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Commentationes Mathematicee Universitetis Carolinee
4, 1 (1963)
ON CYCLIC AND RADIAL VARIATIONS OF A PLANE PATH

(Preliminary communication)

Josef KRLL , Praha

We shall identify the set of finite complex numbers
with the Euclidean plene E,_ . By a path we mean eny con-

tinuous complex-velued function Y on a compact inverval

.<a, > | Given such a psth ¢ ,apoint ze E,
and a real number & , we denote by ‘uf’ (ot; z) the
number (possibly zero or infinite) of points in

{t;te<a, &>, yt)-z=lyt)-zlexpia, y@)+z}.

Then (tgw (0&; z) is Lebesgue measurable with respect to
the verisble & on £ 0, 2T > end we may put

2T
v¥z)= [ w¥@;z)dx .
4

In a similar way, let ﬂ‘l/(p; z) stand for the number
of points in {t;te<a, 1)‘7, 'IP (t)-zl:p} (Oévw@;z)s-i-aa).

Six}ce v"’ (P H z) is Lebesgue measurable with respect.
to on (0,+ o0) we may form the integrals

x
“:,(Z)=;[ﬂ(’)"2)df; 2>0.

»¥ (2} will be called the cyclic veristion of (  with
respect to z ad uf@) = «} (2) will be called
the radial variation of y with respect to 2 « The

quentities v¥(@), «} (z) were introduced in Com-

ment. Math. Univ. Carolinae 3,1 (1962), 3-10 in connectien
-3 -
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with investigations concerning the boundary behaviour of the
logerithmic potentisl. In present paper we shall collect so-
me results on vw(z), u.,:" (z) which are useful in
above mentioned topics in potentiasl theory and may be of so-
me interest in themselves. We shall start with several simp-
le theorems connecting rectifisbility of and the be-
neviour of wv¥(z), «¥(z).

Theorem 1., Supppse that the points z‘, z", 2.3
sre not situated on a single straight-line. If ¢ is a
path and
v+ v @ vt (2P < + o0
then is rectifiable.

Theorem 2. Let 2"+ z° andlet ¢  be a psth
not meeting the straight~line through z! anda z* .
It

r¥ N+ v¥ (2" < +

then ¢ is rectifiable.

Theorem 3. If Y  1is a rectifiable psth on <o, & >

then v’w(z) , considered ss a function of the variable
z , is finite and locally Lipschitzian on.E-¢ Ka,&>).
Further &m v¥(z)= 0.
[zl>o0

Remark 1, In theorem 3 , vt need not be finite
on y (Ka, &>) . If we do not sssume that ¢
is rectifisble then vV may be infinite in some
points of E,~¢y (Ka, £&>) and may be disconti-

nuous there. This can be shown by simple examples.
Similar theorems hold about the radial varistion uy -
Theorem 4. Let Y be a rectifiable path on

<a, &> . Then w?(z) is a finite and
-4 -



continuous fu.nction of the variable =z E-
Moreover, w¥(z) is locally Lipschitzian on E, ty(( a &) -
Remark 2. It is easily shown by an example that, in

¥

theoren 4, w need not be Lipschitzien on Ez . If

the assumption that ("% be rectifisble is dropped then

v
7 may be infinite and discontinuous in some points of

E,~y(Ka,t>).

Theorem 5 . Let z'+ 2% and suppose that ¢
is a psth not meeting the straight-line through z‘ and

2
ra . If

LGz uf <+ o0
then is rectifiable, °
Theorem 6. Suppose that ¢ is a path and z‘, z’; zJ
are points in E

line., If

. not lying on a single straight=-
Gz w2+ uf(z?)< + o
then ky is rectifiable.

Remark . Simple example can be given of a path of

infinite length such that wY (2) is finite for en
infinity of points z 3 according to theorem 6, all
z2's with w¥(z)< + o0 must then be si-

tuated on the same straight-line.

Theorem 7 . Let ¥y be a peth and suppose that
w¥z)+ v¥@)< + o0

for a certain Z € E’z . Then Y / is rectifiable.

ow we shall announce two estimates concerning »¥ (z)
and %! (z)  which sre useful for the investigstion of
non-tangential limits of the logerithmic potential of the

double distribution.



Theorem 8 . Let be a2 path on <a,&>, Z € Ez_'-
rix B eE,, 2 >0 and put f = z+4eaxntf.
Suppose that

() ztpexp i ¢ ¢ (<a,b>)

O<p<n,la-RI< d"(0<d‘”<.;_C),Then

w2z £ K Cv¥z)+»¥cf)]

whenever

with K depending on Or only.

Theorem 9 , Let Z € E,_ y 2 >0 and suppo-
-ce that v is a peth not meeting
{n;nekysin-zi>nr} .Fixa B e E, end
assume that (1) takes place for every couple @, o  with
O<p<nla=-pBl<d0cd<L)rey 0<cx s
and put f=z+xexpn i B . Then

-1
w15 L{v¥ @)+ pup ¢ w? (z)}

with L.  depending on d only.

Theorem 10 . If 'y is a path on <a, &> then
+¥(z) is lower semicontinuous on E, . If @ s
rectifiable then 1/“P (z) is finite, continuous and sub-
harmonic en E,_- y (<a, A >) .

Notstion. If ¢ is 2 psth on < a, & > 'andfe E,
we shall denote by Nq_, (f) the number of points in

{tite<a, >, yt)=F} (0SSN (F)5 + o°) .

Ve say that  1s simple provided (t)=+ y (tz.) when~
ever ast, <24 -t <b-a -y is ter-
med closed if W (@) = y (&) -

Theorem 11 . Let 4 be apethon < a, 4>,

C=y Ka,4>) and suppose that ?:lfcl- N., (§)<+o0.
-6 -



In order that v ¥(z) be bounded on E, -~ C
it is necessary and sufficient that it be bounded on C .
As a consequence of theorem-11 we obtain the following
Corollary. Let Yy be a simple closed path on <a,lr’>
and let G  be a complementary domain of C = ¢ (<a,£>).
Then the following conditions (a) and (b) are equivalent to

each other:

(a) A v¥(@z)< + 00 ,
zeC

(b) rufr v¥@zi<+ 00 .
ze G

Remark 4 . The above corollery mekes it possible to pro-
ve a deceasary end sufficient condition that, for every conti-’
nuous double distribution on € s t he corresponding loga-
rithmic potential be uniformly continuous on G (cf. theo-
rems 3 and 4 in Comment. Math. Univ. Carolinee 3,1 (1962), p.
9). The above corollary can also be used to obtain a solution
of the problem N° 4 raised by I. Babuska in Tasopis pro p&sto-
vén{ matematiky 79 (1954), N° 2, p. 164.

The following alternative of theorem 11 is also useful in
potential theory.

Theorem 12 . Let Y be apasthon < @, &>,
(=y (La,&>) malet G ck, be & bounded open
set disjoint with C . write B (6) for the bounda-
ry of G and suppose that Nw-(f ) is bounded on
A B(G) . Further suppose thst s neighborhood U (§)
can be associated with every f el nbB (@) that
the following condition (¢) be fulfilled:

(c) For every =z € U(f) NnGeG the segment of
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end-points =z, f meets ( at f only.
Then v¥(z) is bounded on G provided it is
bounded on B (G) .

Notation. If « + 0+ v are complex numbers we
write Y4, ¥ = W(&%’l%” for the non-

oriented angle .of corresponding vectors.
Let mow (  be a simple path on < @, & > . with
any subdivision D= {a=t, <t <...<f =b} (n>1)

of < a, &> we associste the number

o‘(D)=§;¢ Yt )-g ), W)y G )F
’= ¥

and define
Ind g = A-_Bx.{z— s (D)-

‘Remark 5 » The quantity bnd , to be called
the bend of s could be defined for more general paths
(cf. a number of papers by Ke. Iséki in Proc. Japan Academy
1961, 1962), We shall not go into details and shall only no-
tice that simple plene psths with fnd ¢ < + oo
coincide with those introduced by J. Radon in connection with
his investigations on the logarithmic potential (ﬁ'ber Rand-
wertaufgaben beim logarithmischen Potential, Sitzber. Aked.
Wiss, Wien 128 (1919), 1123-1167) and called "Kurven beschran-—
kter Drehung" ("courbes & rotation finie" - cf. F. Riesz et B.

° s 81,

Sz. Nagy: Legons d'anelyse fonctionelle, chap., IV, n
91). A comparison of t}xeee paths @ with those for which
V‘y is bounded is given by the following
Theorem 13 , Let ¢ be a simple path on
<a, >, C=y(Ka,&r>) | men
' rup v¥(2)E bnd ¢ -
zel Cs-



Remark 6 . While

¥
(2) suft v (Z) < + o0
ze'l
whenever And gy <+ oo , the converse is not true

as simple examples show., It is also easily seen that the
class of smooth paths fulfilling so-called Ljespunoff conditi=-
ons (compare N.M. Gjuntér: TSorija pot¥nciala i jejo prim&hé-
nija k osnovnym zadalam met&matileskoj fiziki, Gost&chizdat
1953, where analogous surfaces in 3-space are considered) is
included in the class of ell with (2). It is worth men-
tioning that some investigetions on the logarithmic potential
which are usually connected with Radon’s "Kurven beschrankter
Drehung" can be carried out for more general paths fulfilling

(2).
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