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ON A COINCIDENCE OF CENTRAL DISPERSIONS
OF THE FIRST AND SECOND KIND
IN CONNECTION WITH PERIODIC SOLUTIONS
OF THE DIFFERENTIAL EQUATION " = ¢y

IRENA RACHUNKOVA, Olomouc
(Received August 14, 1974)

This paper will be devoted to the study of the properties of phases and dispersions
of the 2nd order differential equation y” = g(¢) y. In the first part we shall describe
the set of all increasing phases of all the differential equations whose every solution
is half-periodic with exactly one zero on the interval of the periodlength. There is
found a connection between these differential equations and those having the basic
central dispersions of the 1st and 2nd kind coinciding on the interval (— o0, o0).

In the second part there is derived a necessary and sufficient condition for a co-
incidence of the n-th central dispersions of the Ist and 2nd kind on the interval
(— 0, 00). Moreover, there is described the set of all increasing phases of all the
differential equations whose every solution is periodic (n even) or half-periodic
(n odd) and has exactly n zeros on the interval of the periodlength. Further, properties
of this set and its subsets are investigated.

The paper is closed with establishing a connection between the foregoing
differential equations and such equations having the n-th central dispersions of the
Ist and 2nd kind coinciding on the interval (— o0, 00).

1. Basic concepts and relations used in this paper are taken from [1], where they
are defined and proved. For completeness, we give below a brief summary of them.
. We shall consider a both-side oscillatory differential equation

(@ Y =4q@)y,

where the carrier g(¢) is a continuous function on the interval (— o0, 00), that is,
q(t) e C°. Let u(t), v(¢) be a base of the differential equation (¢), that is, a pair of linear-
ly independent solutions of (¢). A function «, continuous on (— oo, c0) and satisfying
the relation

tan a(t) = u(t)/v(t)

everywhere where v(f) # 0, is called the first phase of (¢) corresponding to the
base u(t), v(t) (henceforth a phase of (g)). For every phase  of the differential equation
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(g) there holds a € C3, a'(t) # 0 for r € (— @, o). The converse is valid, too. Namely,
the function « satisfying the property

xeC3® () #0  for te(—o0, ©)
is a phase of the differential equation (¢) Where g is determined by the relation
qt) = —f{tana, t} = —{a, t} — (¢'(1)* = —(1/2) «"[a’ + (3[4) (@"[o)* — (&)*.

Let toe(—o0, 00), and y be a nontrivial solution of (q), whereby y(to,) = 0.
Let ¢(ty) € (— o0, ) be the first zero of the solution y lying on the right of #,. Then ¢
is called.the basic central dispersion of the Ist kind of the differential equation @
(henceforth the basic central dispersion). Similarly, if ¢,(t,) [¢-,(t,)] is the n-th zero
of the solution y lying on the right [on the left] of t, the function ¢,[¢_,] is called
the n-th [-n-th] central dispersion of the Ist kind of (g) (henceforth n-th [-n-th] central
dispersion).

If « is a phase of the differential equation (¢) and ¢ is the Ist kind basic central
dispersion of the differential equation (g), then Abel’s equation

a(p(t)) = a(t) + m.sgn o’

is satisfied on the whole interval (— oo, 00). Similarly the n-th dispersion ¢,, n = 0,
+1, +2, ..., satisfies
a(@,(1)) = a(t) + nusgna’.

The following theorems are valid in the sequel.

Theorem 1.1. The set G of all phases of all oscillatory differential equations (q)
with an operation of composition of functions forms a group.

Theorem 1.2. The set E of all phases corresponding to the equation (— 1) is a subgroup
of the group G. It is called a basic subgroup.

Theorem 1.3. Let G/,E be a righthanded decomposition of the group G. Then any
class of this decomposition is formed by exactly all the phases belonging to an appropriate
equation (q). ‘

Every equation (¢) has an infinite number (continuum) of countable phase systems
<A, <o, <0y <oy <d,..., every system belonging to exactly one base
of the equation (¢). Hence the set of all bases of the differential equation (q) is
equivalent to the set of all countable phase systems of this differential equation.

Theorem 1.4. If it holds w < O[w > 0] on (— o0, ) for the Wronskian w of the
base u, v of the differential equation (q) then all the phases of the corresponding phase
system are simultaneously increasing [decreasing].

Thus, if we choose a base u, v of the equation (q) such that the corresponding
Wronskian w < 0, and then perform all the transformations of this base the de-
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terminant of which is greater than zero, we obtain exactly all the bases to which
exactly all the systems of the increasing phases correspond. Every class of the de-
composition G/,E can be therefore decomposed into two equivalent subsets: the set
of all increasing phases and the set of all decreasing phases of the differential equa-
tion (g). Consequently the basic subgroup E, too, can be decomposed into the
(normal) subgroup E of all increasing phases of the differential equation (—1) and
the coset of all decreasing phases of that equation.

Theorem 1.5. The subset G of the group G consisting of exactly all increasing phases
of all oscillatory equations (q) is a normal subgroup of the group G.
This evidently implies that the following theorems hold.

Theorem 1.6. Every class of the (righthanded) decomposition G|.E of the group G is
formed by exactly all increasing phases belonging to the appropriate equation (q).

Let us define the 1—1 mapping & : G/,E » G/.E by &(E) = E, $(aE) = «E for
each a € G. Corresponding classes belong to the same differential equation (g).

Theorem 1.7. In the group G the subset H of all elementary phases, that is, the subset
of all phases satisfying the condition

UC = Cypnots where c(t) =t + =, C(Dsgner =t +sgna’ . 7

forms a subgroup. It holds G > H o E.

The group H can again be decomposed into the subgroup H of all increasing
elementary phases and the coset of all decreasing elementary phases.

It is evident that for any phase o € H there holds

(c, ©) oc = ca.

The cyclic group C of the phases ¢,(t) = ¢ + nn, n = 0, +1, +2, ... is a subgroup
of the group E and it holds G > H o E > C, where C is the centre of H.

2. In this section we shall be concerned exclusively with increasing phases, that is,
with the groups G, H, E, C; we shall therefore drop the word “increasing” in the
writing and shall simply say ‘““‘phases”.

Theorem 2.1. H is the group of phases of exactly all the equations whose basic central
dispersion is c, that is @(t) =t + 7.

Proof: Let a« € H. Then ac = ca and from Abel’s equation agp = ca we obtain
¢ = a"lca = a”'ac = c. Let ¢ = c. This gives us ap = ca leading to ac = ca and
consequently « € H. It holds (see [1]) that if an equation has one elementary phase,
then all its phases are elementary.ones, too.

Let us consider the group G with the subgroup H and let us forth the decomposition
G/,.H.1t holds G/,H > G/,E, that is, G/, H is a superposition of the decomposition G/,E.

Theorem 2.2. Let P be the set of all phases from G belonging to those equations
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having the same basic central dispersion ¢ =t + k; k > 0, const. Then P forms
exactly one class in G/ .H.

Proof. Let us write k(t) = ¢ + k. Then it holds for any phase fe 2 (based on
Abel’s equation)

(k, ©) Jk=df,

and conversely, any phase f with the property (k, ¢) belongs to 2, because it is
a phase of a differential equation with the basic central dispersion ¢ = k(t) = ¢ + k.
Namely, ¢ = f " Y¢ef =f "k = k.

Next for an arbitrary fe 2 and he H it holds hfk = hcf = chf and therefore
hf € # which results in Hf = 2. Conversely, if there is an arbitrary phase g € 2,
fe®?, then k™'f "' =f"'¢c™! and consequently gf ! = gkk™'f™! = cgf~'c™!
which means gf ~!c = cgf ! and finally gf ' € H. Therefore g € Hf and so # < Hf.

Theorem 2.3. To any function k(t) = t + k, k > 0, const., there exists exactly one
differential equation (q) with the constant carrier ¢ = —(n/k)* whose basic central
dispersion ¢ = k.

Proof. We show first that the differential equation y” = —(n/k)> yhas ¢ =t + k.
For this it suffices to find one phase of this differential equation satisfying the condi-
tion (k,c). The considered equation (—(n/k)?) has, for instance, the base u =
= sin (n/k) t, v = cos (n/k) t. The corresponding system of phases «, has a form
o, = (n/k)t + nn, n =0, +1, ... An arbitrary phase «, of this system satisfies the
condition (k, c¢) and following this we can write ¢ = a, 'ca, = o, ‘0,k = k(t) =
=t+k

Next we see that the mapping k - —(n/k)? is a | —1 mapping of the set of all
positive numbers k onto the set of all negative numbers —(n/k)?. This, of course,
implies that there exists exactly one equation with a constant carrier for every
function k(t) =t + k.

With the foregoing theorems we can now state a theorem as follows:

Theorem 2.4. Let P € G|, H be the class of all the phases satisfying the condition (k, c).
This yields
P =H.f,

where f is an arbitrary (inc:reasing) phase of the differential equation y" = —(nfk)? y.
In [2] there is derived the following

Theorem 2.5. The differential equation (9) has the dis'persion @ satisfying the equation
o) =t+k

for a positive integer n and for all t € (— %, ©) if and only if every solution of (q) is
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periodic (n even) of half perzod:c (n odd) with period k and has exactl) n zeros on the
interval [0, k).
In the special case n = 1 we have (see also [2]):

Theorem 2.6. The differential equation (q) has the dispersion ¢ satisfying
o) =t+k

for every t € (— oo, o) if and only if every solution of the differential equation (q) is
half-periodic with period k and has exactly one zero on the interval [0, k).
From Theorems 2.2, 2.4 and 2.6 it follows

Theorem 2.7. Let P be the set of all phases of all the equations whose every solution
is half-periodic with period k and has exactly one zero on the interval [0, k). Then

?=H.f

where f is an arbitrary phase of the differential equation y" = —(n/k)? y.
Next it holds

Theorem 2.8. Let & be the set of all phases of all the equations whose every solution
is half-periodic with exactly one zero on the halfclosed interval of the appropriate
periodlength. Thus we arrive at

2= \UH.f,
keR*
where R* is the set of all positive real numbers and f, is an arbitrary phase of the
differential equation y" = —(n/k)? y.

In addition to all this, let us now suppose at the differential equation (g) that
q(t)e C?, q(t) < 0 for each t e (— o, ©).

Let ¢, € (— 00, 0), y be a nontrivial solution of (g) wherein y'(¢,) = 0. Let ¥(¢,) €
€ (— o0, ) be the first zero of the function y’ lying on the right of t,. Then ¥ is
called the basic central dispersion of the 2nd kind of the differential equation (g).

Similarly, if y,(to) [¥_,.(¢5)] is the n-th zero of the function y’ lying on the right
[left] of #,, then the function ¥,[_,] is called the n-th [-n-th] central dispersion of the
2nd kind of the differential equation (g).

It will be always pointed out when central dispersions of the 2nd kind are being
discussed. The simple notion of dispersion wili mean a dnspersmn of the 1st kind
all the time.

A carrier g(t) is called an F-carrier if for the basic central dispersion ¢ of the
Ist kind and for the basic central dlspersmn ¥ of the 2nd kind there holds ¢ = ¢
for each ¢ e (— o0, ). (See [1].) . '

Theorem 2.9. q is an F-carrier if and only rf the dtsperszon (p satisfies the equation
o) =1t + k, k > 0, const.
This theorem is derived in [3]. From last two theorems it follows
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Theorem 2.10. Let & be the set of all phases of all the equations with F-carriers
(i.e. with coinciding basic central dispersions of the Ist and. 2nd kinds). Then

F={oeR: {0t} + (@) >0,ae C? for each t € (— 0, 0)}.

This means that all F-carriers can be characterized by the phases of all negative
elementary carriers from C? and by the phases of all negative constant carriers.

3. Again suppose that in addition there holds q(t) € C2, q(t) < O for each t e
€ (— o0, ).

Let u(t), v(t) be a base of the differential equation (g). A function B continuous
on (— o0, o) and satisfying the relation

tan f(t) = w'(O)v'(1)

for v'(t) # O is called the 2nd phase of the differential equation (¢). For an arbitrary
second phase B of the differential equation (¢) there holds: B e C', B'(t) # O for t e
€ (— o0, 00).

It will be always pointed out when the 2nd phases are being discussed. The simple
notion of phase will mean the Ist phase all the time.

If B is the second phase of (¢) and ¥ the basic central dispersion of the 2nd kind
of (g) then there holds Abel’s equation

BW(®)) = B(t) + msgn

for each t € (— o0, o). Similarly for the n-th dispersion of the 2nd kind y,, n = 0,
+1, +2, ..., there holds

B(n(t)) = B(t) + nnsgn f'.

By a polar function of a base u, v of (9) we mean the function 3 = ff — «, t€
€ (— oo, o), where « and B are the first and the second phases of the base u, v,
respectively. The phases « and B are either both increasing or both decreasing
(see [1]). .

We now define a function hA(x) on (—o0, ) by h(a) = Sa~'(x) = 3(r). The
function A is called a normed polar function of the Ist kind (see [I, § 6]).

Let ¢, and ¢, be the n-th central dispersions of the Ist and 2nd kinds of (g),
respectively. If it holds ¢, = ¥, for t € (— o0, 00) then the carrier ¢ will be called
an F,-carrier.

Theorem 3.1. A carrier q is an F,-carrier if and only if a normed polar function of
the Ist kind h is periodic with period nr.

Proof. a) Let g be an F,-carrier. Then ¢, = ¥, and we can write hla + enn] =
= ha(p,) = B(@n) — H(p,) = B(Yn) — ole,) = [B(t) + enn] — [u(t) + enn] = ho(t).
(e = sgn o' = sgn B'.) b) Let h[x + nn] = h(a) for & € (— o0, o). Then for each
t e (— 00, o) there holds B(@,(1)) = ag,(t) + hag,(t) = at) + enn + hla(t) + enn] =
= a(t) + enn + ha(t) = B(t) + enn, which leads to @,(t) = ¥,(1).
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Theorem 3.2. A carrier q is an F,-carrier if and only if the n-th central dispersion ¢,
has the form
¢, =t + k, k const.

Proof. Let us choose a number #, € (— o0, o) and let us put ay = a(to), % =
= o'(fy). Then (see [I, §6])) «'(t) = agexp (—2 [ cot h(g) do) and in the points

a(t) = a, a” '(2) = te(—o0, ) it holds

1=ty + 1—, f(epo Jcot h(o) dg) do.
%o

o

Substituting @,(t) for ¢ into the last equation and using Abel’s equation oc((p,,(t)) =
= «(t) + enn. (x may be either increasing or decreasing; &¢ = sgn «’.) We arrive at

a+senn

@ull) = to + —1;» J (exp 2 fcot h(o) dQ) do.
%o

an ao

ty is an arbitrary number from (— o, c0) so that we can write

a+enn ¢

pt) =1+ ~1,— f <exp2 Jcot h(e) dQ) do.
%o

ao

After differentiation and with some modification we get

a+enn

@,(t) = exp 2 J cot h(g) dg

and further

a

Pul) _ 2ag[cot h(x + enm) — cot h(a)] CXP(*Z fCOt h(e) dQ)'
@a(1)

By Theorem 3.1 it holds [cot h(x + enm) — cot h(x)] = O; herefrom ¢,(t) = 0,
hence @,(t) = ¢ and ¢,(t) = ct + k.

It remains to prove ¢ = 1. Let us consider the sequence {¢,(t)} of n-th dispersions.
It holds ¢,(t) » +oo for n - 400 and ¢,(t) = —o for n > —o0.

Thus also the selected sequence @, , = + for m - +o and ¢, , —» — for
m — —oo. Evidently, ¢, ,, = ¢t + k(c" — 1)/(c — 1). Let ¢ > 1. Then for m —»
-+, @, +0, but for m— -, @,, =c"t+ k(" —1)/c- ) -
- (=k)/{(c = 1) > —o0, a contradiction.

Suppose that ¢ < 1. Then for m = — 00, @y.m = — 00, but for m — +00 Pp.m =
- k/(1 — ¢) < 400, a contradiction.

a@o
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For the purpose of fulfilling the conditions of the convergence it is necessary
that ¢ = 1 and consequently ¢, = ¢ + k.

If @ (t) =1+ k, then @,(t) =0 and thus cot [4(a + enn)] = cot (h(x)). By .
Theorem 3.1 g(t) is an F,-carrier.

Remark. Let us look now at a case of an oscillatory differential equation (q) with
an interval of definition (a, b) where a resp. b is a finite number. We shall now show
that if it holds ¢, = ¥, on (a, b) then ¢,(t) = ¢t + k, where ¢ > 1 resp. ¢ < |
¢, k const.

In fact let for instance ¢, = ¥, on (a, ©). This gives us ¢, = ct + k, ¢, k const.
(The proof is analogous to that of Theorem 3.2.) Consequently ¢,, = ¢t +
+ k(<™ — D)f(c = 1).

In this case the points a, co are the accumulation points of the set of all zeros
of an appropriate differential equation and thus for the sequence {¢,} of dispersions
it holds ¢,(t) = oo for n - o, @,(t) > a for n - — oo and for each 1.

And for the selected sequence {¢, ,} it holds, too, that ¢, ,, > + oo form = + oo,
@y m—a for m—- —oo. From the relation ¢™t + k(c™ — 1)/(c — 1) > oo for
m - oo follows the inequality ¢ = 1. From the relation ¢™t + k(c™ — )[(c — 1) > a
for m - —oo we get ¢ # 1 and therefore ¢ > | must hold. Likewise for ¢, = {,
on (—o0, b). Here the equation (g) under consideration has no F,-carrier.

For the sake of simplicity, let us now consider the groups of increasing phases
only, i.e. the groups G, H, E, C.

Let H, = G be the set of all phases o satisfying the condition

(Cps C) ac, = C,a, where ¢, =t+nn,n>0.
Theorem 3.3. H, with the composition of functions is a group.

Proof. Let ay,a,,x€ H,. This leads to a;a,c, = 0,¢,0, = €105, € o™t =
=a"legt= a1, = c,a”!, and we find that o,a, € H,, «~ ' € H,.
Let Z, = G be the set of all phases « satisfying the condition

(c, cn) ac = ¢,

Lemma. Let «,, a, be arbitrary phases in &,. Then a,0; ' € H,, a;'a, € H.

1 1

Proof. ayc = c,u; = c o' = aj'c, s me = = Tl = ag'e,
aa;t = ayectayt = g0z tey L thus oy te, = coqa; ik agat € H, oy tay, =
= a7 ey te,a, = ¢ taT a,e, thus af taye = cap ey, ie. apla, € H.

Theorem 3.4. £, = H, .o, where o is an arbitrary phase satisfying the condition
(c’ cn)‘

Proof. a) Let fe &Z,, i.e. fc = ¢,f. Then by the foregoing lemma fx~! € H, from
which we arrive at fe H,a.
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b) Let f = ha, where h e H,. Then fc = hac = hc,a = cha = . f.

Theorem 3.5.., = aH, where a is an arbitrary phase satisfying the condition (c, c,).

Proof.a) Letfe &,. Then again by our lemma we can write o™ 'fe H and therefore
feaH.

b) Let f = ah, where h € H. Then fc = ahc = ach = c,ah = c,f.

The following theorem is a consequence of Theorems 3.4, 3.5 and 2.5.

Theorem 3.6. The set of all phases of all the equations whose solution is periodic
(n even) or half-periodic (n odd) with period n and has exactly n zeros on the interval
[0, n) is &,.

%, = Ha = aH, where o is an arbitrary phase satisfying the condition (c, c,).

Remark. The differential equation (g) has the n-th central dispersion ¢, = ¢ + k
if and only if a(t + k) = a(t) + nm, i.e. ak = c,a, where « is an arbitrary increasing
phase of (g). This follows directly from Abel’s equations.

Let us consider the classes 2™ € G/,H of the phases satisfying the conditions (c,, ¢),
i.e. fe 2™ : fe, = cf. Between the system of the classes 2™ e G/,H and that of the
classes %, € G/,H there exists a 1—1 correspondence " = Ht oo 'H = &£,
with ac, = ca. (Evidently 2V = ¥, = H))

Theorem 3.7. The set of all phases of all the equations whose every solution is half-
periodic with period nn and has exactly one zero on [0, nr) is the right coset Hu in the
decomposition G| H and the set of all phases of all the equations whose every solution
is periodic (n even) or half-periodic (n odd) with period & having exactly n zeros on the
interval [0, ©) is the corresponding left coset a™*H in the decomposition G| .H.

In other words, all the phases of the equations with periodic (n even) or half-
periodic (n odd) solutions with period = and exactly » zeros on [0, 7) can be determined
by means of the elementary phases and of the phases of equations with the constant
carriers ¢ = —(1/n?).

Theorem 3.8. Let 2, be the set of all phases of all the equations whose every solution
is periodic (n even) or half-periodic (n odd) with period k and exactly n zeros on the
interval [0, k). Then it holds

2,=%.f= Hh,f= H,f, = hHf,
where the phase f and h, and f, satisfy the conditions (k, c) and (c, c,) and (k, c,),

respectively.

Proof. a) Let g € 2,; then by Theorem 2.5 gk = c,g, where k(t) = t + k. Under
the assumption fk = cf, thus k~'f~! = f~1¢~!; continuing we obtain g.f ! =
=gkk™'f ' =c,.g.f ‘¢!, therefore gf ~' € &, and consequently g € Z,f.

b) Let g = af, where a € &, fk = cf. Then gk = afk = acf = c,af = c,g, hence
g € 2,. This proves that 2, = &Z,f.
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The remaining equalities follow from the foregoing theorems.
The following theorem was proved in {2]:

Theotem 3.9. A differential equation (q), q € C°, has only periodic or half-periodic
solutions with period n, with exactly n zeros on [0, ) and, moreover, there exists a non-
trivial solution y of (q) such that a + knjn, k = 0, +1, +2, ... are all zeros of y, and
| ¥'(a + knjn) | = 1/A = const. for every integer k, if and only if

q(t) = f"(t) + f4(t) + 2nf'(t) . cot [n(t — a)] — n?,

where fe C%, f(t + n) = f(t), f(a + kn/n) = f'(a + kn/n) = O for all integers k,
and

f(e'zf"’ — 1)/sin® [n(t — a)]dt = 0.
. O k
Then the solution y can be written as
1G]

y :t—»-e'?z—(—l)”"lsinn(t - a).

Let us now consider the function
f(t) = =(1/2)In [1 — (1/2) sin 2(t — @) sin n(t — a)].
This function has properties as follows:

a) f(¢) has continuous derivatives of an arbitrary ordér; thus f(t)e C~;
b) ft + )= —(1/2)In [1 — (1/2) sin 2(t + ©= — a) sin®> n(t + n — a)] =
= —(1/2)In[1 — (1/2) sin 2(t — a) sin® n(t — a)] = f(1);
cos 2(t — a)sin? n(t — a) + (n/2)sin 2(t — a)sin 2n(t — a)
1 = (1/2)sin 2(t — a)sin® n(t — a) ’
fla + kn/n) = —(1/2) In [1 — (1/2) sin (2k=n/n) sin? kn] = 0,
cos (2kmn/n) sin® kn + (n/2) sin (2km/n) sin 2kn
1 — (1/2) sin (2kn/n) sin® kn

©) fi(1)=(1/2)

f'(a + kn/n) = (1)2)

d) , -f(e_zf") —1)/sin® n(t — a)dt = .
0

= j —(1/2)sin 2(t — a)sin® n(t — a)/sin” n(t — a)dt =

0

=(1/2) j —sin2(t — a) dt = (1/2) [cps‘Z(i —a)]g=0.
6
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From the above we can see that the. function f(t) = —(1/2)In [l — (1/2)
sin 2(t — a) sin? n(t — a)] satisfies the conditions of Theorem 3.9 and consequently
the equation with the carrier defined with the aid of this function

q(t) = f7(t) + f(t) + 2nf'(t) cot [n(t — a)] — n* (*<L q,(t, @)

has only half-periodic or periodic solutions, with period 7 and exactly n zeros on
[0, =).
Thus we can state the following theorem.

Theorem 3.10. Let 2, be the set of all phases of all the differential equations whose
every solution is periodic (n even) or half-periodic (n odd) with period k and exactly n
zeros on [0, k). Then

2, = o, Hf,

where H is the elementary phases group, o, an arbitrary phase of the equation with
a carrier q,(t, a) and f an arbitrary phase of the equation with the carrier — (m/k)?.
Next it holds

Theorem 3.11. Let &, be the set of all phases of all the equations whose every solution
is periodic (n even) or half-periodic (n odd) having exactly n zeros on the halfclosed
interval of the appropriate periodlength. Then

Ry = U o, Hfy,
k€R+
where R* is the set all positive real numbers, a, and f, arbitrary phases of the differential
equation with a carrier q,(t, a) and —(n[k)?, respectively.
In Theorems 3.10 and 3.11 we can also use as the phase «, any phase of the equation

Yy = —n’y.

From Theorems 3.2, 3.8 and 3.11 we arrive at

Theorem 3.12. Let %, be the set of all phases of all the equations with F,-carriers
(i.e. of the equations with the coinciding n-th central dispersions ¢,, ¥, of the Ist and
2nd kind). Then we can write

Fo={aeR,:{0,t} + @)> >0, aeC® foreachte(—o0, ©)}

Thus we see that all F,-carriers can be characterized with the aid of phases of all
the negative elementary carriers from C?, next with the aid of phases of the negative
carriers ¢,(¢, a) and finally with the aid of phases of the negative constant carriers.
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