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1. INTRODUCTION 

Let Rn, Rm be real Euclidean spaces of dimension n, m, respectively, L(Rn, Rm) the 
vector space of all linear mappings from Rn into Rm, Ll(Rn, Rm) the vector space of 
all symmetric bilinear mappings from Rn into Rm, U a Rn and V c= Rm some open 
sets. We write R = R1. Put 

f1 = U x V x L(Rn, Rm), 

f2 = UxVx L(Rn, Rm) x L2
s(R

n, Rm) 

(the cartesian products) and consider f1 and f2 as differentiate manifolds with 
natural coordinates (xt, y^, zifl) and (xi,ytl,zifl,zkit^ respectively (1 = k = i = n, 
1 ^ \i g m). Denote by F the set of all differentiable mapsf: U-> V (say, of class C2), 
and write Drf for the r-th derivarive of the map f [2 ] , r = 1, 2. 

Assume that we have a real function L o n / 1 and a compact domain Q a U. 
The data give rise to the real function 

F9f->JL(x,f(x), Df(x))dx (1) 

(with dx = dx! A ... A dxn) which is of principal interest in various problems of 
the calculus of variations (see e.g. [3]). The extremals associated with L are then 
defined as solutions feF of the so called Euler equations 

n _ dL d2L 82L d2L 
A ) ~ dy, cxk dzk, dya dzk, ' Zk° dzia dzk,

 Zki° ~ ° ' 

fi = 1,2, ..., m. (2) 

Here, as everywhere in this paper, the usual summation convention is used. 

The expressions SJJL) defined by (2) are functions on f2. Put 

o\. = dyM ~ ZJH dxj 

and define a 1-form S(L) on f2 by the formula 

<?(L) = <^(L). a v 
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It can be easily checked that the 1-form S(L) is independent of the particular choice 
of coordinates on f2. 

We shall call each function I o n / 1 the Lagrange function, and the 1-form S(L) 
the Euler form associated with the Lagrange function L. The vector space (over R) 
of all Lagrange functions is denoted by &(fl), and the vector space of all 1-forms 
on f2 (over R) is denoted by Ql(#2). 

Certain sufficient conditions for the identical vanishing of the left-hand sides of the 
Euler equations (2), or, which is the same, for $(L) = 0, are known and frequently 
used in various calculations. Suppose that L e Z£($x) is of the form of the so called 
"divergence expression" 

L = "^T + ^ c 7 ^ ' (3) 

where/;, 1 ^ / g n are some functions on U x V. Then we see at once that $(L) = 0. 
It is also known that for the case m = 1 the condition (3) is necessary: this is a classical 
proposition of Courant and Hilbert [1]. 

We mention just two cases when the condition (3) is used: 

1. In the classical mechanics [5] and the general relativity [6], (3) serves for 
replacing the given Lagrange function by a more simple one. 

2. In the theory of invariant variational problems, for definition of the so called 
generalized invariant transformations [8] (see also [4], [9]). 

On the other hand, a complete description of the Lagrange functions L satisfying 
S(L) = 0 has not yet been given unless m = 1. The goal of this paper is to give 
such a description. In other words we shall study the kernel of the linear mapping 

&<Jl)eL-*g{L)eQl(f2) 

which will be referred to as the Euler mapping. 

2. D E F I N I T I O N S AND L E M M A S 

For the purpose of this paper it suffices to define what we mean by horizontal 
differential forms on the cartesian product of open subsets of Euclidean spaces. 

Let V and W be some open sets in the finitedimensional Euclidean spaces Rn 

and Rm, and consider the cartesian product V x W and the natural projection n: V x 
x W-+ V on the first factor. A tangent vector f at a point (v, w)e V x Wis called 
n-vertical, if 

Dn(v, w) . £ = 0. 

A differential form Q on V x W is called n-horizontal if it vanishes whenever one 
of its arguments (i.e. tangent vectors) is a 7r-vertical vector. 

Let us turn to the notation of Introduction. 
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We designate nx : / * -* U, nl0 :fl -> U x V, 7i20 : / 2 - > 1/ x V the natural pro­

jections and shall therefore speak about 7r2-horizontal, 7r10-horizontal, and 7r20-hori-

zontal differential forms. Correspondingly, we shall write QKf1), Qnuxv(#l)i a n d 

Qluxv(/2) f ° r ^ e spaces of all nl-horizontal n-forms, 7i10-horizontal /i-forms, 

and 7r20-horizontal 1-forms (remember that n = dim U). 

Notice that the Euler form, S(L), is an element of Q\jxV(f2). 

Let feF; define the mapping 

U3X-+ jf(x) = (x,f(x), Df(x)) e f1 

and denote byff* the corresponding mapping induced on differential forms o n / 1 . 

Thus if Q is a differential p-form on f1, then jf*Q is a differential p-form on U. 

Lemma 1. There is one and only one mapping 

Qnuxv(fl)eQ-+h(Q)eQv(fl) 

satisfying the following two conditions: 

1. h is linear over the ring of functions on f1; 

2. If Q e Quxv(r/1) Is a n arbitrary n-form, then 

Jf*Q=Jf*h(Q) 
for allfe F. 

Proof. If the mapping h exists, it is obviously unique. Let Q be an arbitrary 

element of Qn

Uxv(#1)- If m ti-e natural coordinates (xh y^, zifl) Q has the expression 

" 1 
Q = g 0 d x 1 A . . . A d x f l + X E Z "TV* 

Г = 1 S l < . . . < S r <Гl, . ri 

x gc\-tdxi A ••• A d x s i - i A d j ^ A dx s i + 1 A ... A dyar A ... A dxn (4) 

(in which the functions gs

a\-e

r

r are supposed to be antisymmetric in all subscripts), 
then we define 

n 

h(o) = (go + E I I &\"Z • z*<«, • • • Z*r*r) • d*i A ... A dx,. (5) 
r = l s j < . . . < s r <ri, . . . , < r r 

It is immediately clear that the conditions 1 and 2 are satisfied. 

Lemma 2. The mapping h is surjective. 

Proof. Let 

X = L dx ! A ... A dxn (6) 

be an arbitrary nl-horizontal w-form. We take 

8 L i 

Q = LdxlA...AQXn + — 0><-, 
Ozio 
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where 
col = d *i A .. . A dxf . i A (dj^ - zk(T dxk) A dxi + l A ... A dx„. 

The equality h(o) = A follows from (5). 
We note that the form Q from the proof is invariant under coordinate transfor­

mations on f1. It has been introduced, in a special case, by Sniatycki [7] in con­
nection with some geometric considerations concerning the structure of the calculus 
of variations. 

In order to shorten the proof of our main thorem we state the following explicit 
formula for the exterior differential do of a form Q e Qn

UxV(fl). 

Lemma 3. Let Q e Q'hxvif1) be expressed as in (4). Then dO is expressed as 

*-(^J^)^Ato'A"-Ato-+!-!.<_._.,.LWijrx 

f dzSi ~'Sr deSiS2'~Sr d2Si'"Sr 

\ 8y„ ty.i '" dy«r 

a fai -sr ft -l ksz -Sr o s . ...srk \ 

- I - ^ - 2 - - I f " - ^ - t - . - - - I - - _ ^ ) d ^ A d x 1 A . . . A d x . 1 . l A 
fc + s i ^ f c s i < k < s 2 ^ f e UXk J 

Ady f f lAdxS l + 1 A . . . Adj ; f f rA.. . Adxt, + 

4-

+ ^-<_.,A<_1A...A_..+ £ J J _LM:idz„Adx,A... 
(7Zk)u r = l s i < . . . < s r . i , . . . , f f r ' • ^-^fc/* 

. . .AdxS l .1Adj/ f f lAdx s l MA...Adj; f f rA...Adx„. (7) 

Proof. The formula follows by a straightforward calculation. 

3. THE KERNEL OF THE EULER MAPPING 

The main result of this work is contained in the following: 

Theorem. Let L e ^(f1) be a Lagrange function. Then the following two conditions 
are equivalent: 

1. The Euler form associated with L vanishes, $(L) — 0. 
2. There exists an n-form Q e Quxvif1) sucn tnat 

a) A(o) = Ldx! A ... A dxn, 
b) dg = 0. 

The n-form Q is uniquely determined by L. 
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Proof. Suppose that ${L) = 0. Then the relations (2) hold for all (xt, j>„, zilt, 

zkifl), and are equivalent with the system 

S2L 82L 
+ a , a, = ° - (8) 5z., 3zM 3zt(, dzj#, 

5L 52L 52L 
z_, = 0. (9) 

dy^ dxk dzkll bya dzkll 

From the first condition (8) we find that L must be of the form 

L = f0+t I I f'A-Z.z.M-z*.,, 00) 
r = l si < ... < s r <ri, ...,ar 

where f0 and fa\-s

a

r

r do not depend on zJfl, and fa\-s

a

r

r are antisymmetric in 
0-j,..., o-r. Let us examine the second condition (9). After some calculation we get 

Sfo °fn + "y y y / ^fai'"ar ^f^al'"^ _ dfa\'"l 

dy* dxk r = l Si<.<srau.,<rr \ 5 y/z ^y<n ' " ty ar 

E
fjfksi...sr fsrsi ks2...sr flfsi ...srk 

°J nai ar Y , * aiVai ov _ ___ y UJ ai...arli , 
F)y —' r?r —' rlv ' S l < T l * " S r < T r 

fc<si 0*fc s i</c<s 2 ^ f c fc>sr ^ f c 

+ I ( ^ ^ - ^ ^ ( 1 1 > 
<Tl_t<xA ^ ^ . 3 ^ J 

Since the coefficients at zsiai . . . zSrffr do not depend on zkVL they must vanish sepa­

rately. In this way we have obtained that if L satisfies S(L) = 0, then L is of the form 

(10) and the conditions (11) are satisfied. We assert that the functions f 0 , fa\-ar 

are unique: it follows from (10) that 
dnL 

Г 
J vi 

1 ...n 

dz1Vl...dznVn 

rfT 
fSl...Sr _ V V V f k l " ^ Y 

J vi vr -s -a __ __ Li J o\ <rj * 
u^sivi . . . vz,srvr i = r + l ki<...<fcj <ri,...,<T/ 

dztiyi...dztryr 

" VZfci<ri •" Zfc/<Tj1> 

JO — 2 J 2_/ tis J *I ar

Zsiai " • - ŝr<r 
r = l S l < . . . < S r <Tl,...,<T r 

Consequently, if we put 

Q = jo dxx 

dx_ A ... A dx,...! A dyai A dx s l + 1 A ... A dyar A ... A dx„ 

e=/ 0 dх 1 л. . .лdх л + _: __ __ - ^ " t * 
Г = l S l < . . . < S r <Tl,. . .,<T r ' • 
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we obtain, by (5) and Lemma 3, that the condition 2 from the theorem is satisfied 
by Q. At the same time we have proved that the /j-form Q is unique. 

Conversely, suppose that we have an w-form Q e Qn
Uxv(/

i) satisfying 2. By compa­
rison with Lemma 3 it can be seen at once that the Lagrange function L defined by 
2 a) satisfies the condition 1. 

This proves the Theorem. 

Remark 1. Let L e ^(f1) be a Lagrange function satisfying the condition S(L) = 
= 0, and Q the corresponding w-form from the Theorem. Since the functions f 0 , 

fo\~lr
r do not depend on zifl, the form Q can be regarded as defined on U x V. 

The property do = 0 then means that we can find, at least locally, an (n — l)-form n 
on U x V such that 

Q = <ty. 

(This follows from the well-known Poincare lemma concerning the so called closed 
forms.) We thus observe that L satisfies the relation 

Ldxx A . . . A dxn — h(dn). (12) 

Conversely, if we take an arbitrary (n — l)-form rj defined on U x V and define L 
by the relation (12) we can see at once that the function L leads to the equality 
S(L) = 0. 

Thus, having in mind Lemma 2, we can say that the condition (12) with arbitrary 
(n — l)-forms rj on U x V describes all the Lagrange functions for which S(L) = 0. 

Remark 2. We note that all considerations from this paper can be extended to 
the case when there is given a fibred manifold (Y, n, X), and Lagrange functions 
defined on the first jet prolongation of the fibred manifold are considered (see [4] 
and [8]). 

Remark 3. a) If n = 1, then 0-forms on U x V are just real functions. If we 
write (x, y^9 y^) for the natural coordinates on t/

1 in this case we get, for an arbitrary 
function F on U x V, 

and 
«">-(£+-£•>.> 

r дF ÔF . 
дx дyџ

 JЏ 

b) If n = 2, then the general 1-form on U x Vcan be expressed as 

n =/.d*. + g„d>v 
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After some calculation 

*(-")" ( f + (I7 ~ I B *>+ w. --•>-") •"' •d"A d" • 
In this formula en = s22 = 0, s1 2 = — £2 1 = 1. The Lagrange functions L leading 
to zero Euler form have therefore to be of the form 

L-.(Mf+ (***.- %L\ z *K,Z T \ £ L ~ UT + I dx, dy„ ) • z» + ay; Z'^) ' ^ 
c) If n is general one can proceed in the same manner as in the case a) or h). 
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