 

* / J ^ 

Obviously this defines a flow on P over R'1 ; flows of this 

type may be termed differential. It may be noted that it is 

stationary iff -f is independent of 6 • 

There are many other interesting and natural examples of 

flows, e.g. in ergodic theory (e.g.[9j, or[2, chap.XVI]); 

(see also dynamical systems in section 3). However, example 3 

is to be considered as the fundamental one for the purposes 

of the present paper. 

Lemma 4. If T is a flow on P over R ; then every J T 

is a homeomorphism P & P and 

(Proof: X'fi-JQ-I, fc.Tfl - 1.) 
Definition 5. Let T be a semi-flow on P over R , and 

assume given a X > or in R . Then T i s said to adml-fr 

the period t i f , for a l l cc ^ cr % 

(2) T « \T • T 
v t / tf+r cr at o- C cr 

Examples 6. Every semi-flow admits the period cr . A s ta ­

tionary semi-flow T admits a l l periods x > cr : 

T • T • T • T - ' T . 
<C or x * *+v v * a *+r c 

KB m partial converse, a flow admitting all periods is statio­

nary: using lemma 4, 
T - T ( T ) ~ 4 

fo r a l l cc ; fl , ao that 
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T « T o ( T y4
 m T * T o ( T o T ) - ' m 

t*+9 fl+9 ot+0 or /}+$ ff ot o- 0 tr fi or $ or 
m T o T . T o T~ T 

ot or $ or ff 0 or /I ot ft 

A differential flow ( c f . ( l ) , example 3) admits a period -r * o* 

i f f , for each fixed .x e P, f (x} 9 ) has period r in 9 • 

(This may be proved by showing that the lat ter condition i s e-

quivalent to: ^ (8+?) i s a solution of ( l ) whenever /y (8) 

i s . ) In the f i r s t case of example 3 th i s i s , of course, the 

familiar Floquet's theorem (e .g . [ l 2 , I I I , § 2 j ) . 

Lemma; 7. Let T be a semi-flow on P over R 7 admitt­

ing a period t & cr > Then T also admits a l l periods n -r , 

/n > 0 integral, and 

(3) T - T * . 
X J / nr or r or 

If R. is an unordered (topological) group, then this holds 

for all integers it without restriction. 

(Proof.) Using (2) thrice one obtains 

^ T « T • T O T ^ T O T O T B T O T , 
oz+2r o- C*.+r)+r or ot+x o- r o ec o- r a- r or cc o- zr o-

and by induction, 

(4) T « T o T for <n » 0 -
od-fttr or at o- tir «r 

Hence, for oc s r , 
T = T * T , 

(<n + t)r o- r o- m.r o- 7 

so that, by induction, T o T"1, . with (4) this comple-
* * -nf O" H or r 

tes the proof of the first statement. 

Finally, if R is an unordered group, then from (4) 

(5) T « T « T o T , 
oc Or (aC-Yit) + /n.Z O- at-nr O- **r 0- ' 

and in particular T « T " (cf. lemma 4). Thus from (5), 
"fit Or m,X O" * 

T - T . T - * - T - T , 

as was to be shown. 

Remark. It may be remarked that for flows, property (3) is 
- 169 -



equivalent with stationarity of the "sampled" flow on P o-

ver ~C ; defined by 

T (тn * 41 ІП C Ą ) • 
mт nтr 

2. PERIODIC SOLUTIONS. 

Throughout this section P denotes a topological space 

and R a semi-group (cf. convention 1 and section 3 ) . 

As may be expected, a solution T^x is called T -perl o-

dic ( T a semi-flow on P over R , xeP, T > cr ) i f 

a TJC -r T .x for a l l (9 > ^ . 

0+r tr 6 or 

(This i s current usage i f R « R* is taken unordered; i f 

R * R* with natural order, the term i s so used in Laplace 

transform theory.) Obviously, a X -periodic solution i s 

n r -periodic for a l l integers -n > 0 • 

The main tool used to obtain conditions for existence of 

periodic solutions i s the following 

Proposition 8. Let T be a semi-flow on P over R 

admitting a period x * <r • For x e P 7 the solution Tx 

i s T -periodic i f f x i s a fixed point of T^ % p -> p . 

(Proof.) This i s direct verif ication. If T x i s T -pe-

riodic, then A T x * a"T~ x for a l l Q & <r ; for 
$ + T ff 8 ff ' 

9 » <T one obtains T x *» x , a fixed point of T . 
f ff ' r tr ff 

Conversely, i f T x mX , then 
f ff ' 

T X m T o T X m T x , 
6+v ff $ ff v ff 9 ff 

i . e . , Tx i s x -periodic. 

Proposition 8 wi l l be applied, without further reference, 

in reading off existence of periodic solutions from various 

fixed-point theorems. In each pair of theorems 9-10, 11-12, 

15-16 there appear similar results under varied assumptions 
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on the semi-flow and i t s carrier space. 

Theorem 9. Let T be a semi-flow on P over R , admit­

ting a period X & (r . If there ex is ts an X c P which 

i s a retract of C E4 )*° and has T X c X , then the-
t <y 

re ex is ts a x -periodic solution. 

(Proof.) Partialised T : X -*• X i s continuous; ap-

ply the Schauder-Tichonov fixed-point theorem [ 1 1 , p.263j. 

Note that the conclusion obtains, in particular, i f P 

i t s e l f i s a retract of ( E 4 ) °° * 

Theorem 10. Let T be a semi-flow on P over R , ad­

mitting a period X > 0 ; assume that P i s triangu-

lable with % CP) + 0 , and that { B e R : 9 > <r / i s con­

nected. 

(Proof.) Denote by J Ci ) the Lefschetz invariant of a con­

tinuous map 4 : P -» P ( c f . f l , p.598], or f4])« By assump­

t ion, gT depends continuously on 9 > cr • from [4 , lemma 

7 ] i t then follows that J ( ^T^ ) also varies continously 

with 8 . Since J (i ) i s integer-valued and { 6 € R : 9 > <r} 

connected, * J £ T ) i s constant. Therefore 

By the Lefschetz-Hopf fixed-point theorem, there exis ts a 

X -periodic solution of T . 

Remark. Theorem 10 applies a fort ior i i f R i s arcwise 

connected, e .g . for R - R ̂  , In this case the proof may be 

simplified, omitting a l l reference to [4J and lemma 17§ as 

follows: use the assumed path from cr to x in R to show 

that ^T a 1 i s homotopic to ^T^ ; then again 3 C^T^ ) m 

~J(4)*0 . This was the idea of £ 7, theoremj. 

Theorem 11. Let T be a flow on P over R } admitting 

a period f > cr ; and assume that P i s triangulable with 
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1 ^ ^ 2 ^ cpy . 
(Proof •) From lemma 4 f T i s now a homeomorphlsm P a* P ; 

apply corollary 5 of [ 6 ] . 

Theorem 12. Let T be a semi-flow on P over R f admit­

ting a period X > <T ; assume that ? + 0 i s non-odd. Then 

there ex is ts an n T -periodic solution with 4 -£ *i -£ 
* 5. n^ f P) - ^ f P ) . 

(Proof: [ 5 f theorem 2 ] . ) 

Remark. Non-oddness i s a concept introduced in [ 5 , defini­

t ion 3 ; P ia non-odd i f JT̂  ^^ (P) = 0 for a l l £ , 

i . e . i f a l l odd-dimensional homology groups are periodic. In 

particular, thenf each semi-flow on S n admitting a period 

t *creR has a 1 X -periodic solution. 

Before presenting the next two theorems, i t will be neces­

sary to introduce and i l lustrate another concept. A continuoua 

map F : P-> P wi l l be termed a symmetry of P i f F2 » 1 ; 

necessarily, then, F : P<-» P homeomorphically. 

Definition 13. Let F be a symmetry of P , and T a 

aemi-tflow on P over R . Then T wil l be termed F --T.YMMf*-

r ic i f each ^T commutea with F . 

Example ^4 . Let T be a differential flow on a Banach 

space P over R* 9 defined by a differential equation ( l ) as . 

in example 3 • Also, l e t F be a linear symmetry of P . Then 

T i s F -symmetric i f f F f (x, 8 ) » f (Fx , B ) for a l l 

* € P f 0 e R1 (hint: show that F^ i s a solution of ( l ) 

i f f fy i s ) . E.ff. the flow described by dx /d 6 * A (0) *x 

i s F -symmetric for F defined by Fx =- - *x . 

Physical systems with 'M degrees of freedom are often des­

cribed by differential equations such as 
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jjfr sf(*>df>9) <*«R\ 6 e ^ ) . 

These may be "reduced" to systems of type (1) by a familiar 

device, 

, , . sL*, m y. , djk. = f fA , <ft , (9 ) 
( 6 ) d8 ^ d6 

with Cx-fiJ € R . i f , as sometimes happen, 

4(-x,fi, d) = - f (x,ii,6), (Lx,fi,61 e R***"+<) 

then (under the appropriate conditions on f ) (6) defines 

a flow on R over R ; this flow is then F -symmetric 

for F defined by 

FCx,*ft J « £"-.*, -ft J • 

Theorem 15. Let F be a symmetry of P , and T an 

F -symmetric semi-flow on P over R , admitting a period 

f > cr. If there ex is ts a subset A *= P with A a retract 

o f C E M * 0 and 

(7) r\X c FX > 

then there exists a IT -periodic solution of T * 

(Proof.) Recall that F - F"* . Partialised F o T : X -*/*, 
r v * 

so that (Schauder-Tichonov) there i s a fixed point a of 
F • r T , . Then also ^T * » F x , aid, using lemma 7 ana 

F -symmetry, 

T * « T . T x * T o F ^ F c T x . A i r a r or r tr x a v o-

i s a fixed point of T . 

Remarks. This i s an abstract form of the Poincare* symmet­

ry principle for dynamical systems in R f 12, p«145J« Ob­

viously (7) i s sat i s f ied i f X * P , i . e . i f P i t s e l f i s 

a retract of ( £ ) ** • 

Theorem 16. Let F be a symmetry of S , T afl 
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F -symmetric semi-flow on S ^ over R ; admitting a period 

X > or. It F has no fixed-point, then T has at least two 

Ix Aperiodic solutions. 

(Proof.) Prom theorem 11, T has at least one 1 x -periodic 

solution. These are in 4 - 1 correspondence with the fixed 

points oc of „ T • from F -symmetry there then follows 
• Z f Or ' 

%T9* Fx n FM 9 so that F x « X i f there i s only one 2 x -

periodic solution. This cqtradicts the assumption on F and 

concludes the proof. 

Remarks. The assertion may also be formulated thus:either 

there i s at least one non-constant 2 T -periodic solution, or 

there are at least two constant solutions. In the case that F 

i s a negative symmetry ( i . e . degree F =- - 1 ) , the existence 

of one 1 X -periodic solution also follows from f 5, thetrem 

31. 

3 . ADDENDA. 

For definiteness in convention 1, a semi-group means some 

( R , + , fc , i > 

where R i s a set and •*-, > , t are structures as fol lows. 

The *•*• i s a semi-group operator, i . e . a binary associa­

t ive operator on R ; there ex is ts a unit or € R ( ac + <r = 

m <r + cc ts cC always). For integral /n > 0 and at € R we 

write 
/ n * r o c + < x - i - ' " + ^ (n. terms) , Occ m o- . 

The > i s a qua si-order in R , i . e . a reflexive and transi­

t ive relation (laxly speaking, a partial ordering less the an­

ti-symmetry condition f 2 , I , § 4J). The advantage i s that a s ing­

l e formulation serves for both the interesting cases, of **£ a 
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partial order, and also of > the maximal relation on R 

( cC > ft always); in the lat ter case the aemi-group was t er ­

med unordered. Lastly, t i s a topology on R • 

We require, further, theae compatibility conditiona: 

( i ) cC > fl> and ac' > ft,' implies at -*• <X' > ft + A' ; 

( i i ) + i s continuous, considered as a map R x R —> R 

(in the induced topology); 

( i i i ) the set { Lac , /I J : at > fl \ i s closed in 
R x R . 

Since exchange of coordinates ia a homeomorphiam of R * R ; 

-(£oc, ftl: fi > oc } i s aleo cloaed. 

Lejmna îJ. Let R be a partial ly ordered aemi-group. Then 

1° R id a Hauadorff space, 

2° i f R i s connedted and { $ : 9 > a } open, then 

R+ = \B : 6 & a- } ie connected; 

3° for <x ^ a the set { it <* J^ tf ^ + i s di3crete. 

(Proof.) The diagonal in R x R ia the intersection of 

closed sets 
{Toe, /* J ; oc & fl} , ^Coc,/JJ :/}>*}, 

and hence i s also closed. Thus the Bourbaki conditbn i s s a t i s ­

fied and one haa 1° (cf. theorem 13 in f 2 , chap.IVj). 

Next, assume R + i s not connected. Since i t i e closed, 

as a 8ection of {toe , (13 : cc & fl } over or } there e-

xiata a non-trivial decompoaition into cloeed 3ete, 
R± * A u & , o- € B . 

Set C -» R - R + , 90 that one haa the decompo3ition 
R - A u CE> u C ) . 

A3 R i3 connected, to obtain a contradiction it suffices to 

show that A r\ C =- <f> . Assume ^ € C , ft ~» T e ^ • Since 
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Cf 6 &, Y > 0 and hence i s in the open set {0 : $ > <r F , 

then H > * for some i , contradicting $£ c C c R - R+ • 

Thia proves 2°. 

For 3° , assume 4t„ ~++ oo , Jv^oc ~+ *ac with A^. / 

/t c C f « * <r . Take any s > * ; then >4 ,̂ oc * sec for 

large 41 ; and hence 
* X <— ft^ oc & sac & * oc * 

Therefore a oc » /t <*: for a l l s ^ /t f and «f n oc ^ e ^ + i s 

discrete* 

Definition 18• Let P be a topological space, R a semi­

group. A continuous map T : P X {6 e R : 9 & <r J —> P (to 

be written as a binary operator) with t m propertfes 

x T a = x , Cx T 6 ) r &'* XT (6'+ $) 

(for a l l X e P, 9 * cr * 6' ) i s called a agnrJ-dynamical 

system on P over R * find, i f R i s unordered, a dyna­

mical fl.vstam on P over R . (For the case R « Rf see 

"unilateral" i n f 7 j , and "global semi-dynamical" in C8j.) 

Lftwm ],9- A stationary (semi-) flow T defines a (semi-) 

dynamical system T (both on P over R ) by 

x T 6* $T x for x € P, 6 > <r . 

If R i s a group then every (semi-) dynamical system T def i ­

nes a stationary (semi-) flow T f both on P over R ; by 

X x * x T(OC - ft) for x e P, oc * fi -

(Proof: direct verif icat ion) . 

On passing to a different space, even non-stationary flows 

mar/ be described in terms of dynamical systems: 

IjjmjEML-2S» If T i s a (semi-) flow on P over R , then 

f x c P ,occR, B * a defines a (semi-) dynamical system T 
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on P x R oter R • the solution $T x i s then th* 

projection of £ * , o- J r 9 * 

(Proof: direct verification) 

In th i s connection, P i s sometimes called the £]&££. 

apace of T , and P x R i t s solution space. The semi-

dynamical system defined by ( £ ) i s somewhat singular; thus, 

i f R « R then there are no cr i t i ca l points nor cycles 

( in fac t , P x CO ) i s a section generating P x R1 ) . 
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