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CRITICAL POINTS OF ABSTRACT DYNAMICAL SYSTEMS'
0.HXLJEK, Praha
Existence of critical points of locel dynamical systems on
triangulable spaces with nonvanishing Euler characteristic.

In a clessical paper, Poincaré established the existence
of critical points in analytical dynemical systems on closed
surfaces with genus £ 1 (i.e.r\'rith Euler chsaracteristic
3 O ). The proof proceeded by the "index method", comcluding
with the proposition that the Euler characteristic equals the
sum of ‘indices of essential critical points. Later, Stiefel [4]
showed that a differentisble manifold has the property that e-
very vector field on it has at least one singularity, if and
only if its Euler characteristic is nonzero. This spplies di-
rectly to differential dynamical systems of class c" on such
manifolds. In the present paper, abstract dynamical systems &are
considered; for these, there is no vector field available, and
one is forced to adopt other methods; also, it seems natural
to drop ‘the differentiability condition on the manifold,

A local dynemigal system on a topological space T is a
continuous mepping T from a subset of T x 31 to T with
properties 1° - 3° ~1listed below ( E' 1s euclidean l-gpace;

the value of T at (x, ) € T» E* 4s denoted by xT & )

1° xT O=x,

A 170, and
2°  (xT )T 6, =xT(8 +8,) 1tVeither side is de-

°
3 domain T is open. _ 15 .



Axiom 1° may be replaced by the formally weaker requirement
that T meps onto T ; this follows from 2° easily. From 1°
and 3° , toevery x € T there is a neighborhood U of x
and an open interval I ¢ 31 conteining O , such that + 1is
defined in Ux I .

r 3° 1s replaced by domain T = T x El, the local sys=-
tem is called an sbetract dynamica) system (cf. [ 3, p.3461,[2];
this notion is not new, the remaining are). If 3° is weakened
to domain T is open in T x <0, + 00 ) , the resulting ob-
Ject T, T  may be termed a uypnllatersl local system, The ob-
vious interpretations of these notions are as follows:

(1) abetract dynamical systems - autonomous systems of
differential equations with unicity and prolongability of solu-
tions,

(ii) local dynemical systems - autonomous systems of diff.
equations with local existence and unicity o solutions,

(411) unileteral local systems - systems as in (ii), but
considered only on (positively) invariant sets,i.e. on subsets
of T mapped into themselves by the positive semitrajectories.

Heneeforth, assume given a local dynamical system T on
aspage T , An x, ¢ T will be said to have period eoe El
if x, = x,T 6,; obviously then it also has periods ke, for
all integers k . The notion of critical points is related to
this: x,€ T 1s called critiocal if x = x T 4 for all
eax . (The modification of these definitions for unilateral
'ay-tc- is perhaps obvious,) There is a mefnl variation of the
conditions for criticality:

‘lammm l, If x, € T hes arbitrarily small nonsero pe-
riods, it is critical.
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Proof, This is quite standard. Assume x, = X, T 9, 0 < 8,
— O, Tske any € > O such that x, T A is defined for
0 = X% &. Define inductively integers k;, ky, ... as
follows: let kn be the integral part of

0-3x"1 k 8)

%; £, 1%

(with £°%°=0), and set A, ="k, 6; , the n-th pertial
X 1

sum. Then

Ose-an<en-90,

and since "n is an integral combination of periods, x, =
=x, T A, . By continuity, therefore, X, =x, T , for all
the € described above. However, from 3° . we have that x, =
=x, TO=(x,TA) TO=x,T 249 is defined, and thus so

is x,T 346, etc. Thus, finally, x, 2x, T & forall &,
as was to be proved.

lemma 2. Assume that either T is compact or T 1is an ab-
stract dynamical system; define foz T>T by fx=x7T 8 , Then
te 1; homotopic to the identity mep of T .
Proof, This is trivial: the homotopy is f*e, 0=)A=< 1, and
f, 1s the identity by 1° . In case T is local and T com-
pact, we shall only show that fg is defined for small 4° s .

T x (0) is coﬁpact and covered by sets U x I , where U
is open in T and Oe€e 1 1is an open interval, and T 1is de~-
fined in U» I , Take a finit e cover Uy > I; ; then T is de-
fined in UU;= I, o (UUy)x NI, =T>xJ where J 1is an
open interval containing O ; then, finally, f6 is defined
for 8€J .

Theorem. Let T be a local dynemical system in a triangul-
able space T with Euler characteristic t(l‘) % O, Then T
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has a critical point,
Proof. Define meps fez T—>T a8 in lemma 2, for say 0O < ® <
<% .Since 7(T) 4 O and £y 1is homotopic to the identity,
fo has & fixed point [1, ch.XVII, 1-43]. Thus for ® = 27"
there exist x € T with
A x, 2x, T 27",

Take eny integer m > O . For n2m, 2 0 =200 o0 44
an integral multiple of the period 2™ 0 of X, 80 that

X, =x, T 2™m,
Now T is compect, so that there is accumulation point X,
of-the x ‘s ; and then by continuity

x, = ;orz‘m .
Thus X, has arbitrarily .small periods 2"“; from lemma 1,
X5 is critical.

Corollary. Let T be a2 local dynamical system on s? H
then there is at lesast one critical point. If the system has

a cycle C , there is at least one critical point in both com=
ponents of 52 =-Co.
The theorem also gog.d; efoxl: gnélgteerglz systems.
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