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OF THE EQUATION [p()y] = q(t)y + r(?)
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Let us consider the differential equation

) @)y =q@)y + r(t).

Throughout the paper we suppose that p, g, r are continuous complex-valued
functions defined for 7€ J = [t,,0) and p(t) # 0, r(¢) £ 0. In [1] asymptotic
formulas for solutions of (1) in the case r(t) = 0 have been derived considering (1)
for a perturbed equation of [p(¢) z']’ = 0. In this paper we shall derive asymptotic
formulas for a particular solution of (1) satisfying the integral equation '

t & t [4
¥(t) = J. —I-,%JQ(W) y(n)dndé + f?’%ﬁ j r(n)dn d¢,

ty 13

where #;, i = 1, ..., 4 are suitable numbers, 7, < #; < co. In this way, regarding the
results contained in [1], the asymptotic nature of the general solution (1) will be
described.

Let us denote
t ¢
- 1
(1) = fﬁf’(ﬂ)dﬂ d¢

and define linear operators K,,, L, : C(J) - C(J) where C(J)is the set of all continuous
functions x(¢) defined on J in the following way

t [4
@ Kox(t) = x(t),  Kx(t) = f 5 jq(n) Ko yx(n) dn d¢,
tl‘ : |
3 Lox() =x(0),  Lx(1)= f 4(6)‘(-1%31«,.-156('1)(1”&-
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‘Then the series y(f) = ) K,0(¢) is a formal solution of (1) and its derivative is given
' 0

by

(YD) = fr(é) d¢ + 2 L, fq(é).f;(%j fr(a) do dp d¢.

Further, the following special cases of (2) and (3) will be investigated

t & t &
1 1 .
Tx(t) = f G fq(ﬂ) Tooix(n)dndé,  @x(t) = Jq(é)ojm ?,_((n)dnd¢,

t & t &
1 1
¥yx(1) = f 25 f a) Vo) dnde,  Qux(r) = f a(© f s B x(n) dn e,

n=1,2,..,
Tox(t) = Pox(t) = Wox(t) = Qox(t) = x(t).

Theorem 1. Suppose

Ip(é)l o, mlq(é)l {< oo, ' [ r(¢)1d¢ < 0.
Then there exists a solution y(t) of (1) such that
(4) y(t) = Z J (5) J\r(") dﬂ df + 81(‘)
and

'_

p(1)y' ()= ; ®, fr({) de + &,(1).

Here

0 16,015 ) T exp (),

([ ld o=
o0 = f _ f 1o, <o f - f atn) dn

)| Ez(t)I < (Pn+1()) exp {(ﬂ(t)} fl r(g) | d¢, (p(t) J‘|q(§)| J\ | ( )l dn dé.
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Proof. Let us denote

a(t) = fTT Jsr(n) dn dg.

We shall prove by induction

m | )] < () 2.

It holds | Tya(t) | = | a(t) | £ a(t) and by means of (7) we receive

g . . (n)
mﬂa(z)i-\'j;@qum (n)dndelgj . jnq(n)l )20 gy a <

(8 . _ L (T ()
oc(t)j FGI jlq(n)ldnT!-—dc —a(t)J = (@)= dd =a(h) T

using the fact that a(z), t(¢) are nonincreasing functions on J. From this it follows

that the series y(t) = ). T,a(t) is uniformly convergent on J since
V]

Lt S

is its convergent majorant on this interval. Thus y(¢) is a solution of (1). If we write y(¢)
in the form (4) we receive for ¢,(t) the following estimation

ISI(I)‘ = Z T,‘a(t)l = ot(t) ( +(3| [1 + ntg)Z + (n + 2)((13 + 3) ]

< oft) v ":.(1))' exp {t(t)}.

In the same manner one proves the uniform convergence of the series

t

PO ()= %, j &) g

o0
t

and the estimation (6) for &,(t) = } &, j‘r(é) dé.
n+1

e

An easy modification of the preceding proof leads to the following statement.
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If
@ @ 3
JI4(5)1d5<°°’ fm%Tflr(n)ldﬂdé<w

then there exists a solution y(t) of (1) such that

y(t) - Z f (é) fr(”)d” df + 33(0
and

. -1 t 4 n :
Py = [0+ T 0 [a@) [ 1 [raoanae + e

to

Here

+1 ~ ¢
|01 S e () f e f 170

leg(t)| < 22 ( exp{w(t)}flq(é)lfI ()Ijlr(a)ldodndé

Theorem 2. Suppose

1 1
d b —_——
j,pm,flr(n)ldn E<oo jlp(é)l jIQ(ﬂ)ldnd§<1_

Then there exists a solution y(t) of (1) of the form

! 4
®) ‘ y(1) = 202 L f;gé\) fr(n) dn d¢ + es(1),
where | T
. . .
POIE f, - flr(n)l nde f o |1 ance
Adding further assumption 0
©) fi r(§)|d¢ < oo,

82



then
t

(10) . ’ n(t)yf(.t)=gﬂkfr(é)déﬂs(t), -

to

and

w

n+1 Y . Coe 400\._,:‘ co. 1 L
d D= || — .
l_wjlr(f)l & o qu(ﬁ)l!lp(ﬂ)|dqdf
1f we suppose instead of (9) |

© o '1 n
jIQ(f)ljwjlr(U)ldUdﬂq5< 0,

it holds again (10) with

an e <

(0]

n 3 v 1 J
lss(t)| =< 1o ‘[|Q(f)|!mjlr(d)ldo’dndf

Proof. First of all we shall prove by induction

(12) - | | Ya(t) | < ay”
t & © 4
1 1
where a(t) = Jmfr(n) dnd¢, «o — jw J | p(n) | dn de.
For n = 0 we have | Yqa(t) | = | a(t) | £ « and using (12) we receive

o Tk @ 4 '"'
1 1 "
| ¥,sia(t)] = | fﬁjq(n) Y,a(n)dpdé| < fl—p(@—'JIq(n)iw/f dndé <

0 & .
= “W"J‘Dﬁjhl(ﬂﬂdﬂdf =yl

=) [eo]

Hence, the series y(t) = Y ¥,a(t) converges uniformly on J since Y ayf" is its conver-
0 V]

gent majorant on J. Thus y(¢) is a solution of (1). If we write y(¢) in the form (8)
we have

.pn'i- 1

11—y

les() =Y Pa@)I Sy ' [1+ ¢ +y* + .. ] =«
n+1
This is the first part of the theorem.
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Now, let us suppose (9). Using the fact that the assumption

© e ® -
J Ip(é)tj lq(r)ldndd <1 implies j 1 ‘1‘5)‘; o dnde <1

L]
™

and that the function () = Jl q(&)1 dnd¢ is nondecreasing we verify

1
J 1p(m)]
I

easily by induction

o0

a,jr(f)de < o f (@)1 de.

(13)

[

J.r(f) dé! J| r(£) | d¢ and by means of (13) we receive

to

]amjr(é)dé] jlq(é)ljlp(”)l "flr(a)tdadndfg

to

It is namely | Q

< w'jlf(é)l&!lq(ﬁ)l Ef,—l-,:wdndé < o fl r(&)1dE.

H
From this inequality it follows the uniform convergence of the series ), £, Jr(é) dé
* 0

to

and the estimate (11) for €4(¢) in (10).
In the same manner we obtain the last part of the theorem.

Note. Let us define under the assumption

L]

f j[l‘I('I)|+Ir(n)l]dnd§<oo

the operator ©, ‘
t g
1
= > Qn =\ 7= n—1 .
o) =0, 6.x0)= [ 155 [t 6., xta)anz

Then there is a solution y(t) of (1) such that

t [4
y(t) = ; 6, JE(IZT fr(n) dn A& + &(1)



and

t 4
9 1
le,(0) ] §me ()j @] J'r(ﬂ)ld'ldf,

: z
1
8(1) = jwjlﬂ'l) | dn dé.

The proof of this statement is similar to that of Theorem 1 and will be omitted
here.
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