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A CONTRIBUTION TO THE CARTAN'S METHOD 
OF SPECIALIZATION OF FRAMES 

OldHch Kowalski, Brno 

Received February 21, 1967 

A. Svec (see [1]) has given a precise form to the Cartan's method 
of specialization of frames, namely in terms of fibre bundles, connections 
and certain Grassmann manifolds. Here we show how to exploit some 
geometrical objects connected with the mentioned Grassmann manifolds 
for the specialization procedure. Some complementary results to the 
main theorem of [1] are also given. 

PART I 

A. Svec has admitted the equivalence problem as his start point. 
Here we shall limit ourselves to the specialization problem only. As 
for the equivalence problem, the reader is advised to consult the 
original Paper [1]. 

Following [1], a space a(P, M, G, Q, H,OJ) is defined as a principal 
fibre bundle P(M, G) with a given connection OJ and a given reduction Q 
to a subgroup H c G. The most important particular case is the 
following: Let G be a Lie group, H° its closed subgroup. Consider the 
homogeneous space GjH° and let G act on GjH° to the left. Form 
a trivial bundle P = G/H° X G over GjH° and denote by p the bundle 
projection P -> G/H°. Further, denote by n the canonical projection 
G -> G/H°. Let Q° be a reduction of P to the subgroup H° given by 
Qo = {(x, g) e P | n(g) = x). Then Q° is isomorphic to the principal 
fibre bundle G(G/H0, n, H°) with n as bundle projection. (See [3], p. 137.) 
Consider the natural Cartan connection a) on P defined as follows: the 
horizontal subspace of a tangent space TZo(P), z0 = (x0, g0) e P, is the 
tangent space of the submanifold (G/H° X g0) <= P a t z0. If X is a vertical 
vector of TZo(P), then co(X) is an element A of the Lie algebra g repre­
senting that left-invariant vector field A* which contains the vector 
dqX e TgJ(G). Here q denotes the natural projection P -+G, dq its 
differential. Consequently, co is a vector 1-form on P with values in 
the algebra g. Further, let M c: GjH° be a sumanifold, H c H ° a Lie 
subgroup, and Q c: Q° a reduction of Q° to the group H. Let us denote 
by PM, QM the restrictions of P, Q to the base M. We have obtained 
a special space o(PM, M, G,QM, H, a>). It will be called briefly 
a h-induced space a. 
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In particular, if G = GA(n) is* the n-th affine group and H° = GA0(n) 
the isotropy group of a point o e An, then 4̂W is a homogeneous space 
0/H0 and we obtain the special bundle having been constructed in 
Chapter I of [1]. The elements of P are all couples (p, F) where p e An 

and F is an ordinary affine frame; a couple (p,F) belongs to the sub 
bundle Q° iff p is the initial point of F. Let Q be a reduction of Q°, and 
QM a restriction of Q to a submanifold M a GjH°. If we choose some 
basis of the algebra g = QG(n), then the coordinates of the vector 
form oj on QM with respect to that basis are ordinary infinitesimal 
components co ,̂ co\ of the frame, in the sense of E. Cart an, 

Now we shall announce a simple existence Theorem. As we shall 
limit ourselves to the local theory, we shall suppose all the fibre bundles 
under consideration to be trivial. All manifolds, maps, fibre bundles 
and their sections will be supposed to be differentiable of class C00. 

Theorem 1. s/. Denotations. 
1. Let be given a space a(P, M, G, Q, H, co) where a) dim M < dim GjH, 

b) the \-form co is regular on the subbundle Q, i.e., of maximal rank. 
2. Let Q' be a reduction of Q to a Lie subgroup H' <= H. 
3. Denote by g, (I)) the Lie algebra of G(H). Put h = dim t), n = dim M, 

k = A + n\ consequently dim Q = k. 
4. Let Zk be a Grassmann manifold of all subspaces 3P c g such that 

# D l ) and dim 0> = k. 
5. Further, let Z cz Zh be an invariant manifold with respect to the 

group H' acting on g to the left as the adjoint group Ad (H'). 
6. Let Z* c: Z be an invariant manifold with respect to a subgroup 

H* c H'. 
9$. Assumptions. 
(i) For any beQ' we have co[Tb(Q)] e Z. 
(ii) To any map a : M -> Z there is a map h : M -> H' such that 

%(x) a(x) e Z* for each xeM. 
(iii) Whenever z e Z*, he H' and h .zeZ* we have h e H*. 
Under these assumptions there is exactly one reduction Q* of the bundle Q' 

to the group H* such that co[Tb(Q)] e Z* for each beQ*. 
Proof. Let us denote Q* = {b e Q' \ co[Tb(Q)] e Z*}. It suffices to 

prove that Q* is a reduction of Q' to the group H*. Let us choose some 
section s : M -> Q' of the (trivial) bundle Q'. Then we have a map 
a : M -> Z given by the formula OL(X) = co[Tg(x)(Q)]. According to (ii) 
there is a map h : M -> H' such that h(x) <x(x) e Z*. I t follows from 
the elementary properties of connections that co[Ts(X)h(z) (Q)] = 
= %($) a(x) eZ* for all xeM. 

We have proved the existence of a section s(x) h(x) : M -> Q*. From 
(iii) we obtain that Q* is a subbundle in Q', which is a principal fibre 
bundle with the structural group H*, q.e.d. 



109 

N o t e . In the differential geometry, the bundle P or each of its 
subbundles is called a mobile frame on the manifold M. A reduction Q* 
as above is called a specialization of a mobile frame Q' to the group II* 
(in the sense of E . Cartan). 

Definition. We say that a principal bundle Q(M, H) admits a local 
reduction to a group H* c H if for each point x e M there is a neigh­
bourhood U(x) in M such that the restricted bundle Q | U admits a reduction 
to the group H* <=• H. 

Corollary of Theorem L Let us replace the assumption (ii) of Theorem 1 
by the following requirement: the group H' acts transitively on Z and Z * 
consists of a single point. Then Q' admits exactly one local reduction Q* 
to the group H* such that co[Tb(Q)] = Z* for any b eQ*. 

Proof . According to (iii) H* is the isotropy group of the point 
Z* G Z with respect to H'. Let a : M -> Z be a map. We can identify Z 
canonically with the homogeneous space H'\H*. For any x e M there 
is a neighbourhood V of the element OL(X) in H'\H* and a local section 
s : II'IH* -> H', of the principal fibre bundle with the bundle projection 
ri : H' —> H'\H*, defined on V. We obtain a map 50 a : U -> H' where U 
is a neighbourhood of x e M such tha t a( U) cz V. Let a : H' —> H' be 
the map h -> h _ 1 and put h = a o s o (\. Our construction shows tha t 
h(x) oc(x) e Z* for each x e U. Consequently, the condition (ii) is locally 
satisfied and this proves our assertion. In case tha t Q' = Q we obtain 
essentially Theorem 3,8 from [1]. 

Now we shall show tha t the requirement 16) of Theorem 1 is valid 
for any h-induced space a(P, M, G, Q, H, OJ). We shall preserve our de 
notations from the beginning of this Par t . 

Theorem 2. Let P = G\H° xG be a principal fibre bundle with the 
natural Cartan connection OJ over a homogeneous space G\H°. Let M 
be a manifold of dimension n imbedded into G\H°. Demote by PM, Q%,... etc. 
the corresponding restrictions of the bundles P, Q°, . . . etc. to the base M. 
Then the I-form OJ is regular on any reduction QM of QM to a Lie group 
H cz H°, i.e., the map ojb : Tb(QM) -> g is an injection for any b eQM. 
Moreover, the subspace co[Tb(QM)] is spanned by the subalgebra I) and by 
additional n vectors of g that are linearly independent over t)° z> 1). 

The proof of the Theorem is based upon the following Lemma: 
Lemma L Let be given beQ°, XeTb(Q°), dp(X)^0 (p : P ->. 

-> GjH° being the bundle projection). Denote by v'X the vertical component 
of X in the connection OJ. Then v'X $ Tb(Q°). 

Proof . There is a neighbourhood Ub of the point b = (x, g) in P 
and diffeomorphisms of the form (p, #) : Ub->WxxVg9 (y, n): V$ -> 
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-* UX W'x, where Vg <~ G, U <~ H, Wx c tf/H0, W; t= G/JT. We 
can restrict U6 so that Wx = Tf̂ . Now ^01; = ^ on the subspace Ubf)Q°: 
in particular x = -p(6) = TT(^). Since dp(Z) ^ 0 there is a function / 
on Wx such that (d^K ) / ^ 0. Now, F =fo7tov is a function on Ub 

whose restriction top~x(x)jq = {#} X n~l(x) is constant. We have 7(F) = 
= 0 for each vertical vector 7 e Tb(Q°). Finally, 

(v'X) F = v'X(f onov) = (dv o v'X) (f o n) = 
. = (cfoX) ( / • * ) = I ( / o » o « ) = X(/oj>) = ( d p i ) / # 0. 

Since v'X is vertical, we obtain v'X $ Tb(Q°), q.e.d. 
Proof of Theorem 2. Let be given 6 eQM, b = (#, g). Choose a basis 

{ft, ..., fn} of the tangent space TX(M) and n vectors ex, ..., en of Tb(QM) 
such that dp(ef) = / ; . Then the vectors oj(e1), ..., oj(en) form a linearly 
independent system together with any basis of the subalgebra r)°. 
Otherwise, there would be a vector e = £ oCe{ =£ 0 such that oj(e) el)0 . 
Hence e e Tb(Q°), v'(e) e Tb(Q°) and at the same time dp(e) = £ «*/,. ^ 
T-= 0 — a contradiction to Lemma 1. 

If we proceed to reduce a space a(P, M, G, Q, H, OJ) to a smaller 
group H* <~ H we have to find, first of all, the smallest Grassmann 
manifold Z cr Z;. such that a)[̂ T6(Q)] G Z for each b eQ; Z being invariant 
under H. (See Theorem 1). In the classical differential geometry we 
employ the Cartan's lemma and the structural equations for this purpose. 
A very simple rule of this kind takes place if the space cr is ^-induced. 

Theorem 3. Let P = GjH° x G be a fibre bundle with the natural Cartan 
connection OJ and M —>• G/H° some embedded manifold. Let be given two 
reductions QM <~ Q'M <~ QM of the bundle QMtothe groups H" <~ H' <~ H°. 
Assume that there is a subspace 3% <~ g such that oj[Th(Q'M)] = S/t for 
any heQM. Put 0>h = oj[Th(QM)]. Then the inclusion [^h,^h] <~ 0Z 
holds for each h e QM; i.e., whenever h e QM, A,Be0>

h,we hive [A, B] e 8%. 
We state beforehand a lemma again. 
Lemma 2. Let V be a manifold, N <~ M its submanifolds. Let be given 

two vector fields X, Y on V such that Xq, Yqe Tq(M) for each qe N 
and Xq, YpeTp(N) for a fixed point peN. Then [X, Y]p e Tp(M). 

Proof. Let U be some neighbourhood of p in V. L e t / b e an arbitrary 
function on U such that fjM n U is constant. Then the function 7 / 
is zero on N (1 U and Xp( Yf) = 0. Similarly Yp(Xf) = 0 and hence 
[X, Y]pf = 0, which proves our assertion. 

Proof of Theorem 3. Since the connection OJ in P is trivial, we have 
v'[X, Y] = [v'X, v'Y] for any two vector fields on P or on Q°. Let us 
consider someSPh = a)[Th(QM)], h e Q'M, and two vectors A,B e£Ph <~ M. 
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According to Theorem 2 the form eo is regular on the bundle Q°, hence t 

toq: Tq(Q°) -> g is an isomorphism for each qeQ°. Consequently, there 
are uniquely determined vector fields X, Y on Q° such that co(X) = At 

io(Y) = B. The group G acts on P to the right and v'X (or v'Y) i& 
a fundamental vector field corresponding to A (or B). The bundle Qi/ 
is a submanifold of Q° and (o[Tq(QM)] = & for each qeQM. Hence 
K g , Yg e ? y Q i ) for qeQM, and in particular, Z^, YA e Tk(QM). Lemma 2 
implies [X, Y]A e T ^ ^ M ) and coh[X, Y] e @. On the other hand 

ooh([X, Y]) - ojh(v'[X, Y]) = a>A([v'Z, v'Y]) = 
-co , [A*,B*] = M , H ] . 

Consequently, [.A, H] E ^ , q.e.d. 
Now we shall introduce some new concepts, which will be usefull 

in applications. 
Let a Lie group G act to the left on two manifolds X and Y simulta­

neously. 
Definition. An equivariant object on Y with values in X (with respect 

to the group G) is a map O: Y -> exp (X) such that 0(g . y) = g . 0(y) 
for each y GY, g e G. Here exp (X) denotes the set of all subsets of X. 

Denote by O(y) the set of all values of the object O; then the group G 
acts on O(Y). If G acts on O(y) transitively and some of its isotropy 
groups is a Lie group G* <~ G, then O(y) can be made a manifold, diffeo-
morphic to the homogeneous space GjG*. 

Theorem 4. Let us preserve all the denotations and the first assumption 
of Theorem 1. Assume that H' acts on a manifold X, and let O be an equi­
variant object on Z with values in X w(ith respect to H'). Further suppose 
that a) H' acts transitively on 0(Z), b) there is an element t e 0(Z) such 
that H* is its isotropy group and 0~x(t) = Z*. Then the bundle Q' admits 
exactly one local reduction Q* to the group H* such that co[Tb(Q)] e Z* 
for each b eQ*. 

Proof is the same as that of Corollary of Theorem 1. We only have 
to consider the manifold 0(Z) instead of Z. On the other hand, the Corol­
lary can be obtained from here putting O: Z ->Z = the identity map. 

Let G be a subgroup of the full affine group GA(n) acting on the 
affine space An. By a coordinate G4yp in An we mean the set of all 
affine coordinate systems of the form R° Qg, where R°: An -> Rn is 
a fixed coordinate system and g e G. The corresponding coordinate 
<2-typ will be denoted by R° 0 G. Let us remark that G also acts ori the 
complex extension CAn of An and each coordinate G-typ in An determines 
some coordinate 6r-typ in CAn. (See [2] for some more details). Now, 
let X be the affine space An or its complex extension CAn, H c: G two 
subgroups in GAW and Y <~ Zk some //-invariant Grassmann manifold 
of subspaces of the Lie algebra $. Then H acts simultaneously on X 



112 

and on Y (on the latter space as the adjoint group Ad(H)). The following 
Criterion is a very special case of Theorem VI from [2] and its very simple 
proof will be omitted. 

Criterion. Let R° o H be a coordinate H-typ in An. Assume that to each 
coordinate system Ra e R° oH there is assigned a global card 8a: Y-> 
~> H* (k = dim Y), the correspondence Ra -> Sa being equivariant with 
respect to H. (It means, if heH, RP = Ra o h, we have S* = Sa o h). 
Let be given a map O from Y into exp (An), or exp (GAn). Further assume 
that' there are complex valued functions Fi(x1, . . . , xn, !~x, ..., f k), i = 
= 1, 2, . . . , t, defined on RnxRk, or on CnxRk, such that each set 0(u), 
ueY, is given by an equation system 

Ft(xx, ...,xn,ux, ...,uk) = 0, (i = \i, 2, ...,t), 

ivith respect to each couple {Ra, Sa} of mutually corresponding global cards, 
where Ra e R° o H. 

Then the map O is an equivariant object on Y with values in An, or 
in CAn, with respect to the transformation group H. 

PART II 

In the classical differential geometry, if we want to specialize a frame 
bundle of a given surface to a smaller group, we can usually proceed 
as follows: at each point of the surface we select exactly those frames 
that are somehow related with some geometrical object at this point. 
For instance, we make some vectors of the frame to lie in the tangent 
space or in the asymptotic directions, and similarly, If we proceed 
in virtue of the Theorems 1—3, such a geometrical interpretation is 
not apparent at first sight. To make it apparent is the true purpose 
of this second Part. Roughly speaking, we are going to show that the 
same kind of geometrical objects can be joined with a point of the 
considered surface M and with the Grassmann manifolds representing 
the gradual steps of the specialization procedure. 

There is only one difference here: at a point of the surface M we have 
to compare a variable frame with a fixed geometrical object. As for 
n Grassmann manifold, we have to compare its variable geometrical 
object with a fixed frame. So we have some kind of duality. We shall 
•exhibit this idea in case that we are given a surface of a 3-dimensional 
equiaffine space. 

* 

Let us consider the equiaffine space A™ and a fixed coordinate 

frame R° = <o, ev e2, e3>. (We shall denote by the same symbols the 
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affine frames and the corresponding coordinate cards). Denote by G 
the equiaffine group GAe(3) and by H° the corresponding isotropy 
group of the point o. Let ©, § ° be, as usual, the Lie algebras of G, H°. 
Consider a surface M imbedded into the space As

e. The latter space 
will be airways identified with the homogeneous space GjH°. Now, let 
us consider the trivial bundle P = MxG with the natural Cartan con­
nection ay and its reduction Q° to the group H°. We are to apply our 
new reduction procedure to the bundle Q°. 

Note that only the case of a general hyperbolic surface M will be 
discussed completely; the other cases will be touched very briefly. 
The reader is given a possibility to compare our results with [4] and [5] 
for instance. 

Put R = R° H°. We shall join to each card Ra e K, Ra = (x1, x2, ar3) 
a global card Sa of the algebra ©21(3) in such a way that Sa(K) = (s\ sh 

3 . d 3 • . d 
iff X = Y S( ——. + y S)xi --- . . Further, we shall join to each Sa a 

it-, dx* ifai ' dx* J 

card Sa in © by restricting Sa to the subspace © <= ©$((3). It is well-
known that Z G © if and only if S[ + S| + Sf} = 0 in any card Sa. The 
msignement Ra -> Sa is equivariant. 

Convent ions : 

a) We shall airways omit the index a at coordinates and we shall also* 
write x, y, z instead of x1, x2, x3. 

b) In the following, the round brackets will designate a linear space 
spanned by some linear subspaces, or vectors. 

c) The elements of any Grassmann manifold in question will be called 
briefly blocks. 

Now, for any card Ra e R, we have © = (§° . -̂ — , ----— • - — I . Be­
cause dimQ° = dim H° + dim M = 10, the values w[Tq(Q°)], qeQ°, belong 
to the manifold Z of all 10-dimensional subspaces of © comprising § ° . 
(Theorem 2.) Any block 8P eZ is given by a relation 

(1) a-fl1 + a2S
2 + a3£3 = 0 

3 
besides the usual condition £ S| = 0, hence dim Z = 2. 

i = 1 

~ a ~ ' ~A~ ' ~x~~ I -

The directions of the infinitesimal translations of Xp fill out an im­
proper line C°°(^) of A\. Let us join to each ^ e Z a plane x(8P) deter­
mined by the origin o and by the improper line O°°(^). We shall 



114 

<;all r(0) the tangent plane joined to the block 0. We can see that 

(2) x(0) = (KXX + a2y + ^ 2 = 0 

with respect to each Ra e R. 
The map 0 -> r(0) is one-to-one and it is an equivariant object on Z 

with values in A\ with respect to the group H° (See: [2], Theorem VII). 
The manifold r(Z) is clearly an orbit with respect to H° and there is 

exactly one block 01 e Z such that r(0x) = (o, e1,e2). According to 
Theorem 4 there is a local reduction Q1 of the bundle Q° to the isotropy 
group H1 c H° of x(0x) such that co[T?(Q)] = 01 for all g GQ1 . The 
elements of the bundle Q1 will be called the tangent frames of the surface 31. 
We shall restrict M if necessary so that the new bundle Q1 may have M 
for its base again. Put R1 = R° 0 H1. With respect to each couple of 
corresponding cards {Ra G R1, Sa} the plane T ^ 1 ) is given by z = 0 
and consequently, the block 01 is given by S3 = 0 [we use (1), (2)j. 

As for the Lie algebra i?)1 of the group H1, we have 

& == \X~dx~~y~~dy ' y~dy ZTz9 X~ty' VTx* ZJx ' Z~dy) 

in any coordinate system Ra e R1. 
The values 0 = caiT^Q1)] for g e Q1 belong to the manifold Z1 

of all 8-dimensional subspaces of 01 such that 0 0 §° = §x . Any 
^ e Z1 is of the form 0 = (S1, Ux, U2), where Ux,U2e 01 are linearly 
independent vectors over §° (Theorem 2). With respect to any card 
Ra G R1 we can put Ux= U\, U2= E7§, where 

<8) .Z7i = - | - + v 4 + ^ - | - . 

The map ^ -> (xlf /Jlr oc2, fi2) is a global card Of on Z1 and moreover, 
the correspondence Ra -> Of is equivariant. Z1 can be made into a linear 
space .According to Theorem 3 we have [0, 0] cz 0i for each ,,co-value" 
0 on the bundle Q1. This requirement is equivalent with [Uf, U%] G01 

and hence ot2 = px. Consequently the blocks colT^Q1)], qeQ1, belong 
to a 3-dimensional linear subspace Z1 of Z1, whose global cards are of the 
form Of: 0 -> (a-., a2, /?2). Every ^ G Z1 is given by an equation system 
of the form 

£3 = 0, S3_ai#i_a2S2 = 0 , 

(4) S{ + SI + SI = 0, SI- oc^-M2 = <>• 
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In the following, if a Lie transformation group G preserves some set M, 
we shall say that its Lie algebra © preserves M. If, in particular, M is 
a point, it will be called a singularity of ©. 

The algebra J91 preserves the plane x(2Px) = (o,e1,e2). Denote by 
©! c: §1 the greatest subalgebra preserving each of the parallel planes, 
too. Clearly 

(51 / _d J_ JL JL d 1 \ 
\ dx dy dy dx ' dx ' dy / 

For KG©1 let us denote by hX the restriction of the vector field 
X to the plane r(^>1) = A\. The map h is a Lie algebra homomorphism h: 
(51 -> ©2Cg(2). Given ^ e Z 1 we denote by f (^) the subspace of all 
vectors Ye ©21,(2) such that [h^Y,^] a &>. Put 

( d d \ 1 e , a 
r=ar&r-|f^rj + to-<&+<*& 

with respect to any card Ra e R1. Then we obtain the following equations 
determining f (^ ) : 

/326 + atc = 0 

(5) — ̂ 2a + a2c = 0 

<xxa + a26 = 0 

We can see easily that the system (5) is of rank 2 if at least one of the 
numbers ocx, a2, fl2 is non-zero; otherwise it is of rank 0. We have an 
invariant decomposition according to the rank of (5): Z1 = Z\ U Z\. 
Z\ is an invariant point of Z1 given by 

(6) £3 = 0, S1 + S| + SI = 0, S\ = 0, 81 = 0. 

It will be called the planar block of Z1. The surface M is called planar 
if all co-values on the bundle Q1 are equal to Z\. We receive the usual 
conditions for planar surfaces in A J if we replace S*, Sj by co1", coj in the 
relations (6). 
In case that 0* e Z\ the subspace f (^) is of dimension 1, | ( ^ ) = 

( 1 8 8 \ 8 n 8 \ „ , _ oc-t (Xn 

ding to [6] we have the following possibilities: 

a) D > 0, then the corresponding 1-dimensional group G[£] is a group 
of elliptic rotations around the origin i n i f . 

b) D < 0, then G[£] is a group of hyperbolic rotations around the 
origin in A*. 

Accor-



116 

c) D ==. 0, then G[£] is a group of shear transformations with a directio­
nal line passing through the origin. 

In any case, we shall call the set of all trajectories with respect to the 
group G[i] the indicatrix joined to &. In the case a) or b) the curves 
of the indicatrix have common asymptotics which are imaginary con­
jugate or real and different. In both cases we have the equation 

(7) . k(0>) = octx
2 + 2oc2xy + ^y2 = 0 

for the corresponding pair of asymptotics. 
As for the case c), the equation (7) expresses the double directional 

lineofC7[|]. 
According to Criterion. k(0) is an equivariant object on Z\ with 

values in CA\ with respect to the group H1. The lines of k(0) will be 
called the asymptotic directions joined to the block 0. A block 0 e Z\ 
will be called elliptic or hyperbolic or parabolic according to the figure 
of the indicatrix of 0. It is clear that all co -values along a fibre of Q1 

are of the same type. We have an invariant decomposition Z\ = Z\ u 
[) Z\ U Z1. A point x e M will be called elliptic or hyperbolic or parabolic 

if any co-value 0 = colT^Q1)], p(b) = x, is elliptic or hyperbolic or 
parabolic. Assume M to be composed of hyperbolic points only. Then the 
manifold k(Z\) is formed by all pairs of real mutually different lines 
of A\ crossing at the origin. The group H1 acts transitively on k(Z\). 
Denote Z2 the submanifold of Z\ consisting of all blocks 0 such that 
the corresponding asymptotic directions coincide with the lines ex, e2 

of the frame R°. Let H2 be the maximal subgroup of H1 preserving the 
set {ej U{e2}. According to Theorem 4 there is a local reduction Q2 

of the bundle Q1 to the group H2 such that co[iy Q1)] e Z2 for any 
q e Q2. The elements of Q2 will be called the asymptotic frames of M. 

Let us restrict M if necessary so that M is the base for Q2 again. 
We can see easily that for any 0 e Z2 and for any card Ra e R2 = 
= R° o H2 we have k(0) ===== xy = 0. Hence j82 = <%! = 0 and from (4) 
follows 

W ^ ~~\B\ — a2£i = 0, S[ + 81 + SI = 0, a 2 ^ U* 

Now, in the card R°, it is easy to verify that the subgroup G* cz H2 

(A 0 0 

V I, A > 0, acts transitively on Z2. 
0 ° ± -F) 

Denote by 0*% the block of Z2 such that oc2 = 1 in the coordinate system 
i2°. Let H3 be the isotropy group of 03. Then there is a local reduction 
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Q3 of the bundle Q2 to the group H3 such that co[Tq(Q1)] = ^ 3 for each 
qeQz. In any card Ra e R3 = R° 0 H3 we have 

(9) ^ - \sf — S1 = o, s\ + si + si = o. 
The elements of Q3 will be called the normalised asymptotic frames of M-
H3 consists of 8 connected components; its Lie algebra § 3 is given by 

( f) f) 

8x dy 
•y-z—) with respect to any card Ra e R3. According to (8) 

fy / 

_ą_ ___ __ _ҙ\ 
^Af r l л # **̂  i-J/%* І-J/V* / / ^ # 

dx 
we obtain 

— + -— • 
_a_ ______ XJ_ J_ XJ 
dy dz dy dx dx 

Let us restrict M again if necessary. Let ^ be a ca-value on Q3, i.e. 
;# = o)[Tff(08)], q e Q*. Then § 3 c ^ c ^ 3 and according to Theorem 2. 
# =- (§3, V_, V2), where V_, V2 are two linearly independent vectors 
over §°. With respect to any card Ra e R3, we can assume that V_ and V2 

are of the fornj 

According to Theorem 3 [^,^] <= 0®, i.e. [Vf, V_] c 0>* and hence 
oc1 = (}2, /?_ = # 3 . Consequently; in any coordinate system Ra e R3 

S3=:0, S1 —£_ = 0, S2 —S? = 0, S_ + Si + £3 = 0 

#i + M1 + * 3^2 = o 
Sf — a ^ 1 — Mz = 0 

Sl-a3^ — M 2 = 0. 

The map ^ ~> (<%2 > 2̂» #3 > Pz) *s a global card <7_ on the manifold Z3 = 
= {0> <=-0* I dim 0* = 5, _^ n §° = £3 , [ ^ , ^ ] c ^»}. Wehavei?0 o h -> 
-» O_ o h for any h$Hz (the requirement of the Criterion). Denote 
©3 3 § 3 the isotropy subalgebra of the block £^3 with respect to the 
action of the full affine group GA(S) on Z3. The we obtain easily 

IKS / 8 d 3 J _ a 9 L d \ 

(10) á* 
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Denote by SLX or £2 the subspace of all infinitesimal transformations 
from 0 preserving the axis ex or e2. We want to find out the subspaues 
rix(0>) c ©3, rj2(0) c ©3 such that [nx(0), £x} <=• £lt [r]2(0)} J22] c J22 . 
It is immediate that {£Xi £2} = {(§3, Vx), (§3 , V2)} exact up to the 
order. That Ia3t depends on the connected component of R3 including 
the card Ra. Let be X e ©3 and put 

bz~!y+c{x-í+z-í)+d(y~k+zí\ 
ô . , д í õ Ô 

X = az ---
дx 

After an easy computation we state that rj1(0>), rj2(0) are determined 
(exact up to the order) by the equation systems ; 

(i i) (a) oczd — a = = 0, cß2 — b = 0, ßz(2d — c) = 0 

(b) oízd — a ~ = 0, cß2 — 6 = 0, л2(2c — d) = 0, 

The rank of each of these systems is 3 or 2. We have an invariant de­
composition 

(12) Z 3 = Z 3 u Z ? uZl 

Here we put ^ e Z § if (a) and (6) are both of rank 3, 0 eZ\ if these 
are both of rank 2, and SP e Z\ otherwise. The subspace j£f = (r}x(&), 
rj2(0)) c: (£>3 is given by the system 

(13) azd — a = 0, /32c — ^ = 0 

for any ^ G Z 3 and any Ra e R3. Hence X G,£? if and only if 

/ a a o s \ , / s , a a \ 
z = c ( * a r + a ! & - + ^ - ^ ) + n^+^&- + ̂ ^|-

The singularities of K in the space A% are solutions of the system 

(14) ex + oczdz = 0, dty + £2cz = 0, (c + d) z = 0. 

A vector X s L admits a line of singularities if and only if c + d = 0, 
c ^ 0 . That line is given by 

(15) H(0>): X — OCZZ = 0, y — p2z-=0 

and it will be called the affine normal joined to the block ^ e Z 3 . The map H 
is an equivariant object on Z3. The manifold H(ZZ) is the set of all lines 
of A\ passing through the origin and not belonging to the plane A\\ 
The group H3 acts transitively on it. 

Let Z4 be the submanifold of all blocks 0 e Z3 such that the affine 
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normal K(SP) coincides with the axis e3 of the frame R°. We obtain 
a decomposition 

(16) Z4 = Z4 u Zf U Z4 

similarly to (12). 
According to Theorem 4 there is a local reduction Q* of the bundle Qs 

to the group H4, the isotropy group of the line e3 with respect to II3, 
such that (*[Tb(Q*)] e Z4 for b e Q*. The elements of the bundle #4 

will be called the Darboux frames of the surface M. For ^ e Z 4 w e have 
x(0>): x = 0, y = 0 with respect to any card Ra e R4 = RQ

 0 H4; hence 
x, = 0, & = 0. 

Let us assume in the following that M is the base for Q* and that 
all oj-values o)[Tb(Q*)], b eQ*, belong to Z4,. Such a surface M is called 
general. Given a general hyperbolic surface M and a frame b e Q4, we 
obtain the following expression for the block SP = oy[Th(Q

z)]: 

S3 = 0, S\ + S| + Sfj == 0, s\ — S2 = o, Si — S1 = 0 

(17) Si = 0 

Sf — a ^ 1 = 0, S| — /33#
2 = 0, a2& ^ 0. 

Or else, the block 3P is spanned by the subalgebra § 3 and by two vectors 

of the form 

We can see easily that the subspace J5f' = (Vf, V|) does not depend 
on the coordinate system Ra e R4. Now we shall find out all the vectors 
X 6 JS?' admitting a singularity in A\. Put K = cVf + rfVf, then X 
has a singularity if and only if the following equation system is solvable: 
(18) c + j83 Ay = 0, c# + dx = 0, d + coc2x = 0 . 

3 

It requires that c/d = —yPdfy , and the wanted singularity is given by 
3 3 

(19) R(SP) = [x, y], x = _ y i 7 ^ ( a 2 ) ^ , y = -]/lM^ 

R(0>) is an equivariant object on Z4, with values in A*. (See [5], pp. 29,45 
— » • 

for the classical meaning of this point). The ray s(&) = (0, R(3P)) will 
be called the real direction of Segre joined to 3P. (Cfr. [5], p. 45]. The 
manifold S(ZQ) consists of all rays passing out of the origin in the plane Af 
and not belonging to ex or e2. I t is composed of 4 connected components. 

Now § 4 = (x y ~^~ I and H4 consists of 8 connected components. 
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We can see easily that H* acts transitively on s(Z$). Let Z5 c: Z4, be 
the submanifold defined as follows: ^ e Z 5 if and only if the real 

direction of Segre s(£P) coincides with the ray X(ex + e2), X < 0. There 
is a local reduction Qh of the bundle Q4 to the group {e,e*}, where e 
is the identity transformation and e* is the reflection of the frame R° 

which permutes ex, e2. Moreover, we have co[Tb(Q*)] e Z 5 for any 
b e Q5. The bundle Q5 consists of two sections of the bundle Q°, which 
are called the canonical sections of Darboux. These sections determine 
two opposite orientations of the surface M. 

Let 0> = co[Tb(Q*)], b e Q5. We can see easily that x = y < 0 and 
hence a2 = /?3 < 0. The number K = oc2 = f$3 is called the affine 
curvature of 8P. The space 8P is given by 

S3 = 0> s\ + ^ | = 0 S3 — s2 = o,8i — si = o 

<20) SI = 0, Sf — KS1 = 0, S| — KS2 = 0, K ̂  0 

in both coordinate systems R° and R° . e*. Our specialization procedure 
is finished. If we replace Siy Si by (JO(, vo\ in (20), we obtain a well-known 
canonical equation system for general hyperbolic surfaces in A\ 
(See [4]). 

Note . Similarly we can learn the case that all OJ-values co[Tb(Q
3)], 

b e Q4, belong to Z\ or to Z\. [See (16)]. As usual, we obtain two classes 
of non-developable ruled surfaces. The second class is formed by 
hyperboloids of one sheet. 
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