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HOMOLOGICAL FIXED POINT THEOREMS
Otomsr HKJEK, Praha

A concept generalising the Lefschetz number of & map- .
ping 1is 1n;roduced end examined, leading to a fixed point
theorem. It is proved thst for a masp f : SZn_, SZn ’ f2
has a fixed point.

The Hopf-Lefschetz theorem [1, ch.XVII, § 1] states
that a continuous map f of s triangulable space into it- .
self has a fixed point if a certain numerical characteris-
tic associated with £ is nongero. This characteristic,
the Hopf index J(f) , may be obtained roughly as follows:
£ determines an endomorphism on a (sequence of) group;
J(f) is then the (sum of) trace of eny tranaforﬁation mat=
rix describing. the endomorphism,

The fundamentel idea developed in the present paper
is that aell transformation matrices describing a given en=-
domorphism are similer, so that there are further invari-
ants in sddition to the trace. The one considered here is
intimately associated with the characteristic polynomial;
if non-zero, then some k-th iterate of f has a fixed
point, and we may even determine minimsl k .

The suggestion is ventured that other invariants of

matrix similarity (e.g. the minimel polynomial, the ot-
her elementary factors, the characteristic roots) may slso
prove interesting.

Of the three sections of this paper, the first two ore
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- algebraic, and preparatory in cheracter.

1. Single groups

First, the conventions are listed. There is given an in-
tegral domein J ; by a group G we shall always mean an a-
belian group with J as left operators,and with finite rank
over J (denoted as rank G ). Similarly, a suhgroup means a
J=-invariant subgroup, etc. A homomorphism (i.e., a J-inve-
riant homomorphism) taking a group G into itself will be
called & homomorphiem of G . A meximel linesrly independent
subset of a group G will be called & w-bage; thus, a base
of G is a w-base which generates G . Note that w-bases
alweys exist, but bases need not.

consider a group G and a homomorphism f of G . With
these we may associate - in various ways - two matrices over
J,

D=dieg 6, , A= ("13) ’
where the §6,, ®y4 € J ere obtained es follows. Teke any
w-base X3y eooy Xy o Since these elements are linearly inde-
pendent and
fxy, Xyseees Xy

are not; there exist 8,4 0, &, j in J with
SR 6, txy = =, xyyxy .
Thus both D, A are n-square matrices over J (n = rank G ),
and D is nonsingular.

The next step is to assign a speciel type of function to
each such D, A : for eny indeterminate A over J y set

p(D, A; A ) = det (I - A D 1A)
-14 -



( I is the unit n-squere matrix over J ). We note thst P
is & nonzero polynomial in A with coefficients in d4&J s the
quotient field of J , and with degree & renk G . Natureally,
the construction is void if rank G = O , since matrices of
type 0,0 sare not defined; in this case we set
p(a)=1
Lemma 1. Given G end f , the polynomial p(D, 4; A ).
is independent of D, A .
Thus we may formulate
Dgrinigion 1. Define p(f) or p(f; A ) es p(D, A; A ).
Proof of L~mma l. We may assume rank G« 0 , In matric
notation, relation (1) may be written as
Dr(X) = A X
with X a column=-vector of the xi' 8 . Now consider nsnother
w-base X°: X{,e.ey X in G, and
DE(X’) = A" X°
with D’ nonsingular diagonal. Since both X, X° are w=bases,
there exist D*, T with D* disgonal and both nonsinguler,
which transform X into X’ , i.e.

p¥*X" =T7X .
Left-multiply these three relations by edjoints of D, D°, D*

respectively, to‘obtain
£ x) =p%Ax, £(dx)=02a"%x", Fx=20"x .’

Here d" = D°D = (det D)% 0, etc. Then £(d d'd*X") may
be expressed in two ways, leading to
e p*r = #'p%rp%a .
Now continue in the quotient field 4aJ of J ; here D% = ool
etc., ylelding -15 -



P

A () a1 2 A)
But U=1p*1l1 4 nonsingulsr, so that
p*"1a = y(p~ha) vt
and the‘x'eforc also
1-a 0 asva-arinv? .
Taking determinants, p(D°, A’; A ) = p(D, A; A ), 88 was to
be proved.

Definition 2. Let £ be & homomorphism of & group G ;
define

a
Ix P A)
(2) J() = 3(f; A ) = =

p(£; A)

( &/a A denotes algebraic differentistion of polynomials).
Then Jj(£3; A) 1s a rational function of A with coeffici-~
ents in 4J (or in J ). Since p(f; 0) =1 , there is o

formal power series expsansion,

(3) 3ey ) = I ¢ Ak

where t,€d J are obteined by the division algoritim from
(2); or al-,o by formal differentiation,
ak
k! tk.-t-l-.ir- J(r ;J\NA=°¢ J

-8t least Af &J hes characteristic 0 .

The =2 sign in (3) merely denotes a 1-1 linear mep
of the rationel functions in A over J into infinite sequen—
ces of elements from d4J . As trivial exsmples, for {f = 44,
the identdty homomorphism,we may teke D = A = I to obtain
p(1a) = det(I - A1) = (1 - )Pek G

(1) = Il,-_xmlz:u ~ I rek o .2k



If we take £ =0 , thensay D=2I , A=0, p(O;A) =1,
J(O;A) = 0 ; this is always the csse if rank G = 0 . If
rank G = 1 , then for any homomorphism £ of G, &

j(e) = ’ aed

l=Aa

» The fundamental properties of J( . ) are described in
the two theorems to follow. The first develops the algebraic
tool needed later; the second is the basis for the topologi-
cal applications.

Theorem 1, Let f be a homomorphism of a.group G , map~-
ping a sut;group H into itself, Then f induces homomorphisms

fy end fo,; of H, G/H respectively, and

() = J(fn) + J“G/B) .

Proof. Define f! as f|H , the partisl mapping; by as-
sumption, fm is a homomorphism of H . Let h : G->G/H be
the natural homomorphism, define £, 88 h f b _»G/H

G/H ; since f(H)c H , fo/m 1® a single-valued homomorph-
ism of G/H .

Now take any w-base X;,..., x, in H, and a w-~bease .

of the form

Xygeces Xpy  Yyreess ¥
in G- Then hy; form a w-base in G/H « In the usual man-
ner, there exist “coefficients" in J with

(4’ aifxi'l £J¢1J xJ‘.‘ zJ /31.’ 73“ 1]

8ty = Eyuayyxgr Ty plyyyy - B

Since £ meps H into itself, there must be /3“ =0, 8o
- 17 -



that the coefficient msatrix has the form
(A, (/] )
“’ AI’BI
where matrices A and B’ ere squire . It follows immediately
that

(5)  p(£;4) = det(I - A D°1A) @et(z-AD""1p°) .

Obviously det(I-A p7la) = P(fy; A) ; consider the second
factor. In G/H we have the w-base bhy;,...,hy; ; aleo
fo/u b = h f; from (4), then BifG/thi = ,hty =

'Z‘;Jh x, + Zfyyhy = IR,y
Thus p(fGlH;l) = get(I - A DL B°), end (5) reduces to

p(f) = p(fy) p(fG/H) ,

yielding the required result immedistely.

The reason for concentrating on §( . ) rather than
p( « ) mdy now be apparent: sums are easier to work with
than products = e.g. the proof of corollary 2 to theorem 2
would become unnecessarily unwieldy. On the other hend, some
informaetion may be lost in the transition from p( . ) to
JU o+ ) : thus if J has cheracteristic 2 and p(f;A) =
=1 +22 , then j(£;4) =0.

The following consequence is immediate.

Gorollary. Let

G320 Deee 2 Gy 2G, 20

be groups, and f a homomorphism of G; with r(Gk)c Gy -
Denote by , £, the homomorphism of Gk/Gk+1 induced by f .
Then J(f£) = Z] J(£) .

-18 -



Lemma 2. Let G be a group and H the J-periodic pert
of G , consisting of all x € G with 6 x = O for some
® %+ O in J . Then any homomorphism f of G maps H in-
to itself, and J(£) = J(fg,) .« ’

Che proof is triviel: rank H = O , so that in theorem 1 -
ey) =0.)

Thus J( . ) does not account for the behavior of £ on
the J-periodic part of G ; in particular, if £ maps G in=-
to H, then J(£) = j(£5) = 3(0) = O . There is slso & con=
verse result:

Lemma 3. Assume J has characteristic 0. If £ is a
homomorphism of a group G end Jj(£) = 0, then £ meps G
into the J=-periodic part of G . In particular, if G is
J-free, then j(£) = 0 1iff £ =20,

Proof. J(f) = 0 4mplies p(f;A) hes degree O , 80
that

p(£; A ) = p(£; 0) =1

Thus rank £(G) = 0 , completing the proof.

Theorem 2. Given a homomorphism f of a group G . Take
D, A &as in definition \l ; then trace (0~1a) does not depend
on D, A, and will be denoted by tr(f) . Furthemorc,\

Je; a) = Zg e ak |

Proof. Consider f fixed, so that p(f;A) 1is a polyno-
nial in aJ[A] . Let F=2da5 [A;,..., A,] be the root
field of det( A I - D"YA) = 0 (the characteristic equation of
p~1A ). Then p(£; A ) decomposes in F ,

p(f; A) = py Tl =2 A))

J J

with O% p, € dJ (we may even omit all AJ = 0 ) . Hence
-19 =



A or n k¢l k
He3d) s Tl a T _(Z 2 A
1-A ld
and obviously Z‘j 2.]5*1 a trace (D71A)E*1 a ¢r(£**l) 3

this completes the proof.

gorollary i. ji{f; 0) = tr(f) ;
3£Z; A7) = :—i— (J(£; A) = jl£; =) ;

if £ : G~ G 1is on ijsomorphism,

AJE1A) + -i-— et i—) 2 rank G .

There are direct consequences. The next corollary will be
needed later, N
gorollary 2. The following essertions are equivalent:
1° there is en m such that (M = J(f"’k) for all k >0

and '

2° ; s
.j(f,é\)tl el ced.

Proof. 2° implies tr(£X) =c¢ for sll k » 1, and
in particular,

J(fm;ﬂ.)=c R
1-A

independent of m ; a fortiori, 1° . )
Assume 1° . Then in partiocular tr(f") = tr (£
with the notation used in the proof of theorem 2 ,

3

where we may sssume 2ll A.J 3 0 . Now collect all equal
'xd s, sothat Z, m AP =X m .1‘,:* with distinct

20 =

n L mtk
23-7"3 Z A



a'r
A’J = 1 . Then we obtain

and positive integers m, . £lsc, omit «li 3,1 with -

k =
Zrmr)..:,'(kr -1)=0 .

Choose x= 1, 2, «ee, (number of A." s ). It is easily shown
that ’
get(aX -1 = Tea -1 . T (a2, -2,)#%0;

therefore all m, A7 =0, i.e. 811 m . 1 =0 . Thus the

T
characterigtic of J divides all n, feee 21l m except

that corresponding to A’t' =1 ., Thus, finnlly,

e T (Z al ok 2 FE (F, nalthak =

[ k m, e
= Ty mr At e ——

as was to be proved.

2, Group sequences

A seguence of groups {Gq}_“; shell mean & mapping
q-)Gq of the 1n1':egers into e class of groups, such that
Gq = 0 except for a finite set of q° 8 , i.e. essentislly &
finite sequence. (The conventions of section 1 are preserved; )
in particulsr, all Gq have the same integrity domsin as left
operators.) A lower sequence consists of o sequence of groups

{64} and a sequence of homomorphisms {9 qf such that

P 3 =o0,

‘8 :6.~a a1 %q

qQ° "q " Tg-l?
An exsct sequence is a lower sequence with

image 3q = kernel aqd .

Finally, a homomorphism f : G-» G° of lower sequences
-2] -



G = {Gqp 4% > ¢’ ={6q, 997
1s o sequence of homomorphisms f = {f { with

£ :G.->G’

']
qt8q>C6 » 9gfg=Tfqy d

q °
(As a curious example, {3qf 1 {Gqs 8 q}>1{6q1» 841t ) In
the case thet G = G, f will again be called a homomorphism
of G.
The Euler characteristic jy of a sequence of groups G =
= {Gy} 1is defined es
z (6) = Z::(-l)q rank G

~ q°
Definition 3 . Let £ = {fq} be a homomorphism of a se-
quence of groups. The Lefschetz number of f 1is defined as the

following element of 4J :
Je) 2 T wr(e) .

We define the generalised Lefschetz invarient of f

(6) gli(f) = gua(f;4) = X7 (-1 325 A)

a rational function in A over aJ (or J) .

As en example,

3(1d) =;—L; 1 @, Jo0=o0 .

Further results may be obtained from those of the preceding
section by assembling them as prescribed in (6). Thus, from
theorem 2 there follows immedistely

lemme 4.  gli(f;A) & SPg(e*) A X |
From theorem 1 we have

gli(£) = glilfy) + gli(fy )

-2 -




.

for homomorphisms f = {fq; on G -{Gq} such that fq map
subgroups Hq c (;‘z onto themselves. In perticular (cf. lemma
2)

(7) gli(e) = gli(fG/H)

where H = {H consists of the J=-periodic parts of Gq o

qt
Theorem 3. Let f be a homomorphism of a lower sequence

G = {Gq, 8q} ; consider the sequence of groups G” = {kernel 9q7
/image 3q,1} and the homomorphism £* of G" induced by f .
Then gli(f) = gli(£* ) .

Proof. Define

. .
By = image 3q_.,1, Z, = kernel ﬁq, Gq = 2¢/Bq «

Since G is lower, Bjc Z; eand G:l is defined. Set g, =

q
=f.01 By, let £ be induced by f, on G/B, , set fa =
rd ) 4 ’
= fq l Zq sy let fq be induced by fq on

(Gq/Bq)/Zq = <}q/zq :
From the commutativity reletion it follows thet this is possib-
le. Then theorem 1 applied twice yields

ey = Jgy) + J(f;) = Jgy) + J(f;) + 3 .

Since aq maps quzq isomorphically onto B

Q-1 + “® have
J(fa) = J(gq_l), and thus

) = 5L + (dlgy) + Jlgg 1)) «

Therefore
gli(f) = gui(e* ) + X(-1)9 (3(gy) + Jlgy_y)) = gli(e”)
since, .ror large Iqf , Gq = 0 and thus gq = 0 o This completes

the proof.
-23 =



‘Por exact sequences kernel 8q = image 3“1 , t=0,
and therefore
Theoren 4. For any homomorphism f of an,exact sequence
of groups, gli(f) = 0 . There is a weak converse to this theo~
- rTem, applying to free groups.
. Lemma 5. If G 1s a lower sequence of free groups (of fi-
nite renk), and if gli(f) = O for every homomorphism f of
.G , then G 1is exact.
Prodf. Assume the free lower sequence G = {G, aq} is
not exact, so that there is a q and a generator x; of
Gq '[xl...., x,1 with

sq x; =0, x) ¢ imege 9., .
Now define fq : Gq-’ Gq by
rqxlle, th1=0 for 1i>1 ;

and tJ B GJ—r G.j by f.i =0 for j% q. It is easily seen
that £ ={fq} is a homomorphism of the lower sequence G ,
and
I
p(tq) ®mleA , J(fq) = 1—_5.

(-7
gli(e) =

+ 0 .

Thus for lower sequences G , tﬁe generalised Lefschets
invarient' gli may be considered a measure of the departure
of G from exactness.

3. Homeology
The convention in this section is that the spaces X ,
and the gontinuous mapg £ of X, £ : XX , belong to an

-24 =



admissible cetegory for a homelogy theory [cf. 2, ch.I },
with the further reatriction that the homology groups of a
space are to form a sequence of groups in the sense of sect-
ion 2 . In particular, triangulable spaces and their conti-
nuous maps satiafy these conditions.

If £ 3is a continuous map of a space X , we denote by
fa = {f,,} the associated homomorphism of the sequence af
homology groups of X . Then J(f‘ q) is defined, and will
be denoted by J.(f) ; similarly J(f, ) and gli(f,) are
defined, and will be denoted by J(f) and gli(f) . This
would be ambiguous if X were, on its own, a group sequen=
ce, and we would speak of both say J(f) md J(fy ); how=
ever, this case will not occur here. '

Then the Euler characteristic g (X) and the Lefschets
number J(f) assume their clessical meaning [ef. 1, ch.XVII ,
§ 1.3] . Theorem 4 has several applications. As an illustrat-
ion, consider a proper triad [2, ch.1] of spaces (AuB; A, B)
abd its Mayer-Vietoris sequence

cee ~> Hq(Ln B) = nqu) + nq(s)-,aqu v B) =
— nq_l(in B) ~» ...

Let £ be a continuous mep of A v B , taking A, B into
themselves. Since the Mayer-Vietoris sequence is exact,
gli(f) = O . Assembling terms,

0 = gli(f) = 511“&8) - (cli(fA) + gl:l.(fB)) + gli(fhn)
on applying theorem 1 to be the direct sum terms. Hence
gli(fAuB) + gli(r‘nn) a2 gli(fA) + gli(fB) ’

the generalised Mayer-Vietoris formula: it reduces to the
-25 =



clusigal one on teking f = identitj and multiplying througk
by 1~ A .,

Similar arguments may e carried out for other exact se-
quences of homology groups. E.g. -

emma 6. gli(fA’c) a gli(fA'B) + gli(tB'c)

for a triple A > B> C of spaces end a continuous map ¢
of A, taking B, C into themselves.

Homotopic maps tl, fz of a space X have coinciding
£14 =1, » 80 that also Jq(rl) = Jq(tz) and gli(fl) =
= gli(f,) . A related result is

Lemma 7. To every triangulable metric space X there is
an € > 0 such that if two continuous maps rl, f2 of X
are € -near, then Jq(fl) =2 Jq(tz) for all q .

Proof. Take a triangulation of X , and let {Ui} be
the covering of X by open stars of vertices; let 2g& be
the Lebesgue number of this covering.

Now take € -near continuous maps f,, f, of X . Then,
in X x< X , each point of

‘“fl x, f, x] ¢ x€ X} e

1e € -near the disgonal, so that { U, > U;f cover this set.
Then {fIl(Ui)n f'z'l(ui)} cover X . It on}y remsins to pro-
céed 88 in the classical simplicial approximstion theorem
[2, ch.II, § 7] to obtain a common simplicial approximation
& toboth f), f, , wherqupon Jq(tl) 2 Jq(g) = Jq(fz) .

Lemma 7 may also be formulated thus: cmsider the set of
retional functions over J in the discrete topology, and the
set of continuous mappings of a triangulable space with the
uniform topology; then Jq is uniformly continuous.

- 26 =



Our main interest is in the Lefschetz-Hopf homological
fixed=-point theory, and specifially, with these four state-
ments [cf.1l; ch.XVII, § 1] :

1° The Lefschetz number J(f) may be computed within
the chain complex (Hopf formula),

2° 1t may also be computed within the week homology
groups (Betti groups modulo their periodic parts),

3° It may also be computed ﬂthin the homology groups
with integers-mod 2 as coefficient group, ‘

4° If J(£)%+ O then f hss a fixed point.

Assertion 1° is reduced to a group-theoretic proposition,
and generalised to the gli inveriant in lemma 2 and formula
(7). Similarly for 2°, in theorem 3 ; in fact, this holds al-
8o for the Jq - invariants, Assertion 3° is not group~-theo=-
retic, end will be noticed in lemma 8 .

Concerning 4°, we may apply this result itself to obtein
the following generslisation of the Hopf-Lefschetz theorem:
Let £ be a continuous map of a triangulable spsce into it-
self, If gli(f) <+ O , then some iterate of f has a fixed
point. More precisely, if the k-th coefficient J(£¥) of
the formal series of gli(f ; 1) is nonzero, then tk hes a
fixed point.

This generalisation is rather trivial (nevertheless, see
the corollary below). A more interesting result may be obt9§.9-
ed in conjunction with lemma 6 (with C =g ; s romulé'tioﬁ T
for triples is also possible):

Theorem 5, Let (X, Y) be a trisngulable pair of spaces,
and f a continuous map of X taking Y into itself. If

gli(f) & gli(rly)

-27 -



then some iterate of f has a fixed point in X = ¥ . More
precisely, if ;:: [ aa1(r;2) - grakeizall,,, # 0, then

£5*1 hes a fixed point in T=T.

gorollgary. For every continuous map f of an even-di-
mensional sphere into itself, either £ or £2 hes a fixed
point.

Proof, The statement is manifestly true for s°; there~
fore consider S°® with n > O . Take the integers C ae
coefficient group. It is well known that Ho(szu) =0 =
= K, (s?"), the remaining groups being trivial. Also, it is
known that

tr(f,,) =1, tr(f,,) =4
where the integer d 4s called the degree of £ [1, XVII,
§ 1.43] . Since the corresponding groups have rank 1 , we must

have
1 4

Jo(f) = -1—-:; N JZn(f) = 1

and therefore

S 1
gli(e) = —— + ™ 51+ dhk

l=a 1-24

Thus either 1 + d + 0 , the first coefficient J(f) is nen=
sero, f has fixed point; gr 4 == 1 , whereupon the second
coefficient j(£2) = 2 , and £2 hes a fixed point.
Conjecture . Let £ be a continuous map of a product of
n simplexes and = even~-dimensional spheres. Then one of f,
n
2,24 ..., 2 has a fixed point.
For odd-dimensionsl spheres, the situation is slso odd: it

- 18 possible that no iterate of a mep f has any fixed points
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(e.g. in Sl , I(z) = em“s with real irrationel).
However, then f must map onto, since otherwise it would be
inessential [ 2, ch.‘XI, § 2], i.e. homotopic to a constsnt
map c , which then hes gli(c) = j (c) % C : more genersl-
ly, all retractions have some ‘Jq %+ 0 A further genersli-
sation of this is the following

Theorem 6. Let f be & continuous map of & spece X ,
and let f°-» £ uniformly with n— © ., Then Y =
= £%(X) 4s the set of fixed points of £, and

renk H_(Y)
Jq(f‘) 8 c— e

1=

for ali qQ and 1< m &oo,

Proof. First take the special case thet f is a re=-
traction: then £°=f forall n>»1, £¥=¢ , Y= £(X)
is indeed the set of fixed points of f . Let 41 : Ye X be
the inclusion map, and g : Y—> Y the mep induced by ¢ ;
thus £ =4g , and gl = 14y , the identity map of Y,
Furthermore [2, ch.I, exercise C21],

nq(x) = ipage 1"1 + kgrnel Euq °*

From theorem 1, then, Jq(f) = Jq(fl) + Jq(fz) where f,,
tz are induced by the direct summsands.
For xcinsgei,q we have flx-f,,qi,qy-

=i.%,4 i,q¥ = Lgq¥=x, i.e. f; 1s the identity
mep of image 1q.81nee 1‘q is 1 -1,
rank H_(Y)

= A’ .
3(fy) = Jo(1ay) = Y

As for the second term, take X € kernel 8yq i then f, x =
-29 =



= feq X Y4q 8xy

Thus finally
Jq(f) 3 Jq(fl) + Jq(rz) = Jq(fl) ’

x =0, 8o that t2=0 and Jq(f2)=0.

proving the special cese of our theorem.

Now return to the geperal ¢zse described in the assumpt-
dons of the theorem. It is simple to show that Y is the set
of fixed points of £ . Cbviously £ * 4is a retraction of X
to Y , so that the special case applies,

5(2*) reank H_(Y)

S —da
Q 1-2
Since % £* uniformly, Jq(tn) = Jq(t") for all suf-
ficiently large n ; now merely apply corollary 2 to theorem
2 « This concludes the proof of theorem 6 .

rank H_(Y)
Problem. Frove that Jq(f) = —-——;—-—i—-—- whenever f

is a continucus mop of a2 space X , and Y 1is the set of fix-
ed points of f .(That is, without assuming that £ converges
uniformly. )

As an elementary illustration to theorem 6 , consider a
contrsction mep £ of the unit bsll in euclidean n-space. By
the Banuch theorem, % converges uniformly to a constant map,
whose value is the unique fixed point of f . Hence

Jq(f) =0 for q#% O,

1
11(f) = § (£) = ———
& 3ot 1-2

Finally, we shall consider the dependence of the gli charac-
teristic on the coefficient group of the homology theory. The
argument depencs, essentially, on these two assertions: the
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invariance of homology theory theorem [2, ch.III, § 10], and
our theorem 3 applied to show that gli may be computed
within, say, the ordered chein complex.

Thus, consider two homology theories ¥ , # on trian-
gulable spaces; I is to have as coefficient groups the inte=-
gers; the coefficient group of ¥ is G , an abelisn group
with an integrity domain J as left operators, Let e be the
unit element of J . Let Jg, Iq and gli, gli be the core
reaponding characteristics of continuous maps. Then

Lemma 8.  gli(f) = gli(f) e
(Note that gli(f)4 0 = gIi(f) is not excluded.)

Proof. By invariesnce of homology theary, % may be ob=
tained from the ordered chain complex O = {Cq(K), aq} cor-
responding to a simplicial complex K , and ¥ may be obtain-
ed similarly from O = {cq(x) @ aq, 9q} . Take a simplicial map
£ of K, and the homomorphism f, of O induced by £ . To
define J(t*q) , matrices D, A over C were employed, But
then De, Ae may be used to define I(T*Q) for the homomorph-
ism f, of O 1induced by f , and thus 3(?$q) =g, e .
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