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A NOTE ON EPIMORPHISMS IN ALGEBRAIC CATEGORIES

Karel DRBOHLAV, Praha

In this note the notion of a category will be used in the
sense of [1]. Thus, the product of o : a—b eand B: b—e¢c
will be denoted by «f : a~>c o If xf = &)Y always im-
plies 8 =79 @as far as «f and Ky are defined, the
morphism o is called an epimorphism. A

Most categories we meet in practicé satisfy the following
conditions:

1) their objects ere some ordered couples of sets,

2) every morphism o : (A, A°) —> (B, B") is a mepping
from A into B,

3) if &« : (4, A)—> (B, B") and B : (B, B) —(c, C")
then we get o3 by composing the mappings o and 4 .
For example every group G can be taken for a couple

(A, A”) where A is the underlying set of G end A° a sui-
table subset of Ax AxA determining the structure of G . In
this way the cstegory of groilps is & category of the type men~
tioned above. But it is quite clear that the same is true e.ge.
for any algebraical category, for any category of topological
spaces etc.

Now let ¢ be e caetegory satisfying our three conditions
1), 2) and 3), and let « (A, A") — (B, B”) . Then, if a

maps A onto B , it is an epimorphism, as it can be proved in
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an easy way.

For our category ‘¢ we can try to formulate a “cbnverse
theorem": '

4) If oc : (4, A7) — (B, B”) is an epimorphism, then
it meps A onto B,

This converse theorem, however, is not ti*ue in general.
But it 1is true e.g. in the category of all groups, as it is
mentioned in [1], § 6, No 5 . But there is a brief note in this
paper, too, that it holds in a corresponding way in other alge-

braic categories, what maey make the reader believe, that it is
true e.g. in the cetegory of all semi-groups or in the catego-

ry of all rings, etc. This is of course not the cese as we
shall show by the fellowing simple examples,
et & Dbe the cetegory of all semigroups. Consider two
real intervals A = (0, 1> and B = (0, 00 ) and let (A, A"}
snd (B, B’) denote the corresponding multiplicative semigroups.
Jet « be the identity mapping of A into B . Then
o« : (4, 47) = (B, B”) is an epimorphism in &  though it
does not map A onto B . ‘
Really, let us have any seaigroup (C, C’), let @: (B,B")>
->(C, ¢°) end 9 : (B, BY) — (C, C*) be any two morphisms
in ¥ sndlet B =&y .If B+Y , then x4 x¥ for
some xe B, x>1., Because A eand ) eare homomorphisms,

we have

7 ¥

64 B, T o r
[X(?)Jx=lﬂof l‘ T“l‘.x‘r=l¥.x = x

and

L] A

LSO T =P AT = AT P
A
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But (C, C°) is a semigroup, hence x”? = x¥ . This contra-

i

dictionvgives 4 Y" and so o« is an epimorphism. Hence the
"converse theorem" 4 ) does not hold in ¥ .

Now let R be the category of all rings, 2 the set of
all rationsl integers, F the set of all rational numbers, o
the identity mapping of Z into F amd (2, 2°) end (F, F')
the rings corresponding to Z end to F .

We shall show again that o« 'is 2n epimorphism in R
though it does not map Z onto F .

Let us have any ring (C, ¢’) let @: (F, F')—> (C, C*)
and 9 : (F, F') =>(C, C°) be any two morphisms in R  and
let «ff =&Y . Then, again, if B+ 7 , it is (£ (1)

for some rational integers r and s where 8 # 0 and where

r may be supposed to be positive. Because B and 4 are ho- -
momorphisms, we have (-} )ﬂ+ (%‘)f . Now again

[ N @y = * . @& =2 4 =3 ena

EELE PLNE B0 RPE S S s PR B G & S

It follows again [3 =9 and so « 1is an epimorphism. Hence
the "converse theorem" 4 ) does not hold in R .

On the other hand the "converse theorem" 4) is true in the
category of all universal algebras of eany fixed type. For to pro-
ve it, it is not necessary to use the notion of a free product of
two isotypic universel algebres with isomorphic subalgebras, as
it is done e.g. in the case of groups, but we may proceed in a
very much simpler way.

First of all, we can express the notion of an universal al-
gebra in a2 form more co:;venient for our purpose: Let A be a
set a-nd v a mapping of A into the set of all positive in-
tegers. Let (4, A’) be an ordered couple of sets such theat
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5) every element of A” is a finite sequence of the form

(x) ' (y5 x5 X, ...,x‘,(.,_);.ﬁ)
where A€A  end y, X3, Xy, eesy X,(a) belong to 4,

6) for every A€ A end for any Xys Xpy ewey Xy be=
longing to A there exists exactly one y e A sugch that the
sequence (%) belongs to A° . Then the ordered couple (A, A”)
is called a universal algebra of type [A , ¥ ] . If, in the
previous definition, in the condition 6) , we use the phrase
"at most one" instead 61’ "exactly” , we get the definition of
a partisel universal aslgebra of type [A , ¥] . Every pertial
universal algebra (A, A") can be embedded into a universal
algebra (4, A7) with the seme underlying set A and with
AmcA” ., _

A homomorphism ¢ of a universal algebra (4, A" ) in-
to a universal algebra (B, B’) with the same type [A ’ vl
is any mepping from A into B such that if (%) belongs to
A’ then (5% ; xf’ , x29‘ seesy xg(a_); AdeB . Ifr ¢ is, at
the same time, a one~to-one mapping from A onto B , then it
is called an isomorphism., A universal slgebra (4, Ai ) is
called = subalgébra of (4, A7) , if A cA  end .ﬂ‘l c A,

All universal algebras of a given type [A,v] forma
category U, , with respect to homomorphisms. 'u;\,,, sa=
tisfies the conditions 1), 2) and 3) . As alreadypentioned, in

'U;“,, the converse theorem 4) is true. We shall prove it nows.

Let of be a homomorphism from (A, A”) into (B, BY) ,
both algebras belonging to ’ZLA", .Let A4 B and we
shall show that ® is not en epimorphism. Really, o maps
(A, A" ) onto a subalgebra (Bys By ) _6f (B, B") , where

By = A" B . Now, it is always possible to find in Uy
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an slgebra (B,, B, ) end en isomorphism L from (B, B’) on-
to (B, B;) such that BN B, =B, , B'N B; =By e&nd

x* = x for every x € B, . The couple (C, C") , where C =
=BuB, and C" =B"u B , is a partial universsl slgebra

of type [A,¥] . This can be of course embedded into a uni-
versal algebra (C, C)e U, , . Now, (B, B") eand (B,, B]
are subalgebras of (C, C’), snd we shall denote byv (e and (u,
the identity mappings of them into (C, C”) . Now, we have

At =& LM, but at the seme time (& 3+ L (4, . Thus o is
no epimorphism.
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