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ON CONVERGENCE OF THE ITERATIVE METHODS
Joasef KOLOM{, Praha

A, Birger [;] gives & new method for calculation of
characteristic values and characteristic functions, so-cal~
led composed iterative method with variable parameter and
similar iterative method for solving the linear functional
equations, but without any conditions and profs of conver =
gence and any error bounds of these methods. In this paper
the convergence conditions, the error bounds of these meth=-
ods and some new methods are given. Proofs and other theo =

rems are omitted and will be published in Czech.Math.Journ.
and Cas.pdst.met.

1. Let the equation
1) y-AKy=0
be given, where K is a linear symmetric bounded operator

in Hilbert space H A, is a real parameter. We use the '
iterative formulae

~ /y’n‘*'f ;A Ky'n’ /

where ‘A,mgﬂ 5,4 y .) are to be determined from the condi=

tions M‘A’ K :2..«..” 0 m= 0,4, Z oo
Then o4
(2) “A"n,M 'Qéy—"'y;"z' Yns4q = ‘—M_ K’yn .

MKy, 1% MRy, I

THEOREM 1. Let Kbe a positive symmetric completely
continuous operator in Hilbert space H o If an element
yoe'H is not orthogonal to the 'space»Hﬁ4 generated by
characteristic functions corresponding to the first_ charac-
teristic_numberﬁ, of (1), then the sequence { A, [ conver«
ges to ',7\,,, - The subsequence {Ynf& is convergent in the
norm of the space H to one of characteristic funetions cor-

responding to 4°

Now we m’croduce a simple method for calculatian\ of
-] G



eigenvalues and eigenfunctions of the equation

(3) A/y -(u,:y =0,

where A is a linear bounded operator in H, U is a real
parameter,

THEOREM 2. Let A be a positive symmetric completely
continuous operator in Hilbert space H Let 'yoeH be not
orthogonal to the eigenspace corresponding to the first ei-
genvalue (u,,, of ( A Then the sequen%e {(a,., } defined by

/an+4 ’—ﬁ‘:@j / YntA= TnAym,
converges to , A the sequence Y is convergent in
the norm of ‘the space. H to one of the eigenfunctions cor-
responding to g o

This method can be ﬁsed to non symmetric symmetrizable
completely continuous operators.

NUMERICAL EXAMPLE l. To illustrate the application one
of the method we consider the equation

Y x) - J\fK(x/.s)'y(A)dA 0,
where

: ~ --x(2, Ay XED
(4) Kx,»)= 2’4’(2 x) S

The first characteristic number A, of this equation is e -
nual with the accuracy on the thi,rd decimal place to 4,115.
Take Yo= X , then the first step of (2) yieldsj\g,~ 4135
while Ritz s method for 7=3 gives.?\,"’ 4,371. Kellog’'s
iterative formulas by the third step yieldﬂ j\, X 4,998,
?\, 4,156, By the second step pf (2) we get.?\,~4 115.

2. Let the equation
(5) Ag
be given, where A is a linear symmetric bounded ‘operator

in H, fe H. The composed iterative method may be written
in the form:

fm  hm
(6) fynH *c.(%hw’d, (A”A&m”,?,lm f Ayn.

 THEOREM 3. Let A be & linear self-adjoint operatew
in H * Suppose tha’c m ”:y ""‘ (Ay y)ﬁ M ”y” holda
ERgS TS .




for every i€ H , where m = .inf(Ay,y ), M=oun (A, y),
floylt=4 flyll-=1

0<m SM< j‘ oo Then the sequence defined by (6) la
convergent in the norm of the space H to the solution
of (5) and its error is bounded t/:&

Ay, l,

by -3 1S4 1F-Agmsall,

2
ly-yp 1S & {Hhmy I (Abmoatony) i
: Afjc 4
where ‘.?= (Mxm? %/M sh=A"I€L  end Y, € H .
THEOREM 4. Let A be a symmeitric bounded and positive
Axf4adse operatord ( (A/g,ry)> ¢  for every 'y¥0) in H
heving bounded A" . Then the sequence Yn, defined by
(6) is convergent in the norm of the space H to the solu -
tion y of (5) and its error ie,&ounded by
M-y 1€ FIf- Ynm, I,
where the number i,\p satisfies the inequality
1Ay 12 £ lly
We introduce an iterative mthod for solving the equa -
tion (5) which is more simple for computation and makes
smaller demands on the operator o The method is based
on the following theorem.

THEOREM 5. If A is & linear bounded operator in H
and if there exists a real positive number 7 such that

the inequality (A%"y ); m[% ”z for every "4 € H

holds, then tl}e sequence §{ Y, ¢ defined by the equations
o, -

y"’“zz /séx“é/ ~xo= f/
=0 X¢+4 = Xa ~fn AX o,
/3)/0: M N = 0’4,2:,...

A, I

converges in the norm of the space H to the solution y
of (5). The error “’y‘%rn H of the approximative solution
344" is bound!ed by tl}e im;:'quality .
- 7 1 F - Ay, b
In contradistinction to the method of the ateepest
descent ¢2} and the composed iterative method with variable
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parémeter the operator A need not be self-adjoint.

3. Let the equation (5) where A 18 & iinear bounded
operator in a real Hilbert space H , be given. The so-call-
ed similar iterative method may be written in the form

Ym+a = f%ﬁ‘ffan (I"Fya\)ejav,
where P is a linear bounded operator in H » the parameters
&, (m=0,1, Z,o--)are determined from the conditionc

F(En 'n,) 0
F(in’ym;) ”f E.nAyn” . Then
(7) Ypoa = Pf+ NA I (] PA)'y,,.,

» Wherc

THEOREM 6. Let A P be a linear bounded commutative
operators in a real Hilbert space H (not necessarily com -
plete) and P is such that P exists and f| I-PA \\= 2,<4
Let one of the following conditions be fulfilled:

(1 H is complete space

(2 Operator I-P/\ is coinpletely continuous in H.

Then the equgtion (5) has a unique solution % .
The iterative process defined by (7) is convergent in the
norm of the space H to the solution ’y of (5) and its errorf

is bounded by“'y Y., & ,k% ”f—A yo ”

n-4)
ll'y Y |1 &%{MHE j IIAKy,.AII’“

where f= ”A_4 = ”PH/@-%) *Yo is en arbitrary

element from . H

If the parameters - 6:"' (m.: 0} 4, 2/,0-"-) are to be determi-‘
ned from the conditions

?F(E?wwt) 0 (,n,- ) 1 ‘ ) |
‘where lg,,,,,,,= Pf+ R’y,,,, R-— _[-PA & P,A are com-

~mutative operators and F (‘y) If A/y « We obtaip the .
, iterative formulae v | i

- (8) R 1= Pfe S




THEOREM 7. Let A , P ve a linear bounded commutative
operators in a real Hilbert space H (not necessarily comple
te) and P is such that P°4 exists and ”R"=z<4 « Let
one of the following conditions be fulfilled:

a1 H is complete space.

(2 R is completely continuous operator in the space H

Then the equation (5) has onlj one solution_’g « The

sequence "jm,‘j defined by (8) converges in the norm of
the space { to the solution Y of (5) and the error of ap-

proximation ” Y —ij'w ” is Pgunded by the fol}wowing inequalie
ties: o | ”,y_gn "é kﬁm”f..A,yo ”,
. | ly-Ym | S K 9, IF-Adfp s,
B g _ (Rf, AR#n-1)")2
Noy-4 152 % rdﬂRfll’” ARl }Iz-
wnere A= A" 12 | PIl/

(4"2), 'go- is an arbitrary element
from _ ' :

L 3

Let one of the conditions (1, (2 of the theorem 6 be
fulfilled. We set A= I".')\,K s where K is a linear bounde.

- operator. Operator P _will be now specified to obtain gseve -
ral iterative methods analogucus to methods of Neumann,
wiarda [3] , Bickner [4] and Samuelson [5] .

1. P F _I ( I is the identity operator). In this cas
we obtain Birger’s iterative method. |

11, P=at ] y where 0<< A1,
1. P 7*(1-AK), 0<9< 1,

. P= 1*.] s Where _J is a linear bounded operator in

The convergence conditions for these ceses are the fol-
lowing:

II. a) Kis a symmetric operator, -
® -(AKyy)2 0 for every ye H.
~ ¢) ) satisfies the inequality



(9) ' N A
U< ¥ < omxi
III. a) K is a symmetric operator.

b) A 18 not a characteristic value of A K .
c) satisfies (9).

IV. a)J is commutative with K . ) ;
'b) The inequelity l 6-JN 4/ (1+HAKIN)  noias,
whre O is the resolvent operatér forAK.

NUMERICAL EXAMPLE 2. To illustrate the application of

some of the methods and error bounds giyen, an approximate
solution of the integral equation

Y (x) -AS K (x,6)y (o)ds = X,
where K (x,4) ig given by (4), will be sought for some valu+

es of A by the similar iterative method. For A4, [AKl<]
H% and thus method I will be used. For 'yo-)( we get
£, = 0,80980 and |
Y, = 1,26993 x — 0,13497 x3
with ly-y £ 0,013, while the method of successive
approximations yields [ Y-, i é_ O,\043. For .K=—6,
"-&K ” > 1 and the condition for the convergence of
method I is not satisfied. However, —(AK fy,fg)é: 0. for evee
ry Yy €H , so thet method IT 1s applicable. Take 4, =X ,
= 0,40682 < 41/(4+ IAKN) , then
Y, = 0,31604x + 0,16751 x3 B
Yo = 0,27464X + 0,22996 x3 + 0,02063x5
with lly-4,llE 0,037, lly -y, I= 0,018, Rall-wierda’s
iterative method yields

Y,= 0,18636x + 0,40682 X,

Yy = 0,21679x +  0,317T13x> + 0,04965 x

with ly-y, | € 05060,

lyy £ 0,487,

It is seen that the application of the similar iterati-

ve method can be more adventageous than the application of
the older ones.
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