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L. INTRODUCTION

Many sets, occurring in the mathematical considerations, are simul-
taneously both ordered and topological spaces. Mostly investigated
cases were cases when the topology was defined by means of the ordering.
The general case of connection of an ordering with a topology occurs
in studying topological lattices, ordered topological groups, semi-groups
and similarly (see [14]). The general concept of compatibility of an ordering
and a topology, the so called ‘“Dedekind’s compa,tibility was delt in
papers [4], [11]. In this paper, we are going to treat in details two
kinds of compatibility of ordering and topology.

I1. BASIC CONCEPTS

Under & relatwn on a set 4 we understand a subset of the cartesian
product 4 X A. Relations on A are ordered by means of set inclusion.
When speaking of ordering of the set- 4 we mean a reflexive, antisym-
metrical and transitive relation on 4. If in this relation every two
elements from 4 are comparable, we say that the ordering is complete
and A4 is called a chain; if every two different elements @ and b are
incomparable, i.e. a || b, A is called an antichain. In what follows, the
terminology and notation are the same as in [10] as far as ordering
of the set is concerned.

Under a topological space we shall understand a topological space
(P, ») in the sense of Bourbaki. C(u), O(u), respectively, denotes the
system of all closed, or open sets in (P, u). If (P, u) and (P, v) are two
topological spaces with the same carrier we write u £ v whenever
O(u) © C(v) and we say that v(u) is a coarser (finer) topology than u(v).
By this relation the set Z(P) of all Bourbaki’s topologies on P is ordered.
As for further concepts referring to topological spaces see [2]. ®

III. COMPATIBILITY OF A TOPOLOGY WITH
AN ORDERING

Definition 3.1. Let 4 be an ordered set and u a topology on A. Say
that u is compatible with the ordering, if u is a Ty-topology and if for every
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pair a, be A, a < b, there exist a neighbourhood O, of the point a and o
neighbourhood O, of the point b so that

z€0, =z <borz|b,
Yy€O0,=>y > a or y || a hold.

Definition 3.2. Let 4 be an ordered set, u a topology on A. Say that u
18 strongly compatible with the ordering, if u is a T, -topology and if for
every pair a, be A, a < b there exist a neighbourhood O, of a point the
and, a neighbourhood O, of the point b such that

z€0,,ye0,=>x <y or || y.

Theorem 3.3. Let A be an ordered set, u a topology on A. If u is strongly
c_ompatiblé with ordering then u. is compatible with the ordem'ng, too.
~ Proof is evident.

Theorem 3.4. Let A be an ordered set and u, v, v < u two topologzes
on A. Let u be compatible (strongly compatible) with the ordering. Then v
18 compatible (strongly compatible) with the ordering.

Proof is evident.

Theorem 3.5. Let m,, 7, be two orderings on A. Let 7, < m,. Let u
be compatible with x,. Then u is compatible with m, , too.

Proof is evident.

Theorem 3.6. Let A be an ordered set, B = A. Let u be a topology on A
compatible (strongly compatible) with the ordering. Let u|B be the topology
snduced by means of w on B. Then u[B i3 a topology on B compatible
(strongly compatible) with the ordering.

Proof is evident. :

Definition 3.7. We say that a subset B in an ordered set A is densely
smbedded, if for every x€B, yec A— B, x <y or y < x there exisis
beBsuchthatz <b<yory<b<ua.

Theorem 3.8. Let B be densely imbedded in a ordered set A. Let u

be a topology on B compatible (strongly compatible) with the ordering.
Then, there exists a topology v on A compatible (strongly compatible) with
the ordering, for which v/B = u.
« Proof. Let us define a topology u, on A—B as the discrete topology.
Let (4, v) (B, ) + (4A—B, u,) be the sum of two topological spaces.
Then v is evidently compatible (strongly compatible) with the ordering
ana u = v[B.

IV. SPECIAL TYPES OF TOPOLOGIES
. ON AN ORDERED BET

Let A be a given ordered set. Let us set [z) ={y |ye 4, y =z},
(z] {ulyed, ys =} for zeA. For z, yed, z<y, [z, yl=
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={z|z < 2=y}, N, b) ={x|it doesnot hold # £ @,z < borz 2 a,
Z 2 b}. A set C < A is called convex if

z,ycC,z S y=[z,y] = C.

Let B be an up-directed ordered set, (i.e. for %, ¥ € B z exists such
that « < 2, y < 2), {#s}pep & net in 4. Say that a net {x,},., converges
to z if there exists a set M of majorants for {Z3}s; and a set N of
minorants for {2}z, with the property inf M = % = sup N (see [3],
0, — convergence in [13]). We write lim #; = . A minorant or a
majorant of the net {z;}scp is an element y such that y < x; or ; < v,
respectively, for all indices 8 = f,, for a suitable f;.

A subset € < 4 is called an ideal (see [6], p. 227) (a dual ideal) in 4
if it holds ‘ e
: FcC, F+#0, (0 denotes the empty set), F finite = (F*)* <
< C ((F+)* < C), when

F*={z|z2« for all zeF}, Ft={z|z=z for all zefF}

An ideal C (a dual ideal) is called totally irreducible if it is not an
intersection of ideals (dual ideals) different from C. .
A set C = A is called finite separable if there exist z,, ..., x, € C
such that :
Cc(x]V...VU(x,]U[r)VU...Ulz,).

Definition 4.1. We call a topology on A which has as subbasis of closed
sets intervals [z), (z] for x € A, an interval topology. We shall denote this
topology by ¢ or ¢, (see [5]).

Note. The interval topology is evidently always a T';-topology.

Theorem 4.2. (see [7]). The interval topology on A s Hausdorff exactly
when the set N(a, b) for a, be A, a 5~ b is finitely separable.

Note. The condition for a topology to be Hausdorff can be easily
transcribed into the notation of closed sets in the following way: A
topology on A4 is Hausdorff exactly when for every two points b, c€ 4,
b # ¢ there exist closed sets B and C, be B, b¢C, ce(, c ¢ B such
that BU C = A.

Theorem 4.3. If the interval topology ¢ on A is Hausdorff then it is
strongly compatible with the ordering.

Proof. Let an ordered set 4 with a property that N(a, b) is finitely
separable for all a 5= b be given.

We are interested in pairs of comparable elements, thus let @ < b,
and we seek a neighbourhood Oy of the point @ and a neighbourhood O,
of the point b so that for every z € 0,, y € O, there were z <y or z||y.

The set N(a, b) is finitely separable, so there exists a finite set of
elements ¢,, ..., ¢, from N(a, b) such that every element from N(a, b)
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belongs to any of the intervals [c,), (c,],. - -, [¢,), (€4)- Liet us construct closed
sets X = VU (¢;]U (@], Y = U [¢;) U [b), for which ae X, a¢ Y, be Y,
b¢X, XU Y =4 hold. Put 0, = A—Y, 0, = A—X. Then a€0,,
be 0,, 0,N O, = 0. Suppose that x € 0,, y € O, exist such that x > y;
z€0, = 2 €0, = x€ X => ¢, exists so that ze€(c;] or zefa]=>¢; 2 =
orazz=c;>yora>y=>ye(loryec@=>yeX >y¢d—X=
== O, which is a contradiction.

Theorem 4.4. The interval topology is compatible with the ordering.

Proof. For every pair of points a < b we look for a neighbourhood O,
of the point ¢ and for a neighbourhood O, of the point b so that for all
€0, and all y€ O, therec hold z < bor z||b and y > a or y || a. Let
us put 0, = 4—(a], O, == A—b). 0,, O, are open sets and @c O,
beO,. '

If there existed x€0,, z > b then ze[b). But x€ 0, = A—[b).
Analogously for 0,.

Definition 4.6. A topology on A in which a set 1s closed exactly when
it contains with every convergent net simultaneously its limit is called the
convergent topology (see [3], [10], this topology is sometimes called order-
topology). Let us denote it by x, more precisely by x .

Note 4.6. The convergent topology is always a T, — topology.

Theorem 4.7. The convergent topology is compatible with the ordering.

Proof. It holds x £ ¢ (see e.g. [3], [6]). By Theorem 3.4 and Theorem
4.4 » is compatible with the ordering.

Before showing that there exists an ordered set A4 with Haudorff
convergent topology which is not strongly compatible with the ordering,
we shall introduce some auxiliary statements.

Lemma 4.8. Let {x,;}3% x. Then, for the set M of all minorants and
the set N of all majorants V M = 2 = A N hold (see [3]).

. Lemma 4.9, Let 4 be an ordered set. Then forz, < ... g2, £ .
#B=z...22,2...)

limz, =2'=x= Vz, (xt = A=x,) holds.

Proof. Let limz, = x hold, forz; £ ... < », £ ....z,isa minorant

for {x,}n-1; consequently if M denotes the set of all minorants it holds
VM =z = x, by lemma 4.8. On the contrary m = z,, foralln =>m
is & majorant, thus m = z. Hence Vz, = .

Let Vu, = . Then a,8 form a certain set of minorants, {} is a one
element set of majorants. Thus, limz, = z. In the similar way for
T, 222 ...

Lemma 4.10. A net {;},c,, for which there exists 8, such that for 8,
p1 = P is x; = a for a suitable a, converges to a.

Definition 4.11. A net, described in lemma 4.10, is called an almost
stationary net. :
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Lemma 4.12. Let {2;};c; be a net converging to « which is not almost

stationary and let its elements form a chainy;, <y, < ... <y, < .
Then z = V¥, . Similarly for a decreasing chain.
Proof. For every n B, exists-such that for 8 2 8, 2 €{yy, ..., Yn}

(it follows from the theorem on convergence of a subnet). Thus, ¥,
for all n are minorants of {x;}sep- Hence.y, < z.

Letz = y, for all n, s0 2 is a majorant to {#p}se5. Then z 2 z, because z
is an infimum of the set of all majorants. For that reason x = sup y,.

Lemma 4.13. Let A be a set where no two incomparable elements
possess the upper und the lower bound at the same time. Then every
convergent net {%s}se; in A has the property that for a certain f,
{%4}3>p, i8 & chain.

Proof. Let x = lim {%,} 5. Elements a and b exist such that starting
from a certain index B, itisa < z; < b, f > B,. Thus, for B,y > B, a, b
are common upper and lower bounds consequently z; and z, are com-
parable. '

Theorem 4.14. Let A be a set where every chain is finite or of a type w
or w* and no two incomparable elements from A possess simultaneously
the upper and the lower bounds. Then, a set M < A i3 tn », closed exacily
when for every chain x, < x, < ... <z, < ..., %,€Mthereis Vx, €M
and every chain x, > xy > ... >z, > ..., ¥, €M 8 Nz, €M (in the
case when V x, or Awx,, respectively, exists). ,

Proof. Let M be a closed set. Then the statement on chains holds .
by Lemma 4.9.

Let M. contain with every convergent, increasing or decreasing
chain of a type w or w* its limit. Let {x;}se, be a convergent net in M
with a limit @ and x; € M. According to the preceding Lemma B, exists
such that {r;}s>, is a chain. In consequence of Lemma 4.10 we can
suppose that the net {x;} e, is not almost stationary so that the set formed
by the elements x, with # 2 f, is a chain of the type w or w*. Fur-
thermore by Lemma 4.12. Thereby the proof of Theorem 4.14 is finished.

Let F; be a chain of the type w, € N, where N is the set of all positive
integers, F; N F; = O for4,j€ N, # j. Let G; be a chain of the type w*,
J€ R, where R is the set of all real numbers, GiNn G, =0,forj keR,
J#kLet UF,NU G, = 0. '

teN iR .

Furthermore, let a, b be two different elements not belonging to

YFiU\_JG,'- Fibe{;; <...<zp<...}and Gy={y;1> ... Y >

> . ) Put H=| ST, @ ()] + (5} @ 5 6], where §, + denote
i€ je

cardinal sum, @ .an ordinal sum.
The ordering on H will be completed in such a way:
First we put @ = b. Let 4 = [T N;, where N;= N, card I = N,.
ial
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Card 4 = 2N, Let f be a one-to-one mapping of A on the set R. Let
a=(..., a, ...)€A. Then, let us put 2;; < yyq); for k¥ < a; and
j £ i. The set H the ordering of which is completed in the above
described way, will be denoted by H*.

Theorem 4.16. The convergent topology on H* is Hausdorff and fmls
to be strongly compatible with the ordering.

Proof. First we are going to show that H* fulfills the conditions of
Theorem 4.14. An arbitrary chain in H* is either finite or of the type e
or w*. If ¢ and d are incomparable elements in H* then one of these
-possibilities occurs under a suitable notation.

l.ceF,,deF;, i #1
2. ceG,,deG,,y;éy

3. ceF,,deq;.
4. c=a,del;.
5. d=b,ceF...

Ad 1. Elements ¢ and d have no common lower bound.

Ad 2. Elements ¢ and d have not an upper bound in common.

Ad 3. Let us admit that there exist elements e, g such that e < ¢, d
and ¢, d < g. Then ec F;. If it is ¢ = x;,, then e = z;, for k< s.
Similarly geG ifd = y;, then g = y; ,, form < 1.

According to the definition of ordering in H* there holds furthermore;
'lff(cc)—-j, then a; 2 s, because g = c. As e<'d it is I £ . Thus
%, < yj;- Hencec < d which is a contradiction.

Ad 4. and 5. @ is a maximal and b a minimal element from H*.

By the statement of Theorem 4.14 it is necessary to deal with con-
vergent chains of types w or w*. The only such convergent chains are
subchains of the F; (converging to @) and subchains of the G; (convera
ging to b). All pomts except for @ and b are, thus, isolated in Kye.
UG, {b}, UF; U {a} are in x,,+ closed sets, fulfilling for points @ and &
the’ properties mentioned in the remark following Theorem 4.2. Con-
sequently x, . is Hausdorff. We shall show that it is not strongly
compatible with the ordering. Let O be a neighbourhood of the point a.
Then there exists « = (..., @;, ...) € 4 such that ;; for k = @, is an
element of 0. Let O, be some neighbourhood of the point 5. Then there
exists j, such that for 7> y,(a),EO Then z; a; < yy,),;j- At the
same time ¢ > b. Consequently %ge 18 not strongly compatlble

- Definition 4.16. Let A be an ordered set. The topology in which totally
trreducible ideals and totally trreducible dual ideals form a subbasis of open
sets 13 called the ideal topology ([6] p. 232).

Lemma 417, Let 4, < 4, < ... < 4,< ... be a transfinite
sequence of ideals or of dual ideals, respectively. Then U4, is an ideal
or an dual ideal, respectively.
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Proof is ev1dent from the definition of ideal.

Lemma 4.18. Every ideal (dual ideal, respectively) is an mtersectlon
of totally irreducible ideals (dual ideals).

Proof. Let 4, be an ideal in B. Let b¢ 4,. By Lemm& 4.17 and
Zorn lemma there exists a maximal ideal 4, © 4, not containing b. Admit
that this ideal is not totally irreducible. Then 4, =NA,, A, areideals
different from A,. At least one of them, let us denote it by A, does
not contain b. This is a contradiction with the maximality of 4,.

Corollary of Lemma 4.18, Ideal topology of 4 is a T';-topology. ;

Proof. Let x€ 4, y 5 z. At least one of the sets [y) and (y] does
not contain z. Let it be [y). [y) is a dual ideal. By 4.18 an totally
irreducible dual ideal I exists for which I > [y), x non € I. I is an open
set in the ideal topology of A. Similarly for (y]. Hence 4 —{x} is an
open set in the ideal topology, so the ideal topology is a T',-topology.

Lemma 4.19. Every ideal (dual ideal) is convex.

Proof. Let 4, be an ideal, * < y < 2, x, z€ 4,. Then ({z}*)* = (2]
thus, y € 4,. Similarly for a dual ideal.

Theorem 4.20. Let A be an ordered set, u its ideal topology. Then u
18 compatible with the ordering.

Proof. Let a < b. (a] is an ideal in A. As b & (a] there exists by
Lemma 4.18, a totally irreducible ideal 4, which contains (a] and fails to
contain b. As A, is convex, it does not contain z > b. Thus 4, is a
neighbourhood of a with the demanded properties. Similarly for b.

Problem 4.21. Let the ideal topology be Hausdorff. Is it strongly
compatible?

Naito in [8] has defined P-ideal topology (CP-ideal, M P-ideal topo-
logy) on a lattice. From Lemma 2 and 3 on page 242 in [8] there follows

Theorem 4.22. Let the P-ideal (CP-, MP-ideal) topology on a:lattice A
be a T,(T',)-topology. Then, this topology is compatible (strongly compatible)
with the ordering.

Definition 4.23. Let A be an up-and- down directed set. Let the sets of a
Jorm [a, b] form a subbasis of the closed sets. Then, let us denote by v,
the topology defined in such a way and let us call it the B-interval topology
(see related concepts in [1]).

Theorem 4.24. Let A be an up-and-down directed set. Then v, s comp-
atible with the ordering exactly when A has the smallest and the greatest
elements.

Proof. Let v, be compatible with the ordering. For card 4 =1
Theorem is evident. Let card 4 = 2. Let ¢ > b (such two elements
exist, the set 4 is directed). Let [¢;, d,], ..., [c,, d,] be such intervals
that, when putting 4, = [¢;, d,]U ... U[c,, d,], O = A—A4, is an
open set for which be0 and x€0 =2z < a or z ||a. Consequently
y2a=yecA,. Thus, especially if c 2 d,, ..., 4, (c exists, 4 is
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directed) it is ¢ 2 y for y = a i.e. ¢ is a maximal element over a, i.e.
a maximal element of the set A. But the directed set has at most one
maximal element. In a similar way we can prove the existence of the
smallest element.

When A4 has the greatest and smallest, element then v, =¢,..

Consequently by Theorem 4.4 B-interval topology is compatible with
the ordering exactly when-it coincides with the interval topology.

Definition 4.25. Let S be a lattice and u a T, -topology on it. Let there
exist to every neighbourhkood O of a point a \/ b(a A b) a neighbourhood O,
of the point a and a neighbourhood O, of the point b such that for arbitrary
2€0,,y€0,z V y€O0 (x A\ ye€ 0). Then 8 together with the topology u
18 called a topological lattice.

Theorem 4.26. Let (S, u) be a topological laitice, u a T',-topology. Then
u 8 compatible with ordering.

Proof. Let @ < b. Let O; and O, be neighbourhoods of the point &
or b respectively, not containing b or a, respectively. Then there exist
neighbourhoods O; and O, of the point a or b, respectively, not con-
taining b or a, respectively, such that

z€0,;,ye0, =2 A\ yeO0,
r€0,;,ye0,=>x V ye0,.

Let us admit that there exists z € O, such that z > b. Then z A b=
= b e 0, which is a contradiction. Similarly for O,.

Theorem 4.27. If the topology. of a topological lattice is Hausdorff, then
it is strongly compatible with the ordering.

Proof. Let a lattice S be a topological lattice (S, #) with a topology »
which is Hausdorff. Let us choose a, b€ 8, a < b. Then there exist a
neighbourhood O, of the point @ and a neighbourhood O, of the point b,
0,N0,=0.

It holds a V b = b. Furthermore there exist a neighbourhood O; of
the point ¢ and a neighbourhood O, of the point b so that for all z € O,
ye 0,z \ y€ 0, holds. Now, let us denote 0" = 0; N 0,4, 0" = 0,N O,.
For z€0', ye 0" it holds x V y€0,, O'NO"=0. If 2€0',ye0’,
x > y existed, then x V y = x2€0,, s0 0,N O’ # 0 but 0’ < 0, and
0,N 0, = 0 which is a contradiction. Thus no such 2, y exist and
consequently the topology » is strongly compatible with the ordering.

V. EXTREMAL PROPERTIES OF THE INTERVAL
TOPOLOGY

Let A4 -be an ordered set, #(4) be the system of all topologies on 4
which are compatible with the -ordering.
Let C ={cy, ....c,}, D={d,,...,d,},C <A, Dc A CUD#0.
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Put P(C, D) = P(cy, ..., Cp3 @y, ..., d,) =(A—[c))N ... (A —
— o) N (A— @D ... (4 —d,).

Let be 4. Let us ca.ll an ordered pair of subsets C and D (C #0, or
D # 0) for which P(C, D) [b) # 0 holds up-admissible (more concisely
an admissible pair) with respect to b. Let 2(b) be the system of all such
admissible pairs.

Let a || b. Let us call 0 # 9, < 29®) 5 system up-admissible with
regard to <{a, b> (more conclsely an admissible system) when it holds:
(1) SeZ,= 8 #0.

@2) S, ..., ;S'meg1 = there exists S €9, such that <C;, D)€ S,,
, <C,., D,>€8,, exist for which <C,v ... VC,, D,V ... U
U D,,,) es.
(3) a) > a = there exists S €D, such that <C, D) 8§ => P(C, D) <
< 4 —[z).
b) < a = there exists S 6 2, such that {C, D)e § = P(C, D) c
— (]
(4) = 5~ a = there exists S € 9, such that for every (C, D)€ 8
z & P(C, D) holds.

In a similar way we define down-admissible pairs and a down-
admissible system. In what follows we are going to deal with properties
of the up-admissible system. By means of dualization we get correspond-
ing statements for the down-admissible system. Let &, be a system
up-admissible with regard to {(a, b).

Let us put

0(2,) ={X|X€eO0(,), a¢X}U{X|X =000, 0€0(,), acO
and 0, = U P(C, D) for certain S € Z,}.

C,D>eS
Let 0(95) be>a subbase of open sets of a topology u(Z;). Then it holds

a) w(D,) > 1y.

Proof. u(2,) 2 ¢, follows from the fact that O, is an open set in ¢,.
(D) # 1, follows from the fact that [b) is not closed set in u(2,).
A—[b) is not a neighbourhood of a point @ in u(2,), because for
01, ..., 0¥ € 0(2,) constructed by means of 8, ..., S, € 9,, it is by (2)
possible to find S and <C,, D> € S, ... {C;, D> € 8, 80 that (C, U ..
. UGC,DV...UD>eSand P(C,V ...VUC,; DyU ...V D)N
N [b) # 0, hence 01N ... N OP N [b) # 0.

b) u(2,) is a T;-topology.

Proof. Let y +# =.

b;) Let y # a. Then there exists a set not containing either a or z
and containing y in O(s,). This set belongs to O(u(2,)), as well.

bg) Let y = a. Then by (4) there exists S € 9, such that for <C, D) € 8
it is z ¢ P(C, D), thus, for 0, = U '1;(0 D) it is « non € 0,.

{0.p)
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Furthermore, O € O(t,) exists for which a € O, z ¢ 0. Consequently
ac0VO0,,2¢0V 0,.

¢) u(2)e F(4).

Proof. Let 2, ye 4, « > y. For z # a # y the existence of the
neighbourhoods with the demanded properties is evident.

Let y = a. Then evidently there exists a demanded neighbourhood
of the point 2. The demanded neighbourhood of the point @ can be con-
structed in the following way. According to (3) a) S €9, exists such
that O, :0U SP(O', D)yc A—{[x). Let 0cO0(1y), 0 <« A —[x), a0

,D )€
(O exists éeca?xse t,€L(A)). Then OU 0, € 4 — [x).
For x = a we can proceed similarly.

Thus following Theorem holds

Theorem 5.1. Let A be an ordered set and let for suitable poinis a || b
there exist an up or down admissible system 2, to {a, b>. Then w(D,) € F(A)
and w(D,) > 4.

There holds in a certain sense the converse of the introduced Theorem.

Theorem 5.2. Let A be an ordered set and w > t,, u € F(A). Then
there exists a pair of points a, b a || b such that there exists a system D,
up or down admissible to this pair {a, b).

Proof. As the sets of the type (z], [x) for z € 4 form a subbasis of
closed sets in ¢,, b€ 4 exists such that [b) or (b] does not belong to
C(u). Let the first case occur, in the second one proceeds in a dual way.
Thus a € A exists such that 4 — [b) fails to be a neighbourhood of a
in % i.e. any open set for the topology u containing o has with [b) the
non-empty intersection. We shall show that a || b. If a < b, then the
fact that every neighbourhood of @ in u contains an element from [b),
would be a contradiction with u € £ (4).

O(u) < O(y). Let O #£ 4, O O(w). Then it is O = U ﬁ 0, ., where

© k=1
Oy = A—(c; 1] or A-—[c, ) for suitable ¢, ;. Natmally, the system of
elements ¢; 18 not, in genera] uniquely deﬁned in this way. Let a € O

Then at least' one i, exists such that n O,BLn [b) # 0. Let O; 5 =

= A4 —[¢) fore,, .. m,O.ok—- (dx] for dppirs +ovs A, . Put C =
{1, ..ot} D = {dmﬂ, ooy @y, }. <C. D) is up-admissile pan’ to b. It

”‘o

is N O,Dk = P(C, D). Let us denote by S(0) the system of all ordered
k=

palrs <C, D which can be construcbed in the mentioned way. Put

{b (0) |0€0(u), ac0, O + A}. Evidently %, # 0. We shall
shcm that 9, is up- admlsmble system to (a, b).
Ad (1) 8(0) € @, is evidently a ‘non-empty set.
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Ad (2) Let sl, . 8, €D, Let S; = 8(0,), . = 8(0,,).

Let ooNn...n0, =0. OGO(u) ae0, 0;&A fhuq 8(0)e 2,:
("")
1,("')
Put S = §(0). As O = U f\ 0, 2N ...NU N Oiem , there exist indices
=1 iom) f=1
tg - - - 7g™ such that
"4 n("‘)
N0y .. ON® Oum A [B) %0,
k=1 k=1
ie.{Cy, Dyyes,, ....<C,, D,> €S, exist such that {C; LU ... U C,,,
D,V ...uD, el

ad ( ) a) Let z > a. Then there exists O € O(u) such that a,EO
0 © A—[z). Put S = S(0). As P(C, D) < O for (C, D>e 8, it is
P(C, D) < A—=x) for (C, D>€ 8.

(3) b) can be proved dually.

Ad (4). Let * # a. As u is a T';-topology, there exists O € O(u) such
that a€0, ¢ 0. Consequently for § = 8S(0) it is <C, Dye S =
= P(C, D) < O =z non € P(C, D). Thereby the proof of Theorem is
accomplished.

Example 5.3. Let A = B @ C, where B is a two element antichain
{a, b}, C a chain of the type w*c; > ¢, > ...

Let o = {{D,{b}y | D = C is a finite set}. Let 2, be the system of all
one point subsets from .. Then &, is up-admissible with respect to
{a, b>. Thus ¢, fails to be a maximal element in S (A4).

Theorem 5.4. Let A be an ordered set. Then ¢, is the greatest element
in F(A) exactly when there exist to every two points a, b a || b two groups
of elements Ay oo a >a and a;, ay, .... a, < a such that [b) —

— U [a;) and (b] — U (@] are finite sets.

Proof oc) Let u G.Y(A), u £ ¢, . A point be 4 exists such that [b),
or (b] is not in C(u). Let us consider the first case, the second one is dual
to it. Thus A—[b) & O(x). So aeA——[b) exists such that A-—[b) fails
to be a neighbourhood of a in %, i.e. every neighbourhood of the point
a in u has a non-empty intersection with [b). As u €S (4), it is a || b.
Let us admit that there exist points @,. ..., @, > a such that [b) —
—U [a;) = N is a finite set.

2

Let O; be an open set in w containing @ and contained in 4—[a;). -
Such a set exists because ue&F(4). 0 = ﬁ 0, = ﬂ (4—a;)) =

=A— U [a,) is an open set in % containing a, BN 0 < phyNn (44—
—Vy [a,i)) =[0B)—Ule)N[)=N. N is a finite set, lgonsequently
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[b) N O is finite, too, and therefore closed. O’ = O — [b) N O € O(u) and

ac 0'. At the same time O’ N [b) = 0 which is a contradiction to the

statement that every neighbourhood of a has a non-empty intersection
with [b). Consequently N is not finite.

B) Let a, be A4, a || b. Let for every group of elements a,, ..., a, > a

be the set N(a,, ..., a,) = [b) —V [a,) infinite. Evidently it holds
1]

Ny, ..., a,)NN(cy, ..., ¢) = N(ay, ..., @, ¢, ..., ¢). Construct
on [b) a free filter § such that it contains all N(a,, ..., @,). Such a filter
really exists because ([b) —{x})N N(a,, ..., a,) is an infinite set for
ze[b) and every N(ay, ..., a,). Put T* ={X | X€O0(,), a ¢ X} U
U{X|X=Y,VUY,, Y,e0(,), ac Y, Y,e68}. T* be a subbasis of
the system of the open sets of a topology u.

1. u is a T';-topology.

Let a # x # y. 0 € O(t) exists for which a ¢ 0,y ¢ O, z € 0. At the
same time O € T*. ‘

Let y #x=a. 0€0(,), a€0, y€0 and Y,c S exists such that
y € Y, because S is a free filter. Then OU Y, € O(u)and ynone OV Y,,
ac0OVU Y,.

2. ue L(4).

For 2 #2a #y, z < y the existence of required neighbourhoods is
evident from the existence of analogous neighbourhoods in ¢,.

Let z > a. In O(1,) X exists such that x€e X and ye X =>y > a
or y || @. There exists Y, € O(t,) for whichae Y, and ye Y, =>y < =
or y||z. In 8 there is contained as element the set N(x) = [b) — [z)
for which y € N(z) =y < z or y || « holds. Then 'Y, U N(z) is the sought
neighbourhood of a in .

Let @ > 2. There exists Y, € O(t,), a€ ¥, < A —(z]. Let ¥Y,€ 8.
If y € Y, existed for which y < z then a > y but y € [b), consequently
@ > b, which is a contradiction to a ||b. Then Y, U ¥, is the sought
neighbourhood of @ in u.

There exists O € O(t,), x€ 0, 0 = A — [a). Then O € O(u), and it is
_the sought neighbourhood of z.

3.uf,

We shall show that [b) non € C(u). Let O € O(u), a€ 0, O # A. Then

N,

0= U n X, where X, € T*. Thus i, exists such that a € n X.,;,,

By

oonsequently a€ Xk for all k ie. X;;= Yiu Y,, ﬂ Xc.,k =
n,
n [TV R =1Tunin...n [Y1* U ¥3*] = rY‘n
. n Y”"]U L VUITEN YR A YR Simultaneously Y}n N
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N Yz"'eS Therefore [ﬁ XiklN[B) 2 Yin...N Y;‘" # 0. Then
k=

T ON [;b)f;é 0, too. For tha.t reason A — [b) fails to he a neighbourhood
of a in w, ie. [b) & C(u). Consequently ¢, is not the greatest element
[in & (4).

Similarly for ay, ..., e, < a.
Consequence b.5. (see [12], p. 44). If 4 is a chain then ¢, is the greatest
topology in £ (4).

Proof. a,be 4, a || b do not exist.

Corollary 5.6. ¢g for a lattice S is the greatest compatible topology
exaotly when for a ||b ¥ = [b) —[a V b), Z = (b] — (& A b]are finite
sets. '

- Proof. Let «g be the greatest element in &#(S), a ||b. Then for a
certain finite group of elements a,, ..., @, > @ (<a respectively) it is
(8) — VU [a,;), ((b] — U (a;], respectively) finite. Let us consider the first
case. The second case is dual. Let 2 €U [a,) N [b). Thenz = a V b,i.e.
ze[a V b)N [b). Hence U [a,) N [b) < [a V b)N [b), ie.[b) —U[a) >
D [b)—[a V b) = Y. Thus Y is finite.

If Y is finite, the condition of Theorem 3.4 is fulfilled for @, =a V b.
Similarly for Z.

Problem 5.7. Let A be an ordered set. When does the greatest element
in & (A) exist?

' For illustration of this-problem et .us introduce two examples.

Example 5.8. Let 4 = B @ C as in example 5.3. Let « be a topolegy
on - A, -defined-sin ‘the following way: every point ¢, is isolated and
{(c;] —{b}} and {(c;,] — {a}}, respectively, are bases of the system of all
neighbourhoods of the point a or b, respectively. According to 3.8 and
6.5, if v is the greatest topology in &(4), then v induces the interval
topology on C, i.e. in this case the discrete topology. Hence it follows
easily that u is the greatest element in & (4).

Example 5.9. Let Z denote an Euclidian plane, provided with a
Cartesian system of coordinates, ordered in the following way

e,y S {u,v)=>x=u and y = v

Let A€ Z, p,, p, be distinct closed rays with the end-point 4, p, parallel
(even as the sense is concerned) with the negative ray in the axis z,
P, directs to the seeond quadrant, or- it lies there. Let us denote the-
interior of the angle < p;4p, both with the points of the ray p, by
A(A, py, ps)- Let all, in such a way gained sets form a subbasis of open
sets for the topology v . €% (Z). Similarly (p, parallel with the
positive half axis z and p, directed to the first quadrant) a topology
u, is defined, u, € S (Z), too. Let O € O(u;) N O(x,,). Then there exists
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a-half-plane 7 directed to the first and the second quadrants such that O
contains a dense set in 7 formed by straight lines parallel to axis x.
Consequently the topology %, V u, (supremum in %(Z) — see e.g. [9])
does not lie in &(Z). So F(Z) has not the greatest element.

Let us finally show that the statement of Theorem 3.8 does not hold
for general subsets.

Example 5.10. Let A = (—oc0, 0]U [1, o), B = (—o00, 0]U (1, o0),
A, B ordered as subsets of real numbers. }Wery neighbourhood in 5
0, of the point 0 in B intersects (1, o). Thus, for «* on 4 for which
u* | B = u, u* ¢ F(4) holds because a ncighbourhood O in u* with
the required properties does not exist for the couple 0 and 1.
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