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ON THE THREE-POINT BOUNDARY-VALUE
PROBLEM FOR A NON-LINEAR THIRD ORDER
ORDINARY DIFFERENTIAL EQUATION

V. SEDA, BRATISLAVA
(Received April 1, 1971)

INTRODUCTION

The theory of multi-point boundary value problems for ordinary differential
equations has been remarkably developed. The case of linear boundary value pro-
blems involving the fundamental properties of the Green’s function was investigated
by J. Tamarkin, [1], and M. Gregus, [2], [3]. Theorems on the uniqueness which
in the linear case means also the existence, of a solution to the interpolation problem
by means of a Lipschitz condition were established by Ch. J. dela Vallée Poussin
in [4]. His result for the third order non-linear differential equation was improved
by G. Casadeiin [5]. A method how to apply the uniqueness results to the existence
of a solution to the non-linear interpolation problem has been developed by A. La-
sota, Z. Opial in [6]. The same authors touched the mentioned problem in a series
of papers. Here only [7] will be mentioned. The continuous dependence on the initial
conditions connected with an approximation method was used in the proof of the
existence of a solution to a non-linear multi-point boundary value problem in [8]
by S. Cinquini.

As to the related topics, many papers deal with the multi-point boundary value
problems for differential systems. First of all it is necessary to mention the paper [9]
by R. Conti containing some general theorems on the existence of a solution to such
problems and distinguishing by a comprehensive bibliography. A uniqueness result
was given by M. Svecin [10]. The papers [11], [12] by M. Urabe deal with the men-
tioned problems from a numerical analysts standpoint of view. In a series of papers,
1. T. Kiguradze has been interested in the investigation of the singular boundary
value problems. Here only the paper [13] is mentioned.

The present paper will deal with the three-point interpolation problem for a third
order non-linear differential equation. It will be based on the theory presented in [3]
and will contain inquiry into the properties of the Green’s function connected with
that problem. By means of the Schauder and Banach fixed point theorems an
existence theorem as well as a theorem guaranteeing the existence and uniqueness
of a solution to such a boundary value problem will be given. These theorems do not
follow from the results in [6] by means of [5] nor are contained in the paper [8].
The result will be applied to a disconjugacy criterion for the third order linear
differential equation which is independent on the criterion given in [14].

1. First, the following problem will be considered. Given three numbers a; <
< a; < a3 and a function r € Co({ay, a3)) (throughout the paper only real functions
will be taken into consideration), to find the solution of
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1) y" = r(x), y(@) = yla:) = y(as) = 0.
By the results of [3], the following lemmas hold.

Lemma 1. (See Theorem 1, [3], p. 50). For an arbitrary point t € (ax, ag,1), k = 1,2,
there exists a function Gy = Gy(x, t) with the following properties:

oG,

1. Gy, —a—; = Gz are continuous functions of x in {a,, a3>.
02Gx . . . . . .
2. e = Gz 18 continuous in x everywhere tn {ay, as> with the exception of t
27

where Grzz(t + 0, t) — Gzt — 0, t) = 1.

3. Gy as a function of x is a solution of y” = 0 in the intervals {a,, t), (¢, as> and
satisfies the boundary conditons from (1).

4. The function Gy i8 uniquely determined by the properties 1., 2., and 3.

Lemma 2 (See Theorem 2, [3], p. 52). The solution y of the problem (1) is given by

Griq

2
the formula y(x) = Z f Gilz, t) r(t) dt, ay =< x < a3.
k=1 a;

Lemma 1 yields the explicit form of the functions Gy, k = 1, 2. When a, < t < a,,

(@ —a) () + c(t)], o=zt
(2) Gh(z, t) = {

a(t) (x —az) (x—a3), t<zr=a;,
where

(t —a;)?

@ alt) = 2(a; — ay) (@2 —ay)

aal) = o) — 5

1
2((1«3 —_— al) (az —_— (ll)

ca(t) = [(@a1 — a2 — a3) £2 + 2a,a3t — a,a,a3].

Further if a, <t < aa,

ca(t) (x — ar) (x — a2), a =z
(4) Gz, t) =

Here

<
(x —as)[es(t) x 4 co(t)], ¢t <z < a;.

(t —_— a3)2
2(as — a,) (a3 — az) ’

(5) calt) = —

cs(t) = ca(t) + %,

1
2(a3 — a1) (a3 — a,)

co(t) = (a1 + a; — az) 2 — 2a,a5t + a,0,a3].
From (2), (4) the equalities
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2c,(t)  + [ea(t) —ase2(t)], ay S S
(6) G]x(z, t) :{

cl(t) (23} —Qy —'a3), t<wx é as,

2c,(t), o vt

Gizz(w, t) =
2¢4(t), t<zsa,m<t<a

and
I‘ calt) 2r —ay—a2), a;msz <t
(7) Gz, t) =
| 26st) = + [esl®) —ases], ¢ =z < aa,
2e(t), wm=T<t
qu:(fv, t) =
2cs(t), t<r<asz, a < t<as
follow.

Now, the properties of the functions G4, G, and of their derivatives will be studi-
ed. From (2), (3), (4), and (5) it follows that for any z, a1 < = < a,,

1 _
(8) lim G4(&, ) = — 5 — =2 (3 —ay) (z — az) = lim G(£, 1)
Pas 2 az—ay PR
t—>a,~ r—-at
and
1 —
(9) Lm Gy(& t) = = 2" (2 —ay) (x — az) — lim G(&. b) ifa, < 7 < a.
S 2 a3—ay e
t—a,~ t->a,*
Further
(10) lim G4(&,8) = 0, lim G5(&,¢t) = 0 for all 2, a; < x < a3.
>z &>z

t—>a,* t—>ag~

Similarly, from (6), (7), with the help of (3) and (5), we get the equalities

. 1 az3—a
(11) lim Gyg(&, t) = —5—?——4 (22 — a1 — a;) = lim G2z(§, 1), 0, <z < a,
E a3 — R
t—a,” t—>as*
. 1 a;—a
(12) lim G44(§, t) = - ———— (22 — a2 — 2g3) = lim G2z(&, t) when a, < z < da.
gz 2 az — ay fa =
t—>a,~ t—a,*
Also forall z, a; < x < as,
(13) lim G14(§,8) = 0, lim @, (£, ¢) = 0.
E—>x E~g
t—a,* t—bq”
Finally, for ¢y =z < a,
. asz —a
(14) Hm Giza(€, ) = ——— 2 _ |im Gazal§, 1),
ts—;z_ as — i P
—a: t>a,*
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while

—ay . )
(15) llm Glzz(fa t) = — = lim Gz2(&, 1), a2 < x < as.
' as — a, f—»z
~>a, -,

The relations

(16) lim Gizz(&,t) = 0 for a; < z < a3, lim Gzéz(f, t)=0,a, <2 <az
btz >z
t—a,* t—>ay

can be also verified.
Thus, by putting
, Gl(xat)’ a1 gxéaﬂh ay <t<a2

(17) Gz, t)
Gl(xy t)’ @y é x g a3, Ay < ¢ < as

and defining G(x, t) at the points (x, a,), (¢, a1), (%, @3) by means of the limits (8),
(9), (10) we get that the functlon G = G(z, t) is continuous on D = {a;, asz) X

' G
X {aj. a3>. The equalities (6), (7 ), together with (11), (12), (13), show that —%;—

. 2()
is also continuous on D. As to 08‘(1 , from (6), (7), as well as (14), (15), (16), it

0x?

follows that this function is continuous on D with the exception of the points (¢, t).
02G(t + 0, t) 02G(t —O0, t)

ox? ox?

G 02G
ox ’ Ox?
gives that Gi(x, t) < Ofora, < & < a3, 0y <t < ay, and Gy(x, t) > 0if t < z < a,,
a; < t < a,. By a continuity argument c,(f) < 0 (a1 < t << a,) implies that Gy(z, t) >
> 0 for a; << x <t < a,. Similar statements hold for G5. Thus

@) <t < a;, whereby =1 () <t < as).

Consider the sign of the functions @, - . First, ¢y(t) > 0, a; <t < a,,

(18) G(x, t) > 0 when a; < x < a,, and Gz, t) < 0 for a, < x < a3, a; <t < as.

The above inequalities for ¢;, ¢, together with cy(f) << 0, ¢s(t) > 0 (a, <t < a3)
lead to the inequalities
G (x. 1)

(19) -~ = - <0 @ = a <t and -
p

02G(x, t
Ox2

>0, t<r =03 0 <t<as.

~
ja¥al

N . . o Lo A .
The situation with the sign of -—is more complicated. Considering the sign
ox
of ¢, and ¢4, we get

20z
(20) Q%J < 0fort <z < “3-;7‘1? , @ <t <ayand

1+

'<x<t a, <t<<as,

a(i,(.?:—t—) >0 fo or
cr

a, -+ as . a1+ a
22 <at:_£_a»3,al<téa;a,ndal<ac<~~‘2~E a, =t < as.

88



oq .
As to the behaviour of ——in the domain a, < z < t, a; < t < a,, from the in-

oz

oG, ) < 0 for ay <t < a,, with regard to (19), it

aG(als ’)
ax > 0’ , ax
follows that for any ¢, a; < t < a2, there is exactly one x, = =,(t), with a, < x, < ¢
o
0G@®, 1) _ o ang
a:r

aG(z  _

equalities

such that
0G(x, t) _
()1f;v,<x<t,and SR M > O0whena, <z<y,a <t <a,

o0G(t,t)

. oG
Inthe domaint < z < as,a; < t << a3 =—shows similar properties. First, ——-
ox

o
< 0 for a; <t < as. On the other hand, by (20), 36’((15: %2)

12 0G(a ) ) )
calculation we get that ((12 < '(?)x R < 0,4, =t < as, and, since 8G((g3x a3) _
80(“’37 [)

= 0, " > 0 for all t, @, = t < a3. Taking (19) into consideration, we come
ox

(21)

> 0. By a simple

to the conclusion that for any t, ¢, <t < a3, there exists exactly one z, = a,(t),

C(r(xz( ) f)

with t < 2, < a3, quch that - = 0, and
C

X '\G A ".G,., t
(22) e, b < Ofort << a < x;. and * @ 0
x

p > 0forao; <z = a3, a; <t <7 as.

For each t, a; — t < a,, from — d&, in view of (3), (6), we get

26, 1) faze(g 1)

cx Ox?
y(t)
‘ , Caxtaz ] (@24‘03_ )

(23) a) = (T

1 a(t) = ! ! (t — az) (t — as3) > 0 fora, << t < a,. Hence
and .?7]( ) = :t('%(t) . ((Lz—al) (a3——~u,l) 2 '3) >~ 1 <= < dz. e
Wy == x,(a.,) ;/ .’lf](t) i: 551((12) == (‘l}"—;‘"az , Ay <~: t 1; az. Further Z;(t) = (p(t) W(l)’

2((1/3 -_— al) ((lz — al)
where ¢(t) = ——for a; <t < a
where 0 = i (@ —an) (@ —a)p
a; + as
and () — (t— 2B [t—amp— (a3 — @) (12— )] — 2t — ) (t —a2) (¢ —
—az), a4, =t = az. Since y"(t) = - 6(t f_’}_:;‘_ﬂ?) > 0 and y'(az) = 0, the ine-
- , (a3 — a5)?

quality ¥'(t) < 0 must hold for a; <t < a; and finally, using y(az) = —

(42— a,)> 0, we get that y(t) > 0 for a; =<t =< a,. Thus z{(t) < 0 and if ¢; = t,(x)
is the inverse function of x;, we have
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(24) OSt@)—s<z—m ozl
i . a a 1 ay + a
Similarly, we ‘can find that (f) = — -*2— 2 4 T OES (t _n 5 _E) a4y <
. 1 (t —ay) (t — a2)
<t < az. Hence x,(t) = - > 0 fora; < t < a3. Thus
=0 = e® + TP @ —an) (@ — ’ ’
xy(az) = c ; % = 25(t) < wa(as) = as for a; <t < a;. After some calculations we

2(a; — ay) (@2 — aq)

obtain  z5(t) = m(t) o(t), where w(t) = (o — (@ —an) (@ — @] < 0 for
a, <t < a; and o(f) = (t __5”?-5; -“—’) [(t —a3)? — (s — ay) (@ — a2)] — 2(t —a1) .
(t—az) (t—a3), a; =t < as.p"(t) = —6 (t ___'1“:2_'_33) < 0 and p’(a;) = 0 imply

that o'(f) < 0 for a; < t < a3. This, togethér with g(az)/ < 0, gives that p(t) < 0 for
a; St < a3 and so, 25(t) > O in the same interval. When ¢, = {,(x) is the inverse
funetion of z,, by the last inequality and x;(as) = 1. we have 0 < 2z — b(x) < a3 —

a a

Before going to the next lemma, let us consider the solution ¥ of " = 1, y(a;) =
: 1
= y(a;) = y(as) = 0. By a straightforward calculation we get yo(x) = 3 (x — ay).
1

, 1 ‘
(X —ag) (x— a3), yo(x) = 5 22 —3 (a1 4 a2 + az) © + —~6~(alaz 4 a8z + axa3),

2
Yola) = x—~—;— (@) + a; + a3).Since fora; <z < a3 —247 (a3 — aq)® < (@ —aq)?.
4
(T —a) S P, az) = (x— ) (— @) (v —a3) < (—a) (T—a3)2 < o (@3 —

— @1)3, the inequality
2

(25) | yol) | < 81 (a3 — ay)3, a, :< r <as

is true. From the inequality yo(z) < 0 (ys(x) > 0) which is valid for a; < 2 <

1
< 3 (a1 + az + a3) (—;— (@ + az + a3) < x < a3) it follows that it is sufficient to

estimate | Yo(®) | only at the points z = a,, = 3 (@, + a2 + a3), .= a3. But
. 1 . 1 , 1
Yolay) = 3 (@3 — ay) (@2 — M) = 3 (a3 — aq)?, yolas) = e (a3 —ay) . (03 —ay) <
3+ Gy - ay
1 S
. ,{ay +a + a . (a a .
= 6 (@3 — a1)2 and 0 > Yo (“’l“”“.{"'"'i) = Yo (liz“_j) + f Yolz) dz > —
. ’ & + a,
1 1 N

1
Y (@2 —ay)2 — 'y (s —a1)? > — 3 (a3 — a,)2. Thus
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, 1
(26) [ Yolz) | = 3 (@3 — @) ay ST < as.

Lemma 3. For the function G, given by (17), the following estimations hold

(27) f | Gz, ) | dt < »2—— (as — ay)3,
(28) ” o6, ) ’dr < = (ay — a2,
(29) f _a_%” Y Fdf S_-?i (a3 —ay), ay S x < ay.

az

Proof. On the basis of (18),f | G, t) [ df = ¢ J‘ Xz, t) dt where ¢ = 1 or —1,

a1,y
a;

according as a; < < @, or @, < ¥ < a3, respectively. By LLemma 2, f Gz, t) dt =
a
= Yo(2), &1 = 2 < a;3. Thus (27) follows from (25). '
As to the estimation of the left-hand side of (28), by the inequalities (20), (21),
(22), considering the properties of the functions z,, z,, we have to investigate the
following 3 cases:

oz

P4

2Bt <12*2” % Then f 06, 1) | A = —yi(@) and (26) implica (28).
{

a,

u,.J ]
boay o< ™T% By the inequalities (20), (21), (22), f ,-ﬁ?—%’f)—jdt =

ty(z) x ,
= yYolx) — 2 f Giz(x, t) dt. Using (6), we have —2 J‘ Ghzg(z, t)dt = 4 (az ta

a, a,

2 (* —a;)? az + a3 - .
— x) f ot dt = 3 (@ —an) (@ —ar) (—--‘)— ) . From the equality Gyz(z, ) =

&
ay
x

= J Gizz(&, t) AE = 2¢x(t)[x — :(t)], by means of (3), (23) we obtain

zy(t)
ty(z) h(z)

2
—2 (2, -
f Ghrale, 1) dt (a3 — a1) (@2 — ay) ,

[(@3 —ay) (@2 —a) — (¢t —a)?] . [x —
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2

—zi(t)]dt < o) (@ —an) (@3 — @) (@2 — @) — (x — a)?] . [z — z1()] -
2 a; + a
fh(x) — ] = @ —a) (@ —a) : ( G D) > x) (* — a,)2 [t;(x) — x] what is, by
2 a; + as )
24), = . ——z ) (x — ay)3.
24 (a3 — a1) (a2 — a1) ( 2 ( L
as
. 0G(z, t) ) 1 1 1
Thus f T | ! dt < h(x) = “2"12 —3 (@1 + a2 4 a3) z + 3 (@maz + aras +
ay
8
+ a203) + - 3 (@ — al) @ —a) (az T ) (x — a,1)3. After some calculations
32 60/1 -+ 30/2 + 3013
that h"(x) == . _
we get tha () = (az ——a‘) (as - al) (x—a) |x 2 ) >0
for a; < x < - @ flz . Therefore h(x) = max [h(a,), h (u‘ “;;l_l_z_)] . But h(ay) =
1 1

=% (@3 — a1) (@2 — ), h (—E}-_'Qt"a—z') =3 (@2 — a1)?. Hence (28) is true also
in this case.

a? —; % < = a3. Using similar considerations as in the ferogoing case we come

ay ‘ ay
! (} x(x t)

to the inequality f I e dt == yg(x) — 2 f G, t) dt < k(z) = _;xz —
|

ay t(2)

1 : 1
Ty (@) 4+ az + az) ® + — G (a1a; 4 ara3 + axaz) + 3 (@ — ay) (a5 — a3) (x -
— ‘g}—:;—ai (@3 — z)3. Since k"(x) =1 + 32 (az—2x) | —

. . (@ —a) (a3 —a2)
_ 3q}-f_3{g~f 6%) > 0 for —%12:%{ <x Zas, k(r) max[k (0"2 * 03) k(as)]

2
The result then follows from the relations Fk(as) :—é—(% — a1) (a3 — a2),
(a; + a 1
Now we shall derive (29). When a; < z < a,, by (19), (6), (3) f ‘1 a(xz t) | ‘
. 1 U S ot
==t + 4 [ U = (o +art o=z g = 1)
Sinee I'(z) = - _‘f(:l_za‘zlz_ al) > 0, l(x) < max [(la1), Uaz)]. Ua) < Uaa) is

2
equlvalent to 1 < T 42

2 az — y
= 3 (a;; — a;), what implies (29).

and, thus, cannot occur. Therefore I(z) < l(a;) =
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ay g
2,
Ifa; <2z < a,, again by (19), (7), (5), f }8_%(;7,9_ i dt = yo(x) — 4 f ca(t) dt <
o i z
2
< 3 (@3 — @;). Thus, in both cases (29) is true.

Let bi, i = 1, 2, 3, be real numbers. Then the Lagrange interpolation polynomial

_ b, . . b, _
(30) () = P p——" (z —a;) (x —as) + @ —a) @ —a) ( — a).
(& —a) + bs (2 — ar) (& — a2)

(a3 — @) (a3 — ay)

represents the unique solution of the boundary value problem y” =0, a; < z < as,
y(a;) = bi, ¢ = 1, 2, 3. The following inequalities for ¥y, hold.
Lemma 4. Let there exist constants M > 0, N > 0, P > 0 such that

b3 — by bi(as — az) — ba(as — ay) + bs(az — ay)
<, <, P,
@D bl = ay—ay | l (@2 — ay) (as — @) (@5 — @2) =
Then P
(32) ly (@) | £ M 4 N(as—a,) + o> (a3 —a,)?,

lyz(®) | = N + Plas —ay),
lyy@) | £2P, a1z =as.
Proof. The last inequality in (32) follows from
bi(as — az) — ba(as — a1) + bs(az — a,)
(a2 — a1) (a3 — @) (a3 — a2)

a; + a3 _ bs— b,
2

yr(@) =2

Since u'L( , by the mean value theorem

az — a,

a; + az
2

is true and thus we get the second inequality in (32). Using (33), we arrive to the

(33) lyz(@) | < N + 2P

xr —

inequality | ¥5(x) | < |, (“‘;r“’) N 1 NS LA (x__ alza{)z
a; + asz

which together with | y,,

N P
) )‘§M+-2— (a3——-a1)+—4—(a3—a1)2gives the
first inequality (32).

Now we are able to prove an existence theorem for the three-point boundary
value problem. In what follows @ < 4 will mean real numbers, M, N, P non-negative,
Ry, Ry, R, positive numbers.

Theorem 1. Let f = f(x, y, 2, p) be a continuous function on the set B = {(z, y, 2, p) :
a=2=<A,|y| <R, |2| =Ry, |p| < Ry} Letay, by, i = 1,2, 3, be real numbers

such that a < a; < a, < as < A, and the conditions (31) are fulfilled. Let | f(x, y, 2,
?, 9| = qon B and let
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P 2
(34) M + N(as —a;) + 3 (@3 — a1)* +- (a3 — a3 < Ro

81 1
1
N -+ P(a3——a.) -+ —ﬁ—q(a;,——al)z = ]{ls

¢

2
2P +-2—q(a3-a|) = R,.

Then the boundary value problem
(35) y’” = f(x7 y’ y,’ y”)r ?/(ai) = bi’ " = 17 2: 3)

has at least one solution y. Furthermore, if y, is the function (30), the following inequal-
ities hold:
2 1

-q(as — @, 19(x) — yp@)| = = qlas— a1)*

| y(@) — @) < ;

81

. . 2
1Y@ — @) = 5 9@ —a), a1 = = as.

Proof. Consider the Banach space (({ai, as)), with the norm [| ¥ |2 = max
(gl 11y 1l 119" 1)), where ||y || = max |y(x) |. The set B = {y € C2(<a1, s ik

H=T=ay

Nyl < Ro, 1y || < Ry, ||y" || = Ry} is a closed and convex subset of C2(<@1, @3)).
Consider the mapping 7' of E into Cy(<{a,;, a3)) defined by

(36) (Ty)(@) = yz(a) + f G, 1) fit. y(t), '), ")) dt,

where ¢/ is the function (17). By Lemmas 3 and 4, for a y € E we have |(Ty) (z)| <
v P 2
=M+ Nas— ar) + 0 (as — a1)? + g1 ? (a3 —@1)3, |(Ty)(x)) < N + Plas—

1 N
C— ) + 6 glas — a4)?, and |[(Ty)"(x)] < 2P + % g(as — a;). Thus, (34) implies

that 7' maps E into itself. Also we see that the families of all functions Ty, (Ty)’,
(T'y)" satisfy the conditions of the Ascoli’s Lemma and, hence, the set T'F is relatively
compact. Further 7' is continuous. By the Schauder Fixed-Point theorem 7' has
a fixed point in E. The fixed point is a solution of the problem (35). From (36), on
the basis of Lemma 3, the last assertion of the theorem follows.

Corollary. Assume that f = f(x, y, z, p) 8 a continuous function for a < x < A,
—00 < Y, 2, p < -+00 and that there exist non-negative constants b, kg, a;, © = 0, 1, 2,
s uch that '

(37) [ f@ g, 2.p)| =h + ko |y + k|20 + k[ p =

tn the domain of f. Then the following statements hold:

1. Ifall oy < 1,4 =0, 1, 2, then any boundary value problem (35) with a < a; <
<ay<as=< A, by, 1 =1, 2, 3, being arbitrary, has a solution.

2 Ifoo=oy=0= 1, the last statement remains in power if
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2 1 2
(38) él ko(a3 -~(l])3 »{- —6— k,(a? —~—a,)2 —+- ~§-k2(a3 ——a,) < 1.

3. Ifatleast oneof a;,t = 0, 1, 2, is greater than 1, then for given boundary conditions
ylag)) =b;, i =1,2,3, aSa1 <a,<as < A and a given h there exists a 6 > 0,
6= 0(o, o1, 2, b, M, N, P) such that if k; < 8, 1 =0, 1, 2 the boundary value
problem (35) has at least one solution.
Proof. In view of (37), in the system (34) we can put ¢ = h + koR% -+ ki R: +
-+ k,R%. Then in the first case the inequalities (34) are true for all sufficiently great
Ry, Ry, R,. In the third case, taking a fixed triple (R, R,, R;) such that Ro > M 4 N.

P 2
(as — a1) + — 5 (a3 — @)? + - 81 -h(az — a1)3, By > N + Plas—a,) + — h( 3— a1)?,

R, > 2P +§ h(as — a;). we see that (34) is satisfied for ko = k, = k, = 0. By

a continuity argument the assertion 3. follows.

Now we shall consider the second case. Replacing the zero values of k¢, ¢ = 0, 1, 2,
by sufficiently small positive numbers, we may assume that all k; in (38) are positive.
The inequality (37) with regard to ap = a; = &, = 1, implies that the system (34)
is of the form

. . P
(39) 2 [koRo + k1R + k2Ry) < By —[M + N(as — ay) + 5 (as —
9
—m)? + S} (a3 — a3 h]
1 . 1
e (a3 — @1)? [koRo + k1Ry + k2Bp] < Ry —[N + P(as — a1) + r (a3 —a1)? h]
2 B 2
:3— (a; —_— (Ll) [IC()RO + k1R1 + ICz.Rz] g R2 _— [ZP + 3— (03 — al) k]

The characteristic equation of the matrix S of coefficients of that system is det

S — ZU) = —‘).2(}. - 7/) = O, where Yy = 821 (a3—a1)3. ko 4+ — (03—*@])2 kl +

2
+ = (as — ) k2 and U is the identity matrix. By Theorem 27, [15], p. 114, there

exists a vector R = (Ry, Ry, R,) with positive components such that § R < »R.
Taking a suitable multiple cR, ¢ > 0, we can reach that 7R <R — b, where the

components of the vector R — b are given by the right-hand side of the system (39).
Hence (39) has a positive solution (Ry, R;, R;) and the statement 2. is valid.

Theorem 2. If all assumptions of Theorem 1 are satisfied and furthermore f fulfils
in B a Lipschitz condition

(40) [ f@ 91,20, p) —f@. 92,22, p2) = Dol — w2 | + D1 | 21— 22| + 2| pr— P2
where the Lipschitz constants satisf Y the condition

(41) a3 P + — (a3’_al)2 *h+ = (as —a) P <1,

2
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then the boundary value problem (35) has one and only one solution y.



Proof. Keeping the notations from the proof of the previous theorem with the

only exception that the Banach space C2(<a1, as)) will be provided with the norm
4 . R |

l| 9 llza = max (” vl o7 (a3 —a1) |l y ||>§.7 (a3 —a1)? || y" ||}, we shall have that

E is closed, and, by (34), TE < E. Further if y;€ B, Ty; = Y;, ¢ = 1, 2, then, in
view of (40), (41) and Lemma 3, after denoting the left-hand side of (41) by u, we

shall obtain that each of the expressions || ¥; — ¥, ||, ;7— (a3—a) || Y — Y5ll,
1 . c 2
57 (@3 —ay)2 || Y] — Y5 || is less or equal to 8 (as— a3 P |l y1 —yz |l +
1 4 , s 2 1
+ 3 (a3 — a2t [‘é;i (@as—a) |y — ¥ H] + 3 (@3 —aq1) P, [—27 (a3 — @)

ly1—u2 H], and thus, || Ty — T2 llza < p || Y1 — Y2 ||za. By the Banach fixed
point theorem the statement of the theorem follows.

Corollary 1. When the functions p; € Co({a, A)), 1 =0, 1, 2, 3, and | pi(z)| < ki,
t=20,1,2, | psx)] = h, a =z < A, then (38) is a sufficient condition for the existence
and the uniqueness of the solution of the boundary value problem
(42) Y = po(®) y + ?1(®) ¥’ + paAx) ¥ + pa(®), y(as) = bi, 1 =1, 2, 3,

wherea < a) < a < a3 < A4, by, t =1, 2, 3, are arbitrary numbers.

The proof follows from the fact that for the linear differential equation in (42) k&
can be taken as the Lipschitz constants d;, 1 = 0, 1, 2. Then (41) and (38) are of the
same meaning.

By the special choice p3(x) = 0 and b; =0, ¢ = 1, 2, 3, we get

Corollary 2. The equation

(43) y" = po(2) y + p1(@) ¥ + paA®) ¥

is disconjugate on each interval {(a,, a3y = {a, A> for which (38) is true.

Proof. By the previous reasonings there is no non-trivial solution of (43) having
three zero-points in {a;, #3). In order to exclude the existence of a non-trivial solution
with two zero points in {(a,, a3) one of them being a double zero we shall apply the
following remark.

2. Remark. So far we have considered the boundary value problem (35) at three
distinct points @; << @, < a3. The corresponding Green’s function (17) G = G(=, ¢;
a1, @z, a3). Now let us fix a;, a; and let us consider the boundary value problem

(35') y" =f@u ¥, y") yla) = by, y'(a) = by, ylas) = bs

or
(35" y" =fx, 4, ¥, ¥"), yla) = by, ylas) = b3, y'(as) = by,

where by, b; are real numbers. After some calculations we get that the Green’s func-
tions for the corresponding homogeneous problems are
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1
— ’(d:—:a )2 (x—a)¥(t —a3z)?, ap S <t

2 2 (a3——a1)
(43— 2a)) 12 | 2alt —-—a3al] t

(A7) Gz, t; arar.a3) (Iﬂas)[(i_ bt —as)? —)x~

2(“3 — “1)2

and
) (t = (Ll)z 1 )
(w “‘)[(2((;3—(“) z)eH
((Ll - 2&3) 12 {— Zagt -_— a1a§ < -
(17) Gl Gayasa) - ) 07 T T s =t
(t— ay)? _
2(71}17152 (x — az)2. | < 2 < aj;.

From (17'), (4), (5) as well as from (17"), (2). (3) it follows that lim G(x, ¢; ay, a2, as) ==
=0yt
= (x, t; ayr, ay, az) and lim Gz, t; @, a2, as) = Gz, t; a1, as, as), respectively, uni-
Ay—>dg™
formly in z, ¢ in each closed region <{a,, az> X <{a; -+ d, as) and in each closed region
{ay, as> X {ay, az— 8>, respectively, for 0 < d < a3 — a,. Similar statements are
true for the first and the second derivatives with respect to x of the considered tunc-
tions. This implies that Lemma 3 is true also for the functions (17’), (17”). The La-
grange interpolation polynomial of the second degree y; satisfying the boundary
conditions in (35") can be obtained as a uniform limit in <{a,, as) for a, - a; + of y,
satlsivmg the boundary conditions y(a;) = bi. yr(az) = by + bylaz — a1), yr(as) =
= bs. Similar statements are true for the first and the second derivatives of y .
Thus Lemma 4 remains in power for »z,, when the condition (31) is replaced by

—b
(31) IAEP AR

a3 — iy

——bl '—‘bl(ac,—(lq) '1 b3 |

(@3 — ay)?

\

. V

A

In the same way, the Langrange interpolation polynomial of the second degree y-

satisfying the conditions in (35”) is the uniform limit in {a,, a;> for a; —» a; — of y,

which fulfils the conditions JL(al) = by, 9 _/L(az) = b3 — bslas — ay), yr(as) = bs.

Since y;- = lim y;, yi- = lim %}, Lemma 4 is valid for yz- when instead of (31)
Uy=>a3~ Uy—>ds™

we assume

(31") b | <M, lm_._?L —y bt by(as — a1)

| =P
as—a, | (a3 —a1)?

Then Theorems 1 and 2 remain in power for the boundary value problems (35')
and (35”), respectively, if instead of the condition (31), the inequality (31’) and (31”),
respectively, is supposed. The same is true for Corollary to Theorem 1 and Corollary 1
to Theorem 2. This completes the proof of Corollary 2 to Theorem 2.
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