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DIRECT PRODUCTS OF HOMOMORPHIC MAPPINGS

Ivan Chajda, Pferov

(Received January 2, 1972)

It is well-known in the theory of abstract algebras that for arbitrary class of
algebras 2 the direct product H h, of homomorphic mappings k, of algebras 4, € A
el
onto B, €A is a homomorphic mapping of the direct product [] 4, onto [] B,.
e’ <’
The prupose of this paper is to give sufficient conditions for the converse of this
theorem. It will be shown that the class of algebras, for which the converse of the
theorem is valid, is enough extensive. It contains for example atomic Boolean algebras,
discrete direct products of completely ordered groups or rings and lattices which

are direct products of chains with the least or greatest element.

1.

BASIC CONCEPTS

Let A be a class of algebras with the zero element 0 and the binary operation
. @ and a set 2 of n-ary operations (n 2 1) fulfilling for each algebra 4 € W and each
element a € 4 identities:

(i) aE0=a=0Pa
(ii)) foreachweRis 00..0w =20

The operations in all algebras of 2 will be denoted by the same symbols.

Definition 1. An algebra 4 € U is said to be without zero-divisors iff there exists
Q2 c Q, 2 # @ with following properties:

(a) the arity of each w € £2’ is greater than 1
(b) for each w € 2’ the identity a,a; ... ayw = 0 holds
iff a; = O for at least one 7 (1 £ ¢ < n).

The set 2’ is called the set of regular operations.

Definition 2. An algebra 4 € U is called N-algebra iff there exist algebras 4. e A,
7€ T without zero-divisors such that A4 is equal to the direct product of 4., i.e.
4 =[] 4: and at least one of the following conditions is satisfied:

el

(iii) for each e T in A, there exists ’sum” (in the sense of @) of arbitrary set
{av;a7€ A,, ye@, av =0 for y # poe G, card G < card T} and it is equal
to av.

(iv) [] 4 is the discrete direct product.
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Remark. If T is a finite index set, then the conditions (iii) and (iv) of the defi-
nition 2 can be omitted because for a finite index set is each direct product dis-
crete one and (iii) follows directly from (i). From (i) it follows that the ’sum’ of
the set from the condition (iii) does not depend on a bracketing.

For some algebras the conditions for direct decomposition to algebras without
zero-divisors are known. For example an atomic Boolean algebra is direct decom-
posable to two-element Boolean algebras (they do not contain zero-divisors), see [10]
and [3]. The conditions for Q2-algebras and 2-groups are given recently in [8] and [9].
These algebras are N-algebras.

. Notation. Let U be a fixed class of algebras with 0, operation @ and a set Q
of operations fulfilling (i), (ii), let 7' be an index set. The direct product of algebras
A, €U for reT will be denoted by 4 = llA,, the zero of A4 is denoted by O4.

TE'
Let a € 4, the projection of a into 4, is denoted by pﬂ& = a(t). It is easy to show
that pr.(04) = 0 for each T € T. For 7" < T there is IJ A, ={a;a€c A, pria) =0

for e T — T"}. Specially for T = {ro} is [| 4. denoted by 4.,. An element of

;1_, is denoted by;,. Let A,, B,€U. By the symbol H(A4,, B,) we denote the set

of all homomorphic mappings of 4, into B,, by H(4., B,) the set of all homomorphic
mappings of 4, onto B,.

Definition 3. Let A, BeB, 4 = HA,,B [1B:, . : A.— B, for each 7€ T,
€T

B beeing an arbitrary class of algebras The mapping ¢ : A — B defined by the rule:
prep(a) = @.(pria)) foreachteT,ae 4

is called the direct product of mappings @, and it is denoted by ¢ = [] . (see [12],
el
p- 127, Lemma 3).

Lemma. Let A, B be N-algebras, ¢ € H(A, B) and Op be a zero of the algebra B.
Then qQ(OA) = Op.

Proof. Let w be a direct product of n-ary regular operations (n = 2), let
@ 1(Op) = V. Then for each v € V it holds

(p(OA) = q)(‘UOA OA(,()) = (p(v) (p(OA) (p(OA) w = Ogtp(OA) (p(OA) w = 03.

Theorem 1. Let £ be a class of algebras with a set of operations 2, let 4., B,€ £
for e T and ¢.€ H(4,, B,). Then 11 p. € H([] 4., Il B,) (see [12]).
1€ €]’ 1€ ~
Proof. For each v € T and arbitrary n-ary operation w € 2 there is
Pr@(a:10;z ... An®) = @(Pry(@az ... Apw)) = @.(a1(7) a2(7) ... An(7) W) =

@:(@1(7)) @.lazr)) ... q),(a,it)) w, i.e. p(aa; ... a,w) = @p(a1) p(az) ... p(an) ®. This
implies that ¢ = l_’l[ @: € H(];[ 4., I; B,).

Definition 4. A mapping @ of an N-algebra 4 into an N-algebra B is said to be
trivial iff card @(4) = 1. If p(4) = {Op} and ¢ € H(4, B), ¢ is called a zero-homo-
morphism and it is denoted by o.
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THEOREMS ON HOMOMORPHIC MAPPINGS OF N-ALGEBRAS

Theorem 2. Let 4,, B,€ U be algebras without zero-divisors for €T, ¢€ 8
and A = [] 4., B =[] B, be N-algebras. Let g be a homomorphic mapping of 4

el oeS
onto B which is not trivial. Then for each ¢ € S there exists just one 7, € T such that

p(4.,)-
Proof Let the assumption of the theorem be valid and let there exists oo 8
such that the assertion of the theorem is not true. Let 7' be an arbitrary subset

of T such that ¢ (T-[A,) 2 B,, (such 7" exists, for example 7" = T'). Evidently
e
card T' = 1. Denote 4’ = A As the assertation of the theorem is not valid, it is

card T' > 1, so that there ex1st T, €T, 11 # 12.

(a) Let there exist a,l € A,l, an €4, a,l,a,zeA’ such that cp(?z,,) # Op # (p((—l_,z).
For each n-ary operation w € £’ which is the direct product of regular operations
the relation

(p(az—,‘a,z e Q) = @(04) =

holds by the lemma, but by the assumption (a):

@(a,) @(a,) ... pla,,) 0 # Op
which is a contradiction.

(b) Let (a) does not hold. Thus there exists to € 7' such that <p(a,) = Op for
each a, €A, 1eT' t # 70. Let b, GB%, b,,n # Op. Choose a € ¢~ (b,,o), ac A’ ar-
bitrary; according to lemma we have a # O4. We can write a = a(7o) @ ¢, where
¢(t0) = 0. Then ¢(a) = <p(a(to))€|-) @(c) = @la(to)), tp(c) bemg Op according to the

assumption (b) and (iii) of the definition 2. Thus B,,o c <p(A,°), in contradiction with
the assumption of the proof.
The proof of the theorem 2 is complete.

Definition 5. An algebra 4 € A without zero-divisors is said to be pseudo-ordered,
if there exists a set 2" < ', Q" # @ such that for each n-ary we 2" there is
410y ... agw = aga where 1€ {1, 2, ..., n} and « is the identity operation (i.e. ax = @)
or o € £ is a unary operation with ax = 0 iffa = 0.

From the inclusion 2" < 2’ it holds that the arity of w € 2" is greater than 1.
Let us denote T* = {,,; o € S} where 1, is corresponding to ¢ € 8 by the theorem 2,
evidently T* < 7.

Theorem 3. Let 4., B, € A be pseudo-ordered algebras and 4 = ]] A,,B=1]]|B,
O€,
and @ be a non trivial homomorphic mapping of 4 onto B. Then there exists an

algebra C = 11 C. (isomorphic with B), where C; = B, for v = v, € T* and C, = {0}
for e T — T* such that i.¢p = || ¢. where ¢, is a homomorphic mapping of 4,

onto C, and ¢ is a natural isomorphism of B onto C.



Proof. It is clear that C is isomorphic with B. By the theorem 2 for each g€ 8
there exist just one 7, € T for which C =B, c @4, )

(a) Let C’ =B, = (p(A ,) for each ge s, then pr., @ € E(A,a, ‘B) =
= H(A, , O, ) Let ¢, =Pre, ¢ for 1 =1, T* and ¢, = o for e T — T*, then

L= H(p, and (ptEH(A,, C,).

(b) Let there be B,,n # <p(A, ), Bao c (p(A ) for some go€ 8. Because ¢ is the
mapping of the type “onto”, there exists a that set 8’ < S, card §’ > 1, such
¢p(A, )DB foroe 8. Let o, # 02, 01, 62€ 8" and bleBal b;eBaz, by # Op # b,.
Let a;, az € A and @(a;) = by @(az) = b,. Then for each w which is the direct
product of operatlons from Q" we have:

OB = blbz bzw = (p(al) (p(az) e (p(az) w = (p(alaz aza)) =
= g@(a;a) = @(a;) o = bjor # Op, where ¢ =1 or 2,

which is a contradiction. The proof is complete.

Theorem 4. Each chain with the least element (0 or the greatest element 1 is
a pseudo-ordered algebra. Each completely ordered group is a pseudo-ordered
algebra.

Proof. Let 4 be a chain with the least element 0. Put: e @ b = max {a, b},
a.b=min {a, b}, 0 ={0}, ' = Q" ={.}. Dually for a chain with the greatest
element.

Let A be a completely ordered group. Then @ be the group composition, 0 the
unit element of A and ' = Q" = {.}, where a . b = min (max (e, a"1), max (b, b1)).

Cdrollary 5. Let A4,, B, be pseudo-ordered algebras and 4 =[] 4., B=
€T
= [] B, be N-algebras and ¢ be a non trivial homomorphic mapping of 4 onto B.
€S
Then card S £ card 7.
It follows directly from the theorems 2 and 3.

Corollary 6. Let 4., A,‘j be pseudo-ordered algebras and 4 = H A, and 4 =
. el
= [] 43 be N-algebras. Then card G = card T and A} = A,(), where & is a per-
Q

ye
mutation of the set 7.
It follows directly from the theorem 3 and corollary 5.

Theorem 7. Let A,, B, € A be pseudo-ordered algebras and ¢ be a homomorphic

mapping of an N-algebra 4 = [] 4, onto N-algebra B = [] B.. Then there exists
€T el
a permutation s of the set 7 and the natural isomorphism p of H B, onto [] Ba
. el el

such that
po=1Ilo
€T
where ¢, is & homomorphic mapping of 4, onto Ba().

It follows directly from the theorem 3 and corollary 6. The theorem 7 is the
converse of the theorem 1 for pseudo-ordered algebras. From theorems 7 and 4 we
obtain:
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Corollary 8. For atomic Boolean algebras, for 1-groups discretely directly de-
composable into completely ordered groups, for lattices which are direct products
of chains with the least (or the greatest) element and for ordered rings which are
discrete direct products of completely ordered rings is the converse of the theorem
1 valid.

Remark. For 1-groups and lattice-ordered rings is by a ‘“homomorphism” in the
sense of this paper understood the homomorphic mapping preserving lattice opera-
tion (because it must preserve the direct product of operations introduced in the
proof of theorem 4). It is easy to show that this homomorphism is also o-homomor-
phism in the sense of [11].

The conditions for discreie direct decompositions of 1-groups and ordered rings
into completely ordered groups and rings are given in [11].
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