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Commentationea Mathematicae Universitatis Carolinaa 
5, 3 (1964) 

CRITICAIi POINTS QP ABSTRACT DYHAMICAL SYSTBIB 
O . K A J 1 K, Praha 

Exi8tence of critical pointa of local dynamical ayatems on 
triangulable spaces with nonvaniahing Euler characteristic. 

In a clasaical páper, Poincaré eatabliahed the existence 
of critical pointa in analytical dynamical systems on cloaed 
aurfacea with genua # 1 (i.e. with Euler characteristic 
+ 0 )• The proof proceeded by the Hindex method", concluding 
with the prop08ltion that the Euler characteristic equala the 
sum of indices of eaaential critical point8. Láteř, Stiefelf4] 
ahowed that a differentiable manifold has the property that e-
very vector field on it haa at leaat one singularity, if and 
only if its Euler characteristic la nonzero. This appliea di-
rectly to differential dynamical systems of clasa (T on auoh 
manifolda* In the present páper, abatract dynamical systems are 
conaidered; for these, there ia no vector field available, and 
one ia forced to adopt other methoda; ala o, it aaeas naturel 
to drop the differentiability condition on the manifold* 

A local drnamioal a.vatem on a topological apace T ia a 
continuous mapping r tram a aubset of T x E to ¥ with 

propertiea 1° - 3° liated below ( E1 ia euclidean 1-space; 

tha valné oř T at (x, $) * t x X1 ia denotéd by X T 6 ) 

2° (x T ^ ) T 02 • x T (Bx • %) iPeither side la de-
fined, 

3° donain T ia open. ^ j^i _ 



Axiom 1° may be replaoed by the formally weaker requirement 

that T aapa onto T ; thia f ollowa from 2° eaeily. From 1° 

and 3° , to every x m T there i s a neighborhood U of x 

and an open interval I c E eontaining 0 , such that T i s 

deflned in U x I . 

If 3° ia replaeed by domain T a T x B , the local sys­

tém ia ealled an abatract dvnamical systém (cf. £3 , p.346J,£2j; 

thia notlon i s not new, the remaining are). If 3° ia waakened 

to domain T ia open in T x < 0 , • oo ) , the reeulting ob-

ject T, r may be termed a imijLfy^ai local systém, The ob-

vioua interpretatlona of these notions are as followa: 

(I) abatract dynamical syatems - autonomoua systerna of 

differential equations with unlcity and prolongability of solu-

tiona, 

(II) local dynamical systerna - autonomoua aystems of diff, 

equations with local existence and unicity of aolutione, 

( l i l ) unilateral local systems - aystems as in ( i i ) , but 

coneidered only on (poaltively) invariant s e t s , i . e . on subeets 

Of f mapped into themaelves by the positive semitrajectoriea. 

flenceforth, assume given a. local dynamical systém T on 

a apace T . An xQ c T wil l be sald to háve period 6 Q e E 

i f * 0 * *QT 00; obviously thefí i t ala o has perioda k6Q for 

a l l integer8 k • The notlon of crit ical polnts la related to 

thiat * 0 c f ia ealled crit ical i f x 0 • x 0 T S for all 

#.« B • (The modification of these deflnltlona for unilateral 

ayatema la perhapa obvlous*) There la a useful variation of the 

conditiona for eri t ical i ty: 

Ttítia 1 If x0 c T haa arbitrarily amall nonxero pe­

rioda, It ia cr i t ical . 
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Proof • This i s quite standard. As a ume x 0 • x 0 T <^f O < *n~* 

- * 0. Také any ^ > 0 auch that I 0 T A i s defined for 

0 5 X S -8 . Def ine * nflueti vely integers k ,̂ kg, . . . as 

follows: let k^ be the integrál part of 

(with S ° * 0 ) , and set a.n » 2 n *« -e± f the n-th partial 
1 1 

sum. Then 

0 dr<9 - ^ ^ < *©« -* 0 , n n ' 

and aince Xn i s an integrál combination of perlods, xQ * 

» xQ T X n . By continuity, therefore, x 0
 a xQ T $ , for a l l 

the 6 described above. However, from 3° we hava that xQ « 
3 x T <0 » (x T <0) T 0 = x T 2 -6 i s definédt and thus f o 

i s xQ r 3 -© , etc. Thus, f inal ly , xQ * xQ T 6 for a l l * , 

as was to be proved* 

j£mmaj£« Assume that either T i s compact or T i s an ab-

stract dynamical systém; def ine f̂ : T -* V by f^c » x r 6 • Then 

fg i s homotopic to the identity map of T • 

Proof, This i s tr ivial: the homotopy i s f^, 0 SĚ X * 1, and 
f̂  i s the identity by 1° . In čase T is local and T com­
pact, we shall only show that fg i s def ined for small & a . 

T x ( 0 ) i s compact and covered by sets U x I , where U 
i s open in T and O e l i s an open interval, and T 1a de~ 
f ined in U x I • Také a f init e cover Û  ** 1^ \ then r i s de-
fined in U U ^ ^ a (U V±) x íí X± « T x J where J is an 
open interval containing 0 ; then, f inally, f~ i s def ined 
for <e c J • 

Theorem. Let T be a local dynamical systém in a trlangul-
able apace T with Euler characteristic ^(T) + 0 • Then T 
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has a critical point* 
Froof. Define msps f̂ : T-»T as in lemma 2, for say O < <€ < 
<%'. Sine© ^(T) 4 O and f^ is homotopic to the identity, 
f^ has a fixed point Cl, ch.XVII, 1-43J. Thus for -e • 2~n 

there exist xR € T with 
xn » xn T 2~n . 

Talce any integer m > 0 . Por n ̂  m, 2~m » 2n""m • 2 n is 
an integrál multiple of the period 2*"n of x^, so that 

Now T is compect, so that there is aceumulation point xQ 

of• the xn
/s ; and then by continuity 

Thus xQ has arbitrarily small periods 2~m; from lemma 1, 
xQ is critical. 

Corollary. Let T be a local dynamical systém on S ; 
then there is at least one critical point. If the systém has 
a cycle C , there is at least one critical point in both com-

2 ponents of S - C • 
The theořem also holds for un i la tera l systems. 
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