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THE APPROXIMATION OF FUNCTIONS
IN THE SENSE OF TCHEBYCHEV 1

JIRf SMERK, Brno
(Received July 3, 1973)

INTRODUCTION

This paper gives a sufficiently general and complete approach to the theory of the
linear approximation of functions in the sense of Tchebychev. The theory will also
serve as a basis for next papers which, perhaps, will follow.

The concepts dim,, ¥, u(M) and the concept of a minimal set are generalizations
of the analogous concepts of [4]. The concept of a representative subset is original.

In the paper the following notations are used:

R is the space of all real numbers, C is the space of all complex numbers, N is the
system of all natural numbers, Ny = N U {0}.

For x € C, x ¥+ 0 we define sign x =|_% and sign 0 = 0. For all x e C we have

x.signx =|x]|.

@ is the notation for the empty set.

If X, B are sets, then the system of all mappings of the set B into the set X will be
denoted by X®. We have X” = {0}.

Let X, B be sets, f€ X%, M < B. Then the restriction of the function fto the set M
will be denoted by fi. (Exactly written f,, = fn (M xX).) We have f, € X™,
fo=0.

If M is a set, then card M means the cardinal number of M (the number of the
elements of M).

If Pe X3, then P = o means: P(x) = o for all xe B.

0(xy) ... Q4(xn)
We denote det Qi(x;) = | : if the order of the determinant is
Qn(xl) Qu(xn)
evident from the context.

T-space means a topological space, L-space means a linear space and NL-space

means a normed linear space.

Remark. X will denote the space in which the considered functions have their
values. We shall mostly assume that X is an NL-space over a field S, where S = R
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or S = C. The zero vector of X will bz d:noted by o. In some theorems we shall
assume that X is a strictly norm:d NL-spacz; that meansthat | x + y| = | x| + | y|
and | x| = | y| implies x = y.

The most important results (Chapter 2) are derived by the assumption X = § = R
(real functions) or X = § = C (complex functions).

Theorem (H:lly). Let n e N. Let {4,/i € [} be a system of convex and closed subsets
of R” containing at least n + 1 sets. Let every n + 1 distinct sets 4; have a common
point and suppose thit thare exists a finite subsystem, the intersection of which is
bounded. Then N 4; # 9.

iel
Proof is given e.g. in [2].
Definition. The approximation problem may be formulated in general in the follow-
ing way:
Let Y be a set, g be a mapping of Y'x Y into {0, +o0). Let V< Y, V # 0, fe Y.
Let us denote u = inf o(Q, f).

QeV
An element Pe V is called the element of the best approximation for fin V iff

e(P,f) = .

Remark. ¢ has mostly the properties of a metric or of a norm. However, we also
admit the cases o(Q,f) = +00 and p = + 0. This approach enables us to deal
with functions which may be unbounded.

Remark. If Y is a space of functions, then the functions Q € V are called “poly-
nomials”.

1. FUNCTIONS WITH THE VALUES IN AN NL-SPACE

1.1. The Independence and the Dimension in a Subset

Assumption (for § 1.1.). Let B be a set, let X be an L-space over a field S.

Definition 1. If f, ge X3, we define a function f+ ge X® by the relation
(f+8)(x) =f(x) + g(x). If feX® and ceS, we define a function c.fe X®
by the relation (c.f) (x) = c.f(x).

Remark. X7 is then an L-space over S.

Definition 2. Let M < B. Functions Q,, ..., 0, € X® will be called independent
in the set M iff the restrictions of them to the set M are independent as functions
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n
of XM j.e. iff there do not exist num»ers a,, -.-» @, € S n>t all zero such that Y a.
k=1
. Qu(x) = o for all xe M.

Theorem 1. Let M = D < B. If fuastions Qy, ..., @, € X2 are indzpzndant in M,
then they are independent in D, too.

Thzorem 2. L2t ¥ b2 as1539122 0of X2, let M < B. Let us denote W = {Q,,/Q € V}.

(1) W is a subspice of XY

(2) If Vis of a finite dim:nsi>n, then W is of a fiaite dimension, too and dim W <
< dim V. (See Theorem 1 for D = B.)

Definition 3. L=t ¥bzasudsprzzof X% let M < B. Latusdznotz W = {Q,/Q=V}.

(1) Let W be of a finite dim2nsion. Than w2 dzfiae dim,, ¥ = dim W. Tais nunber
will be called the dimznsion of V in the set M.

(2) We shall say that functions Q,, ..., @, € V are geazrating for V (form a basis
of V) in the set M iff the restrictions of thzm to M are gznerating for W (form
a basis of W).

Theorem 3. Let V¥ be a subspace of X%, let M < D < B. If functions Q,, ..., Q,€ ¥
are generating in D, then they are generating in M, too.

Theorem 4. Let ¥ be a subspace of X5

(1) We have dim, V' = 0. If V is of a fiaite dimz2nsion, then dimg V' = dim V.

(2) Let M = D = B and let dim, V exist. Then dim,, V exists, too and we have
dim,, V £ dimp V.

(3) Let ¥ be of a finite dimension, let M = B. Then dim,, V = dim V iff this
condition holds: If P € Vis such that P(x) = oforall xe M, then P = o (i.e. P(x) = o
for all x € B).

Proof. (1) is evident, (2) follows from Theorem 1.

(3) Let Q,; ..., Q, form a basis of V.

a) Let dimy, V' = dim V. Let Pe ¥V bz such that P(x) = o for all xe M. We can

n
express Pintheform P = Y 4,0, ; hence Y ¢,0,(x) = oforallxe M.As @, ..., O,
k=1 k=1

are generating in M, they form a basis of ¥ in M and therefore thzy are independent
in M. Hence a; = ... = a,=0and P=o.

b) Let dim,, ¥ < dim V. Then Ql, ..., @, are dependent in M and there exist
a, ..., a,€ S not all zero such that 2 a,0i(x) = o for all xe M. Let us put P =

= Z Q. Then P % 0 and P(x) = o for all xe M.

Theorem 5. Let ¥ be an n-dimensional subspace of X2.

(1) Let M <= B be such that dimy ¥ = m < n. Then there exists z € B such that
dimpyy,, V2 m+ 1.
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(2) There exist points Xy, ---» X,, € B such that m < n and dnm{,l o V=n

Proof. (1) Let us admit that such z does not exist. Let 0, , ..., 0,,€ V form a basis
of ¥ in M. We can choose Q € V such that Q,, ..., 0,,, Q are independent (in-B).
For each z e B the functions Q4, ..., Q,,,Q are dependent in M U {z} and there exist

numbers a,(2), ..., a,(2), a(z) € S not all zero such that )" a,(z). Qi(x) + a(z) . Q(x) =
i=1

= o for all xe M v {z}. The functions Q,, ..., O, are independent in M, hence
necessarily a(z) # 0. We may assume a(z) = 1 (otherwise we can divide all a,(z)

by a(z)). Specially Y a,(z) . Qi(z) + Q(z) = o for all ze B. Let us choose arbitrary
i=1
z, ye B. Then for each x€M we have }: az). 0ix) + 0(x) =0 = Z afy).
Q%) + Q(x), hence }_: [ai(2) - a;(»)] - Q; (x) = 0. Since @y, ..., O,, are mdepen-

dent in M, we have a,(z) = ayy) for i = 1, ..., m. Hence the numbers a,(z) are not
dependent on the point z and we may write only q;.
m

For each ze Bwe have ) a;. Q,(z) + Q(z) = o which is a contradiction with the
i=1

independence of Q,, ..., O,,, @ in B.
(2) follows directly from (1).

1.2. The Approximation

Assumption (for §1.2.). Let B be a set, let X be an NL-space over a field S, where
S = Ror S =C. The norm of x € X will be denoted only by | x|. Let V be an
n-dimensional subspace of X.

Theorem 6. Let x;, ..., X, € Bbe such points that dim,,,, . ,,; V' = n. (Se eTheorem
5(2).) Let functions Qy, ..., O, form a basis of V. Then for each number d = 0 the

set M, = {(a,, ..., ay) € S"/ max | Z a, . Qu(x)) | < d} is bounded.

Proof. We can easily prove that the function F(a,,...,a,) = _max | Z a.
Qx| is a continuous non-negative function in S" and is equal to 0 only at
(©, ..., 0). The minimum of it in the compact set {(a,, ..., a,) € S"/i |ap| =1} is
therefore a positive number ¢ > 0. Let (a;, ...,a,) € Md, (ay, .“,I;;)ls& (nO, > 0).

Let us denote a = Zl a,|. Then d 2 nlnax lzlak - Oulx)) | =kZl| a |
J S ] =
n d .
. max I 2 — Qx| gk;| a, | . c. Hence k;l a,| £ - and M, is bounded.

Jj=1,.
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Remark. We can easily prove that if y;,..., ym € B are such points that
dimy,, ;. V < n,thenforeachd = Otheset My = {(a;, ...,a,) € S"/,-=Iﬂ?'.fmlké’xak'
. O«(¥j) | £ d} contains straight lines and is unbounded.

Definition 4. For g € X2 we shall denote | g || = il:E | g(x)|.

Remark. || g | is not a norm of X® because we admit also the case || g || = +oo.
The other propertiesofanorm (| gl = 0, (gl = 0iffg=o,]lc.gll =1lcl|.lgl,
lg+hl <llgll + |l k]|) are preserved. We have | g || < +oo iff g is bounded
in B.

Theorem 7. Let fe X, let us denote p = inf | Q@ — f||. There exists P e V such

QevV
that | P — f| = .
Proof. We have p = + 0 iff | @ — f|| = + o for all Q € ¥, hence Theorem 7
holds for u = +o0.
Let us assume g < +oo0. Let Oy, ..., O, form a basis of V. Let us denote 4 =

= {(ay, ..., @) € S"/| Y @Qx — f | < u+1}. We have 4 # 0; let us choose
k=1

(byy...,b,) e A. Let us denote d =2u + 2. By Theorem 5 there exist points
Xy, .o» Xy € B such that dimy,, . . V' =n by Theorem 6 the set M, =

= {(ay, ..., a,) € S" max | Y a;.Qux)| < d} is bounded. If (a,, ..., a,) € 4, then
j=1,.,mk=1

"kZl(ak —b).Oll =1 (k_zl aQi —f) - (k_Zl biQx — f) | < 2 + 1) = d, hence
(@ — by, ...,a, — b,)e M, and the set 4 is bounded.
For each me N there exists P = Y. @,,0; € V such that | P, — fIl < u + %
k=1

For each m € N we have (a,,,, ---» @um) € 4, therefore the sequence {(@1pm, --- > Gum) fm=1
is bounded. By the Theorem of Weierstrass this sequence has a convergent sub-
sequence; let us assume for brevity that lim g,,, = g, for k = 1, ..., n. Let us denote

P =kZlaka-
For each x € Bwe have lim | P,(x) — f(x) | = | P(x) — f(x) | and | P(x) — f(x) | <

<+~ for all me N. Hence | P(x) = /()| S p ie. | P —f1 =
Corollary. We have u = 0 iff fe V.

1.3. The Approximation on a Subset

Assumption (for § 1.3.): Let B be a set, let X be an NL-space over a field S, where
S=RorS=C.Let Ve X%, V %+ 0, fe XB. Let us denote u = inf | Q — f|.
QevV
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Definition 5. Let M < B,
(D) LetQeV.IfM =0, weput | Q — fllp =0.If M # 0, weput | O — f||u=
= suplQ(x) ™1

(2) We put u(M) = ;nf;ll Q—flu-

(3) We say that Pe V is a polynomial of the best approximation to f in the set
Miff | P — fly = w(M).

Remark. (1) [ @ = fllg =1 @ — f|l for all Qe ¥V, u(B) =0, u(B) = p.

(2) We admit, of course, also the cases | @ — fllyy = +00 and p(M) =
We have u(M) < + oo iff there exists Q € ¥ such that the function Q — fis bounded
in M. It holds e.g. if M is finite.

(3) Mostly ¥ will be a subspace of X5,

Theorem 8. Let ¥ be a subspace of X2, let M = B and let dim,, V exist. Then
there exists P e V such that | P — f | = u(M).

Proof. The assertion follows from Theorem 7 if we apply it to M, {Q,/Q € V},
fu> w(M) instead of to B, V, f, u.

Theorem 9. (1) If M = D < B, then u(M) < u(D).

(2) If M = B, then 0 £ u(M) < u.

(3) Let M = D = B and u(M) = u(D). If Pe V has the property | P — f|p =
= (D), then also || P — f|lyy = p(M) = w(D).

(4) Let M = B and p(M) = u. If P € V has the property | P — f| = u, then also
1P =l = u(M) = .

(5) Let M = D <« Band u(M) = p(D). Let P € V have the property | P — f|lp =
= w(M) and let no other function of ¥ have this property. If Q € V is such that
I Q@ = fllp = u(D), then @ = P and hence | P — f |, = u(D). :

Proof. (1) If M = @, the assertion is obvious. Let us assume M # #. For all
QeVwehave | Q — flly < 1| @ — flp, hence u(M) < w(D).

(2) follows from (1) for D = B.

(3) We have (D) =p(M)S |P~fly S|P —flp=puD) therefore the
equalities hold.

(4) follows from (3) for D = B.

(5) By (3), we have | @ — f'|l;y = (M) hence Q = P.

1.4. The Passage to a Finite Subset

Assumption (for § 1.4.). Let B be a set, let X be an NL-space over R. Let ¥ be an
n-dimensional subspace of X2 (ne N,), let fe X5, let us denote y = min | @ — f |-

QevV
Theorem 10. #t =  sup  p({xy, ..., Xp41})-
X1y.sXn+1€B
Proof. Letus denote p =  sup  pu({Xy, ..., X,4,}). By Theorem 9 (2), p < p.
X1y 9Xn+1€B
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Ifp = + oo, then also y = + co. Therefore we may assume p < +00. Let Q1 ..., On
form a basis of V.

For each x € B let us put W(x) = {(a,, ..., a,) € R"| Z” a, . Qu(x) — f(x) | £ p}.
k=1 n

Let (ay,..,a), (By,...,0)eW(x), 0<r<1. Then |Y [ra,+ (1 —1)b].
k=1

QS | = 17 (o A =fE)+( = 1. (L QW) —f) | S

£r.p+ (1 —r).p=p Hence W(x) is a convex subset of R". We can easily prove
that W(x) is also closed.

Let x;, ..., X,+1 € B be arbitrary. By Theorem 8, there exists Q € ¥V such that
[O(x) — fx) ] S p({xyy s Xpe1}) Sp for k=1, ..., n+ L IfQ =kZlAka,

then (a,, ..., a,) € W(x;) 0 ... n W(x,4+,). Hence each n + 1 sets W(x) have
a common point.

By Theorem 5, there exist points x,, ..., x,, € B such that dimy,,, . .V = n. Let

us denote d = p+ max lf(x,)l The set M, = {(ay, ..., a,) € R"/ max |Za,‘
Jj=1,..,mk=1

NN IS < d}is bounded by Theorem 6. If (a1, v @G)EW(X) N ... W(x,,,), then

for j=1, ..., m we have |kzlaka(x,)| IZa,,Q,,(x) - flxp| + If(xj)l Sp+

+ max |f(x;)| = d, hence (ay, ..., a,) eMd Hence the set W(x;) n ... n W(x,,)
J=1..m
is bounded.

If card B < n, we can choose such points x;, ..., X,+; € Bthat B = {x;..., X,41}
and the assertion of Theorem 10 is obvious. Let card B = n + 1. Then the system
{W(x)/x € B} satisfies the conditions of Helly’s theorem therefore there exists

(@, ... a) € W(x). Then | ) aQux) — f(x)| < p for all xeB, hence pu <
n x€B k=1
< Ilk;a.Q. —flSpie p=p

Theorem 11. Let D be a compact T-space.

(1) Let {x,}m=1 be a sequence of points from D. Then there exists x, € D such
that for every neighbourhood U of x, there are infinitely many m e N such that
x, € U.

(2) Let {(x7; ..., xn+1)}m=1 be a sequence of (n + 1)-tuples of points from D.
Then there exist points xy, ..., X,+; € D such that for every neighbourhoods U, of x,,
U, of x;, ..., Upyy Of X,4+, there are infinitely many m € N such that xy e U, for
k=1,..,n+1.

Proof. (1) Let us assume that the assertion does not hold. Then for each x € D
there exists a neighbourhood U(x) of x such that there are only finitely many x,,
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in U(x). {U(x)/x € D} is an open covering of D therefore there exist y;, ..., y,€ D
such that D = U(yy) U ... U U(y,). But there are only finitely many x,, in each U(»)),
which is a contradiction. '

(2) Let us denote G = D"*! the Cartesian product of the T-spaces D with the
topology defined in the theory of T-spaces (see e.g. [7], p. 31). By Tichonov’s theorem
(see [7], p. 37), G is a compact T-space. Moreover, if Uy, ..., U,,, are open in D,
then U; x ... X Uy+, is open in G. The assertion may be obtained by applying (1)
to G.

Definition 6. Let D = B. We shall say that D is a representative subset (with
respect to B, V, f) iff there may be given such a topology on D that:

(1) D is a compact T-space.

(2) For each Q € ¥ we have: for each x € D and 4 > 0 there exists a neighbourhood
U c D of x such that | Q(») — f(») ]| < | Q(x) — f(x)| + h for all ye U.

(3) For each xe B there exists ye D such that for each Qe V we have

1O(x) = f) I 2100 —fWI.

Remark. (1) It for each Q € V the function | Q — f| is continuous in D, then the
condition (2) of the definition is fulfilled.

(2) Let B be a compact T-space and let for each Q € V the function | Q — f| be
continuous in B. Then Bis a representative subset. (This situation may be constructed
always when B is finite.)

" (3) We define a representative subset in the same way also in the case when X
is a complex NL-space.

Theorem 12. Let B have a representative subset D. Then there exist points
X1, ---s Xg41 € D such that

= u({xl, ooy Xpg1}) < +00.

Proof. If z,, ..., z,4, € B are arbitrary, then there exist points x,, ..., X, 4, € D
such that | Q(z,) — f(z) | £ Q(x) — f(x) |fork = 1,...,n + 1 and forall Q € V.
Then u({zy, ..., z,+1}) < p({x, ..., X,41}) and with respect to Theorem 10 we
have p = sup  p({xy, ..., Xp4 1))

X1y ey Xn+1€D .
Hence for each me N we can choose points x7,..., xy.; €D such that
lim p({xT, ..., xg+1}) = . There exist points x,, ..., X,4+, € D satisfying the asser-

m=

tion of Theorem 11 (2). By Theorem 8 there exists P € ¥ such that max | P(x) —
k=1,...,n+1 ’

— f(x) | = w({x(, ..., Xa+1}). Let us choose & > 0 arbitrarily. There exist neighbour-
hoods U; of xy, .., Ups1 Of X, 1(Uy, ..., Upyy = D)suchthatfork =1,...,n + 1
and for each x € U, we have | P(x) — f(x) | < |P(x) —f(x) | + B = p({xy, ooy X0 0)) +
+h If y,eUp, ..., Var1 €Uy, are arbitrary, then max | P(y,) —fOn ] <

k=1,..,n+1
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< p({xy, ..s Xp41}) + h, hence {1y ey Yas1}) < w{xy, .o, Xa+1}) + b By
Theorem 11 (2), there are infinitely many m € Nsuchthat xj € U, fork = 1, ...,n + 1.
Then p({xy, ..., Xps1}) + h > u({xT, ..., X34 1}). By means of the limit passage for
m— oo we get p({xy, ..., x,1q}) + b 2 p As p({x,, ..., x,,1}) < +o0, we have
i < +o0, too. As & > 0 has been chosen arbitrarily, we have p({x,, ..., x,+,}) = p
and therefore pu({x,, ..., X,+(}) = M

1.5. The Minimal Set

Assumption (for § 1.5.). Let B be a set, let X be an NL-space over a field S, where
S = Ror S = C. Let V be an n-dimensional subspace of X® (n e N), let fe X, let
us denote u = min || @ — f|.
QeV
Theorem 13. Let m =n + 1 for S=R, m=2n+ 1 for S = C.
(1) We have gt = sup u({x;, ..., Xnu})-

X1, Xm€B

(2) Let B have a representative subset D. Then there exist points x,, ..., x, € D
such that u = pu({x,, ..., x,}) < +oc0.

Proof. For S = R the assertions follow from Theorems 10 and 12. Let §S = C
and let Q,, ..., Q, form a basis of ¥. We may consider X as an NL-space over R;
we keep the sum and the norm, only the multiple must be restricted to the multiple
only by real numbers. Then X® is an L-space over R, V remains a subspace of X2.

If Q €V, then there exist numbers a,, ..., a, € C such that Q = Z a, Q. Let a, =
k=1

= b + ic, (where by, ¢,eR) fork =1, ..., n; @ = Y b0 + ¥ ¢ . iQx. On the
k=1 k=1

other hand, if by, ..., b,, ¢y, ..., ¢, € Rare such numbers that . b;Q; + . ¢ . iQy =
n k=1 k=1

= o,then Y (b, + ic,) Oy = o, hence by + ic, = Oand b, = ¢, = Ofork =1, ...,n.
k=1 '

Therefore the functions Q,, ..., iQy, ..., Q,, iQ, form a basis of V if we take V for
a subspace of the L-space X2 over R. Hence V is a (2n)-dimensional subspace of the
L-space X® over R. Both assertions follow again from Theorems 10 and 12.

Definition 7. A subset M < B is called a minimal set iff u(M) = p and u(G) < p
for every G =« M such that G # M.

Remark. (1) Let fe ¥, i.e. u = 0. Then there exists exactly one minimal set,
namely 0.

(2) Let M be a minimal set. Then M # 0 holds iff f¢ V, i.e. iff u > 0.

(3) Let M = B, u > 0. Then M is a minimal set iff u(M) = pand (M — {x}) < p
for all x e M.
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Proof. (1) Obviously #is minimal. Let M # @;thenf c M, 8 # M, u(®¥) = 0 = g,
hence M is not minimal.

(2) If f¢ V, then u > 0, therefore u(M) > 0 and M % 0.

(3) If M is minimal and x € M, then u(M — {x}) < p. On the other hand, let M
satisfy the latter condition. If G € M, G # M, then let us choose xe M — G. Then
G c M — {x}, hence pu(G) £ u(M — {x}) < p and M is minimal.

Theorem 14. Let M # @ be a minimal set. Then for $ = R we have card M <
SdimyV+1=Sn+1,forS=Cwehavecard M £2.dimy, V+ 1< 2n+ 1.
Proof. Let us denote W = {Q,,/Q € V'}; then W is a subspace of XM, dim W =
= dim,, V. Further fi, € XM, p = py(M) = min sup | Q(x) — fy,(x) |. Let us denote

QeW xeM
m=dimy, V+1for S=R, m=2.dimy V + 1 for S = C. By Theorem 13 (1)
applied to M, W, fy we have u = sup u({x;, ..., X))

X1,y XEM
Let us assume that there exist distinct points z, ..., Zy4+1 € M. Fork=1,...,m+1,
we have uy(M — {z}) < p and therefore there exist points x;, ..., X,, € M such that
p{xy, ., xm}) > max p(M — {z}).IfxeM — {x, ..., xp}, then {x,, ..., x,,} =
k=1,...,m+1

< M — {x}, therefore pu(M — {x}) = p({xy, ..., Xm}) > max uM — {z.}),
k=1 +1

hence x ¢ {z,, ..., Zm+1}. Hence {z;, ..., Zn41} © {X1, ..., Xm}, Which is a contradic-
tion. Necessarily card M < m.

Corollary. If S = Randcard M =n+ lorS=Cand2n <card M £ 2n + 1,
then dimy, V =

Remark. If there exists at least one minimal set M, then M is finite and necessarily
B = uM) < +o0.

Theorem 15. Let B have a representative subset D. Then there exists a minimal set
which is a subset of D.

Proof. By Theorem 13 (2), there exist points x,,...,x,€.D such that
p({xys ..., Xm}) = p. We can create a minimal set M < {x,, ..., x,,} by eventual
removing several points x;.

Theorem 16. (1) Let M < B. Let points x, y € M be distinctand let | Q(x) — f(x) | £
£100) —f()| for all Qe V. Then (M — {x}) = p(M), i.e. M is not minimal.

(@) Let M = {x,, ..., x,,} be a minimal set. Let yy, ..., ¥, € B be such points
that | O(x) — f(x) | = | O —fO) | for k=1, ...,m and for all Q € V. Then
D = {y1,..-» Ym} is a minimal set, too.

Proof. (1) There exists P € V'such that | P — f|ly-(xy = #(M — {x}). Asye M —
{x}, we have | P(x) — f(x)| < | P(y) — f(»)| S n(M — {x}). Hence p(M) < || P— f
I = #(M — {x}) < (M) and the equalities hold.

(2) Evidently (D) = p(M) = p, p(D — {y}) = p(M — {%}) < p.
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Theorem 17. Let M # 9 be a minimal set, let P € V be such that | P — f ||y = .
Then | P(x) — f(x)| = u for all xe M.

Proof. Conversely, let us admit that there exists z € M such that | P(z) = f(2) | <
< p. The inequality u(M — {z}) < p holds and there exists Q € ¥ such that
1Q = fllm-z; = WM — {z}) < p. Then necessarily |Q(z) — f(z)| 2 p. Let 0 <

= P(z) = 1(2)|
[0G) — /@)1 = 1P(2) ()]
+ (1 —a)P;then Te V. Forall xe M we have | T(x)—f(x)|Sa.| Qx)—f(x) | +
+(1—a).|P(x)—f(x)]. If xe M — {z}, then | T(x) — f(x)| S a.puM - {z}) +
+ (I = a). p < p. Moreover | T(z) — f(2)| £ | P(z) = f(2)| + a.(| Q(2) — f(2)| —
—|P(2) — f(z)|) < u. Hence p(M) £ max | T(x) — f(x) | < p, which is a con-
xeM

<a< , we have a < 1. Let us put T'=aQ +

tradiction.

Theorem 18. Let X be strictly normed. Let M # @ be a minimal set. Let P, Qe V
be such that | P — fll,y = | @ — fllm = u. Then P(x) = Q(x) for all xe M.

Proof. Let us denote T = é—(P + Q). For all xe M we have | T(x) — f(x) | =

= 5 1[PG) = 0] + [0() — (] | S+ P = 0| + 100 = f() 1) <

S uie. | T — flly = p By Theorem 17, we have | T(x) — f(x) | = uforall xe M,
therefore | [P(x) — f(x)] + [Q(x) — f)]| = | P(x) — fx) | + ] Q(x) — fX) |,
| P(x) — f(x) ] = | @(x) — f(x) | = p. From the basic property of the strictly norm ed
spaces we have P(x) — f(x) = Q(x) — f(x), i.e. P(x) = Q(x) for all xe M.

Remark. Let X be strictly normed and let M # 0 be a minimal set. By Theorem 18,
at each point x € M all the polynomials of the best approximation to fin M have
the same value which is therefore determined unambiguously by ¥, f, M. Moreover,
with respect to Theorem 17, we see that there exists a function r(x) € X such that
[r(x)| =1 for all xe M and if Pe ¥ and | P — f|ly = p, then P(x) = f(x) +
+ p.r(x) for all xe M.

Theorem 19. Let M < B, y(M) = p. Let Pe V, | P — f |, = p and let no other
polynomial of the best approximation to fin M exist.

(1) If M« D < B, then | P — f|p = u and there is no other polynomial of the
best approximation to fin D.

(2) | P — fIl = p and there is no other polynomial of the best approximation
to f(in B).

Proof. (1) By Theorem 8, there is at least one polynomial Q € ¥ such that
IQ — flp=u(D)= p.If Q is such a polynomial, we have | @ — flly = p(M) = p
by Theorem 9 (3), hence Q = P. Theorefore | P — f lp = p and the assertion holds.

(2) follows from (1) for D = B.

41



Theorem 20. Let X be strictly normed, let M be a minimal set such that dim,, V' = n.

(1) There exists exactly one Pe ¥V such that | P — flly = 1.

(@) If M = D < B, then there exists exactly one Pe V such that | P — f|p=
= U

(3) There exists exactly one Pe V such that | P — f| = .

Proof. () Let P, Qe V and | P — f|, = || @ — fllu = p. By Theorem 4 (3),
we have P — Q= o, i.e. P = Q.

(2) and (3) follow from (1) and from Theorem 19.

2. REAL AND COMPLEX FUNCTIONS

2.1. Some Auxiliary Results

Remark. In the following we restrict ourselves to real and complex functions. That
means X = S where S = Ror S = C. In both cases S is a strictly normed NL-space
over S and all the previous results hold.

Theorem 21. Let B be a set, let S = R or S = C. Functions Q,, ..., 0, € S? are
independent iff there exist points x,, ..., x, € B such that det Qy(x;) # 0.

Theorem 22. If B is a finite set, then dim S® = card B. If B is infinite, then S is
not of a finite dimension.

Theorem 23. Let B be a set, let S = Ror S = C. Let V be a subspace of S, let
neN.

(1) Let M < B, let M be finite. Then dim,, ¥V < card M.

(2) Let M = B, re N and let dimy V exist. Then dim,, ¥ = r holds iff there
exist Py, ..., P,e V and x,, ..., x, € M such that det P;(x;) # 0.

Le. dimy, V = r iff there exists D < M such that dimp V' = card D = r.

(3) If points x,, ..., x,€ B are such that dim,,, .V =n, then for arbitrary
P15 ---» Ya €S there exists P € V such that P(x,) = y, for k = 1, ..., n. If, moreover,
dim V = n, then there exists exactly one such P.

(4) Let M < B, dimy ¥V = te N, and z € B. Let us denote D = M u {z}. Then
t=<dimp, V=1t+ 1.

(5) Letdim V' = n, let Q,, ..., Q, form a basis of V. Let M = {x,, ..., x,,} = B.
Then dim,, ¥ is equal to the rank of the matrix

0:(xy) ... Q4(x)
A=|:

Qn(xl) Qn(xm) .
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Proof. (1) Let us denote W = {Q,/Q € V}. Wis a subspace of S, hence dim,, V' =
= dim W < card M by Theorem 22.

(2) If the latter condition is fulfilled, then by Theorem 21 the functions Py, ..., P,
are independent in M and hence dimy V' = r. On the other hand, if dimy, V' = r,
then there exist Py, ..., P,e V independent in M and by Theorem 21, there exist
points x,, ..., X, € M such that det P,(x;) # 0. By putting D = {x,, ..., x,} we can
prove the assertion concerning D.

(3) By (2) there exist Py, ..., P,e V such that det P,(x;) # 0. Then there exist

aj, ..., a,¢ € Ssuch that )’ aPy(x;) = y;forj=1,...,n. We may put P = Z a.P,.
k=1 k=1

Let dim ¥V = n. Then the functions Py, ..., P, forma basisof V. If Q = ¥ b, P, e V
n k=1
is such that Q(x)) = y; for j = 1,..., n, then Y bPy(x;) = yjforj=1,..,nand
k=1

hence aq, = b, for k = 1, ..., n. Hence Q = P.

(4) Let us admit that there exist functions Py, ..., P,,, € ¥V which are independent
in D. By Theorem 21, there exist distinct points x,, ..., X, 4+, € D such that det P,(x ) #
#0. If z¢ {xy, ..., X,+3}, then by (2) we have dim, V > ¢ + 2, which is a con-
tradiction. Let then e.g. x,,, = z. Then at least one subdeterminant of the order
t + 1, determined by the first £ + 1 columns, is non-zero; then by (2), we have
dim,, ¥V = t + 1 which is a contradiction again. Hence necessarily dim, V' < ¢ + 1.
On the other hand, dim, V = dim,, V = t.

(5) Let ¢ be the rank of the matrix 4, s = dim,, V. By (2), we have s = t. As
015 .-, O, are generating in M, there exist Q;,, ..., Q; among them which form
a basis in M. Then the rows with the indices iy, ..., i; are independent and hence
s < t; together s = ¢.

Theorem 24. Let Ba set,let S = Ror S = C, let ¥ be a subspace of S® and fe S5.
Let M < B be finite and dim,, ¥ = card M. Then p(M) = 0.

" Proof. By Theorem 23 (3), there exists P € V such that P(x) = f(x) for all x e M.
Hence (M) = 0.

Theorem 25. Let Bbe aset,let S = Ror S = Cand ne N. Let V be an n-dimen-
sional subspace of S, let fe S®. Let M # @ be a minimal set. If S = R, then we have
card M = dim,, ¥V + 1. If § = C, then we have dimy, V + 1 S card M =<
<2.dimy V + 1. ‘

Proof. By Theorem 23 (1), dimy ¥V < card M. If dim,, ¥V = card M, then by
Theorem 24 we have u = p(M) = 0, which is in a contradiction with M # ©. Hence
dim,, ¥ + 1 £ card M. The assertions follow now from Theorem 14.

Theorem 26. Let Bbe aset,let S = Ror S = Cand ne N. Let V be an n-dimen-
sional subspace of S5, let fe S5.

(1) Let M < B and z € M be such that u(M — {z}) < p(M). Then dimy,_(;y V=
= dimM V. . )
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(2) Let M be a minimal set and let z € M. Then dimy -3 V = dim,, V. If, more-
over, S = R, then we have dimy_,, ¥ = card M — 1 = card (M — {z}) and hence
WM — {z}) = 0. :

Proof. (1) Let us denote D = M — {z}, r = dimp, ¥ + 1 and let us assume that
dim,, ¥V = r. Then we can choose Py, ..., P,e V independent in M. They must be
dependent in D and there exist numbers a,,...,a,€.S not all zero such that

Z a.P,(x) = 0 for all x € D. Then necessarily z a.P(z) # 0. There exists Q € | 4

such that | @ — f|lp = n(D). Let us denote b = M , T=0—-b. Z a.Py.
ZayP(z) k=1
We have T(x) = Q(x) forall xe D, i.e. | T — f||p = u(D), moreover T(z) = Q(z) —

—-b 'kglakPk(z) = f(z). Hence pM) S | T = fllm = I T = flp = (D) < u(M),

which is a contradiction. Hence dimy, V' =r — 1 = dim,, V.
(2) follows from (1) and from the dcfinition of a minimal set.

2.2. The Approximation on r Points

Lemma. Let X be a strictly normed NL-space over S where S = Ror S = C.

Let x;,...,x,€X and |x; + ...+ x,|=]|x, |+ ... + | x,|. Then there exist
b e X (we can take it among x,, ..., x,) and real non-negative numbers a,, ..., a, € S
such that x, = g,.bfork =1, ..., r
Proof. Letx,yeXand |x + y|=|x| + | y|; wemay assume | x| = |y]| > 0.
lyl) I 1y ( Iyl)
Then |x| + =|lx+y|ll -+ ). x|+ |+—~.x+ {1 --—].
I xI+1yl=1 yl_‘( [x] x| y x|
x|+ :y: x|+ |yl =1x|+yl| Al the terms are equal, especially
Iyl 1yl : llyl 1yl
—.x+ + .- Since , we have X
%] Y= TR Iyl I =yl Y =TT

and we may take b = x. The proof of Lemma can be completed by the induction
Theorem 27. Let S = Ror S = C, let re N. Let the numbers C,, ..., C,e S be
not all zero and let C € S be arbitrary. Let us denote 4 = {(u, ..., u,) € S"/ ¥, Cugy =
k=1
I Cl

ZIQI

k=1
(1) We have min max || =d.
(1, e0sttp)€A k=1,...,p

=C}d=

(2) Let (4, ...,u,) € S". Then we have ZC,‘u,‘ = Cand max lu, | = diff we

k=1

have 4, = d. sign (CG;) for C; # 0 and || < d for C, = O(k —1 ,r).
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Proof. Then assertion is obvious for C = 0. Let us assume C # 0; then d > 0.

If (uy,...,u)eAd, then |C|=|2ZCu | SZ|Cl.|u| < (max|ul).Z|Cl,
hence max | ¥, | = d.

Let (uy, ..., 4,) € A, max | 4, | = d. Then we have the equalities in the previous
calculation. Therefore we have | &, | = d for C; # 0 and we conclude by Lemma that
thereexist b € Sand numbersa, = 0, ..., a, = Osuch that Cyu, = gbfork =1,...,r.
Let us denote a = Ya,. Wehave C = ZCu, = Za,b = ab. Let C, # 0. Then | | =
=d> 0, a > 0; necessarily b # 0,a > 0. Further | C, | .d = a; .| b|,henceq, =

| Cil du, = b.a _ b.|C.|.d _ a.b.|C,|.C = C.C,‘__. d=
|b] o C..1b] lab|.C,.Cy ICl.|C|
= d .sign (CC). If C, = 0, necessarily | u, | < d.

Let (4, ...,4)€S" and u, = d.sign (CC,) for C, # 0. Then Y Gy = Y. Cy.
k=1 k=1

.d.(sign C).(sign Cy) = d.(signC).éll Cl =] CI.—I—g—l—

€ A. If moreover | 4, | < d for C, = 0, then max | 4, | = d. The proof is completed.

= C, hence (4, ...,4,) €

Remark. If C =0 or if C, # 0 for k = 1, ..., r, then there exists exactly one
(uy, ..., u) € A such that max | 4, | = d, namely u, = d.sign (CC,) for k=1, ..., r.
Otherwise there are infinitely many such (u,, ..., #,) € 4.

Theorem 28. Let .B be a set, let S = Ror S = C and r = 2. Let x,, ..., x, € B.
Let ¥V be a subspace of S® such that dimy,,, .,V =r—11let P, .., P,_ eV
form a basis in {xy, ..., x,}. Let fe S8 For k =1, ..., r let us denote

' Py(x)) .. Py(-1)  Pi(xesr) - Pi(x)
Co= (-1 .
Po_y(x1) oo Ppoy(e—q)  Ppoy(Xisr) - Prey(x,)
Then Y | C;| > 0 by Theorem 23 (2). Further let us denote C = — ¥ Cy. f(x),
k=1 k=1

¢ .
LY
(1) For each P € ¥ we have é:l Ci - P(x) = 0, hence Z' Ci-[P(x) — f(x)] = C.
@ u{xes o %)) = gzi‘r} kl;f‘f,,l 0(x) — f(x) | —a
(3) If Pe V is such that . E}axrl P(x) — f(x) | = d, then P(x,) — f(x,)=d.

. sign (CC,) for C; # 0.
(4) On the other hand, if vy, ..., v, € S are such that v, = f(x;) + d. sign (CC)
for C, # 0, then there exists P € V such that P(x,) = v, fork =1, ..., r.

d=
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(5) If Pe V is arbitrary, then pu({x,, ..., x,}) = EACY [Iz)ﬂxé)k I — /()] l

(6) Let Pe V have the property that there exists A€ S, h # 0 such that k. C;.
Z|C| .| P
[P(xk) —f(xk)]g()fork: 19 L Then ”({xls""x'})= I k lzl(ék)l f(x‘;)l
hence min | P(x,) — f(x) | £ u({x1, --» %,}) < max | P(x) — f(x) |-
C#0 Ck#0

(7) Let Pe V be such that there exist he S, h # 0 and p = 0 such that 2. C, .
JJP(x) — f(x))] 20 for k=1, ..., rand | P(x,) — f(x) | = p for C; # 0. Then
u({xl,...,x,})=p :

Moreover, if D < B is such that {x,, ..., x,} = D and | P(x) — f(x) | £ p 10r all
x € D, then p(D) =

Hence, if moreover | P — f| = p, then pu = p.

P(xy) Py(xq) ... Pr_y(xy) r
Proof. Let Pe V. Then 0 = | : =Y C.P(x;), hence (1)
P(x) Py(x) ... Po_y(x,) | *°!
holds.

If u,,...,u, €S, Z Ciu, = C, then

r U + f(x1) Py(xy) ... Pp_y(xy)
= 2 Ce. [ + /0] = :
k= u, +f(x,) Pi(x,) ... P,_4(x,)

As the columns of the determinant from the second to the r-th are independent,
r—1

there exist a;, ..., a,€ .S such that 2 aP(x;) = u; +f(xj) for j=1, ..., r. Let
-1

0= ZakPk, then Q(x)—f(x)—u fOl‘]—'l

Letusdenote 4 = {(uy, ..., 4,) € S'/k;C,‘u,, = C}.Then 4 = {(Q(x,) — f(xy),...,

. O(x,) — f(x,))|Q € V}. The assertions (2), (3), (4) follow now immediately from
Theorem 27. The assertion (5) follows from (1) and (2).

(6) Fork = 1,...,rwehaveh. C,.[P(x) — f(xJ] = | k| .| Cc|.| P(x) — f(xk)l,
ie. G . [P(x) — f(x)] = Gign k) . | G | . | P(x) — f(xo) |, hence | Y C;.
[P(x) = fa)] | =X | Ci | . | P(xi) — f(xi) | The inequalities follow from the fact
that we may sum | C, | ..| P(x;) — f(x,) | and | Ci | only for such k for which C; # 0.

(7) The first part follows from (6). If D has the required property, then u(D) =
2 u({*ys s x})=p=1|P—flp= D) and the equalities hold. If we put
D = B, we have the last assertion.

Remark. (1) We have C; # 0 iff dim,,,..,x-1,3¢01,...5,3 ¥ = 7 — 1. This follows
from Theorem 23 (2).
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2 LetC=0o0rC,#0fork =1, ..,r.If Pe Vis such that max |[P(x) —

k=1,..,r
~ f(x) | = d, we have P(x) = f(x) + d.sign (CC,) for k = 1, ..., r. That means:
the values of such P in x,, ..., x, are not dependent on the choice of P. If, moreover,
dim ¥V = r — 1, then there exists exactly one P € V with this property; it follows from
Theorem 23 (3).
(3) We have d = 0iff C = 0, i.e. iff there exists Q € V such that Q(x;) = f(x,) for
k=1,..,r.

Corollary. Let us formulate Theorem 28 for r = 1: Let B be a set, let S = R or

S =C, let x;eB. Let V be a subspace of S® such that dim,,,, V' =0, let fe S°.

We have Q(x,) = 0 for all Q € ¥, hence u({x,}) = min | Q(x,) — f(x1) | = | f(x,) |.
QeV

2.3. The Values at the Points of a Minimal Set

Assumption (for §2.3.). Let B be a set, let S = Ror S = C, let ne N. Let V be
an n-dimensional subspace of S, let Q,, ..., Q, form a basis of V. Let fe S5, let

us denote u = min | Q — f||.
QsV

Remark. If M # 9 is a minimal set, then for S = R we always have dim,, V' =
= card M — 1. (This is not true of S = C.)

Theorem 29. Let M be such a minimal set thatcard M = r 2 2, M = {x,, ..., x,},
dimy V=r—1.
0:1(xy) .- O4(x,)
(1) The rank of the matrix | : isr—1.
Qn(xl) Qn(xr)

(2) Let the rows with the indices i, ..., i,—; be independent. For k = 1, ..., r let
us put
0:,(x1) .. Qi(xi-1) Qi (xksr) - Qi (%)
Co= (-1 .
Qi,-,(xl) e @i (Xi—y) Qi,-;(xk+1) Qi,._l(xr)

Then C, #0fork=1,...,r.

Proof. (1) The assertion follows from Theorem 23 (5).

(2) The polynomials Q, , ..., @, _, form a basis in M. Letk e {1...,r}. Then these
polynomials are generating also in M — {x,}, by Theorem 26 we have dim,,_ V=
= r — 1, therefore the polynomials Q;,, ..., @, _, form a basis in {x1s s Xzt
Xi41s---s X} = M — {x,} and are independent here. By Theorem 21, the determinant
is non-zero, hence Ci # 0.

Theorem 30. Let M = {x,, ..., x,} be such a minimal set that r 2 2and dimyV =
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=r—1 Let Q,..., Qz,_. € V be iades:n lent in M, let us denote Cy, ..., C, like in
Theorem 29 and C = — C,, f(x)-
| C |

Sl

k=1

(2) Lzt PV bz suzh thit max | P(x) — f(x)| = p. Then we have P(x,) —
k=1,..,r

(1) We have u =

—f(x) =p.sign(CZ) fork=1,...,r
(3) Let Pe V be sush thit P(x,) — f(x,) = q.signC, for k =1,...,r (g€ S).
Then | g| = ,nax | P(x) — fx) | =
=1,..,r

(4) Let Pe V. Thenwehwve | P — f|| = piff we have P(x)) — f(x) = | P = f] .
.sign (CC) fork =1,...,r

Proof. (1) We have u = p({x,, ..., x,}) and the assertion follows from Theorem
28(2).

(2) By Theorem 29 (2), we have C, # 0 for k = 1, ..., r and hence by Theorem
28 (3) we have P(x;) — f(x,) = u.sign (CC)).

(3) If ¢ =0, w2 have u = p({x,, ..., x,}) = 0 which is a contradiction. Hence
q#0. For k=1,...,r we have (signg).C,.[P(x)) — f(x)]1 =14g].1Cc| >0,
hence by Theorem 28 (7) we have u = p({x,,...,x,}) =] ¢q| = max l P(x) — f(xp)].

@If| P —f| — u then we have max | P(x,)| — f(x,‘) = u by Theorem 9(4)

k=1,
and the assertion follows from (2). If thz l).tter coadition is fulfilled, then by (3) we
have p = max |P(x) —f(x) | =P~ f].
k=1,.,r

Theorem 31. Let M = {x,, ..., x,4,} be such a minimal set that card M = n + 1,
dimy V=n. Fork =1,...,n + 1 let us denote

Q1(x1) cor @1(0—1) Q1(Xk41) o @i(Xnsy)

G = (—l)k_l : ’
et 0n(x1) oo Qulxi—1) QulXitr) --r OuXns)
and C = = Y G,.f(x)
=1
(1) We have u = l—Cl
Z | Ckl

k=1
(2) Let Pe V. Then the following assertions are equivalent:

(a)h max | P(xy) -S| =p

(®) llP fll = p.
©) Px) —f(x) = | P — fl .sign(CCy) for k =1, ...,n + L.
(d) There exists g € S such that P(x,) — f(x) = q.signC,fork =1,..,n+ L.
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Proof. (1) The assertion follows from Theorem 30 (1).

(2) We have dimy, V = n, hence (b) follows from (a) by Theorems 19 and 20;
(c) follows from (b) by Theorem 3 (4); (d) follows obviously from (c) and (a) follows
from (d) by Theorem 31 (3).

R>mark. Th: previous Theorems are of a great importance especially for real
functions (S = R) because in this case for any minimal set M # @ the relation
dim,, ¥ = card M — 1 always holds (which is not true of § = C). It is then sufficient
to prove the existence of a minimal set (e.g. by Theorem 15). We can seldom find it
exactly, but even th: knowledz: of its existence is of a great importance.

Remark. Let a minimal set M have the single elem2nt x. By Theorem 25, we have
dim,,, ¥ =0, hence Q(x) = 0 for all @ € V. Hence we have p = p({x}) = | f(x) |.

2.4. The Application to the Classical Problem

Remark. Let us denote R* = (—o00, +0)> = RuU {—oo, +oo}. Letusput 7 =
= {(b, ¢)/b, ce R} U {{—o0, ¢)[ce R} u {(b, +0)[be R}. A set M = R* will be
called “open” iff for each x € M there exists 4 € T such that xe 4, A « M. We can
easily prove that in this way we get a topology on R*; R* is then a compact Hausdorff
T-space with respect to it. The relative topology induced from R* to R coincide with
the usual topology on R. If B = R*, then C(B) will denote the system of all continuous
real functions in B.

Assumption (for §2.4.). Let ] = R* be an interval. Let W be an n-dimensional
subspace of C(J), let W satisfy the Haar condition on I (i.e. @ € Wand Q % 0, then Q
has at mostn — 1 zerosin 7). Let Q,, ..., O, form a basis of W. Let B = I be compact,
let card B = n + 1, let fe C(B).

Lemma. Evidently the following conditions are equivalent:
(1) The Haar condition.
(2) If x4, ..., x, € I are distinct, then there do not exist a, ..., a,€ S not all zero

such that Z a0 x) =0forj=1, .., n
k=1

(3 If x4, ..., x, € I are distinct, then det Qy(x;) # 0.

4) If x4, ..., x, € I are distinct and y,, ..., y, € S are arbitrary, then there exists
P e W such that P(x)) = y; forj =1, ..., n.

(5) If M < I, then dim,, V = min (n, card M).

Remark. Let us denote ¥ = {Qs/Q€ W}. V is a subspace of C(B), dim V =
= dimy W = n. The restrictions of Qy, ..., s to the set B form a basis of V. We
shall approximate the function f by means of the polynomials Q € V in the set B.
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If Qe V, then Q —f€ C(B) and || Q — f|| = max | @(*) — f(x)| < +oc0. Let us

xeB

denote p =min || @ — f1l -
QeW
If Q € W, then the symbol || @ — f'|| will denote max | Q(x) — f(x) | = || Qs Sl

x€B
We have p = min | @ — f1|.
QeV

Theorem 32. Let X; < x; < ... < X,,, be points in I. For k =1,... ,n+ 1 let
us denote

C, = (-1 | -Ql(xl) v Q1(Xk=y) Q1(41) -+ C1(Xns1)
k== :

0ux1) -+ QulXter) Culest) - alr)
Then the numbers Cy, ..., C,4, are non-zero and alternate in sign.
Proof. Let ke {1, ..., n}. For all xe let us put
Q1(x1) - Q1(x4—y) 01(x) Q1(xx+2) +or Qi(Xns1)
o(x) =|: .
Oa(x1) - On(Xk-1) 0,(x) On(x42) - On(Xns1)

Then Q € W and Q is continuous on {x;, x;, ). By Lemma (3), we have O(x) # 0
for all x € {Xy, Xx+17. Hence Q(x;) . Q(x;41) > 0. We have C, = (—1)*"! Q(x441)>
Ck+l = (_l)k Q(xk)’ hence Ck . Ck+l < 0.

Theorem 33. Let Pe W and let x; < ... < x,,, be points in B. Let us define the
numbers C,, ..., C,., like in Theorem 32. '

(1) We have u 2 p({x,, ..., %11)) = 126, [I;(Ixz:) l —fGa)]l

(2) Let us suppose that there exists A # 0 such that 5. (—1)*. [P(x) — f(x)] = 0
for k=1,...,n+ 1. Then p = u({xy, ..., Xp4,}) = Z1Ge- 1PC) = flxe)| 2
= min IP(xk) = J(xd |-

2| G -
k=1,...,n+

Remark. The inequality between p and the last term is the well-known relation
of de la Vallée —Poussin.

Proof. We have dim,, ..,V = dimg,, ..., W=n by Lemma (5). We
apply Theorem 28 to the restrictions of Qy, ..., @, to B and to the function Pg. Then
(1) follows from Theorem 28 (5). As to (2): Let the condition in (2) be fulfilled. Then
fork=1,..,n+ 1 we have C, # 0 and sign C, = (—1)*"*. sign C,, hence
(—h.signCy).C,.[P(x) — f(x)] = —h.(sign Cy) .| Cp|.(—1)*" . (signCy) .
JdP() — f(x)] = 1 Gl - b (=1 . [P(xp) — f(x)] 2 0. The assertion (2) follows
from Theorem 28(6).

Remark. The condition in Theorem 33 (2) says that P — f alternates in sign at the
points x,, ..., X,.; (or P(xy) — f(x) = 0).
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Remark. B is a representative subset, hence there exists a minimal set. Let us
suppose f¢ V, i.e. p > 0. Let us consider such a subset M = B that card M < n.
By Lemma (4) there exists P € W such that P(x) = f(x) for all x € M, hence u(M) = 0.
Therefore, if M is a minimal set, necessarily card M = n + 1. Hence we have
dim, V¥V = n by Lemma (5).

Theorem 34. There exists exactly one Pe W such that | P — f|| = u.

Proof. By Theorem 20 (3), there exists exactly one Q € V'suchthat || Q — f|| = pu
We have dimy W = n, therefore by Theorem 4 (3) two distinct polynomials of W
cannot coincide in B. If P e W is the only polynomial for which Py = Q, then P is
the only polynomial of W such that | P — f| = u.

Theorem 35 (Tchebychev). Let Pe W. Then || P — f| = u iff there exist points
Xy < ... < X,41 in B and a number he {—1, +1} such that P(x,) — f(x) = h.
(=D P—flfork=1,..,n+ L

Proof. If the latter condition is fulfilled, then by Theorem 33 (2) we have g =
= min | P(x) — f(x,) | = | P — f1l, hence | P — f| = p.

Let | P — f| = p. For p = 0 we may choose the points x; < ... < x,4; in B
arbitrarily; let then u > 0. Let the points x; < ... < X,,, in B form a minimal set.
We apply Theorem 31 to the restrictions of @, ..., O, to B and to the function Pg.
Let us denote C;, ..., C,+1, C as in Theorem 31. For k = 1,...,n + 1 we have
P(x) — f(x) = p.sign (CC,) = p. (sign C). (=1)*7' . (sign C;) = —sign (CCy).
(=D .| P—fIl. As C # 0, we may put h = —sign (CC,).
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