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EFFICIENT INEXACT NEWTON-LIKE METHODS
WITH APPLICATION TO PROBLEMS
Or THE DEFORMATION THEORY OF PLASTICITY

RADIM BLAHETA and RoMAN KOHUT, Ostrava

Summary. Newton-like methods are considered with inexact correction computed by
some inner iterative method. Composite iterative methods of this type are applied to the
solution of nonlinear systems arising from the solution of nonlinear elliptic boundary value
problems. Two main questions are studied in this paper: the convergence of the inexact
Newton-like methods and the efficient control of accuracy in computation of the inexact
correction. Numerical experiments show the efficiency of the suggested composite iterative
techniques when problems of the deformation theory of plasticity are solved.

Keywords: nonlinear systems, inexact Newton-like methods, composite iterations, defor-
mation theory of plasticity
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1. INTRODUCTION

We shall be interested in efficient iterative methods for the solution of large non-
linear systems

(1.1) A(w)u=1>

arising from the discretization of nonlinear (quasilinear) elliptic problems. Here,
u,b € R® and A(u) is an n X n matrix with entries which depend on u.

For the solution of the system (1.1), we shall exploit Newton-like methods which
iterations ¢ — ¢ + 1 consist of the following steps:

(1.2) compute A'.  B;A' = = b— A(u ),
(1.3) put: uw't! =l 4w A

where A’ is a correction, 0 < w; < 1 is a damping parameter and B; is a suitable
n x n matrix. We shall consider two particular choices

(1.4) B; = Ao,
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(1.5) B; = A(u')

which give respectively the generalized Picard (GP) and the secant modulus (SM)
method.

Note that we do not consider the actual Newton method for which B; is the
Jacobian, but we restrict our attention to the GP and SM methods which have the
following attractive properties

e easier implementation within software for the solution of corresponding linear
problems,

o sufficient efficiency for the solution of many problems with mild nonlinearity,

e possibility of application to problems with non-differentiable operators, cf. the
application to the problems of the flow theory of plasticity [4].

Further, we shall study the inexact Newton-like methods for which the correc-
tion A’ is computed only approximately by some suitable iterative method. This
approach has the following advantages:

e inexact computation of the correction can save a great deal of the computational
work,

e during the iterative process zero becomes better and better initial guess for the
computed correction,

o the use of iterative methods for solving linear systems itself enhances the effi-

ciency when large linear systems are solved.
In this paper, we shall answer two main questions:

e the convergence of inexact Newton-like methods,

e the effective control of accuracy for computation of the inexact correction.

The question of convergence of the inexact Newton-like methods will be studied
simultaneously for nonlinear elliptic problems and their discretization by the finite
element method. We shall consider the case where the nonlinear elliptic problem
can be formulated as a minimizing problem for some convex functional. Our results
will be an extension of the convergence results for the Newton-like methods with the
exact correction which can be found e.g. in [5] and [6].

Concerning the second question, an efficient strategy for controlling accuracy of
computation of the inexact correction is described. This strategy was motivated by
our numerical experiments and is partly explained by the presented theory.

Note, that our techniques are based on the linearly convergent Newton-like meth-
ods. This makes some differences from the well-known results, see e.g. [7, 8], which
mostly concern the quadratically convergent Newton method.

Finally, we describe numerical experiments showing the application of the inexact
Newton-like methods to the solution of problems of the deformation theory of plas-
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ticity (physically nonlinear elasticity). These numerical experiments motivate our
strategy for control of accuracy for computation of the inexact correction and show
the efficiency of the described methods. Note that similar techniques can be also

applied for solving problems of the flow theory of plasticity, see [4].

2. ABSTRACT NONLINEAR PROBLEMS

Let us consider a nonlinear boundary value problems in the following weak form
(2.1) findueV: a(u,u,v) =b(v) Yv e V.

Above V' is a Hilbert space equipped with the inner product (-, -);, and the norm
I'lly, a:V®—R' a(u,-,)is a bilinear form for any fixed u € V and b: V —
R! is a bounded linear functional.

Together with the boundary value problem (2.1), we shall consider its finite ele-

ment approximation, i.e., the problem

(2.2) find uy, € Vy,: a(uy,uy,v;) = b(vy) Yo, € V),

where V, C V is a finite element space. We shall also consider the algebraic problem
(2.3) findu e R":  A(u)u=>

which is equivalent to (2.2). It means that A(u) is an n x n matrix, b € R* and

(2.4) (A(u)v, w) = a(uy, vy, wy)
(25) (b,v) = b(vy)

for all up, vy, w, € Vi, and u, v, w € R™ such that the components of u,v and w are
simply the coefficients of the representation of u,,v, and w,, respectively, in the
given basis of V,. (-,-) is the inner product in R*, (u,v) = uTv.

We can find a lot of examples for the abstract boundary value problem (2.1).
We can mention nonlinear heat transfer, diffusion, potential flow or magnetostatic
problems. But in this paper we shall be interested in only one example which will be
the problem of the deformation theory of plasticity (physically nonlinear elasticity),
described in detail in e.g. [5, 6]. This problem will be also briefly described in the
following Section.

Considering the above mentioned examples of the abstract boundary value prob-
lem (2.1), we can suppose that

(2.6) a(u,-,-): V? ——R!
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is a V-elliptic, bounded bilinear form for any fixed v € V.
We can additionally suppose the existence of positive constants ¢ and C such that

(2.7) cllvllf < a(w,v,v) Yu,v €V,
(2.8) jau, 0, w) < Cllollv il Vu,v,we V.

We can also suppose the existence of a Gateaux differentiable functional ¢: V —
R! with the following properties:

(2.9) De(u,v) = a(u,u,v) VYu,v €V,
(2.10) hemicontinuily: ¢ — Dp(u + tv, h) is continuous for any u,v,h € V
and t € (0,1),
(2.11) strong monotonicity: there is a constant o > 0 such that
Do(u + h,h) — Dp(u, h) > a||h||Z Vu,h e V.
(2.12) Lipschitz continuily: there is a constant 8 such that
Dg(u+ h, k) = Dg(u, b)| < Bllhllv [Klly Y h,k € V.
The last property is
(2.13) o(u) — (v) > ta(u,u,u) — fa(u,v,v).

It is also possible to suppose the existence of the second Gateaux differential of ¢
with the following properties:

(2.14) u —s D%¢(u, h, k)
is a continuous mapping in V for any fixed h,k € V,

(2.15) m||h||Z < D*¢(u,h,h)  Yu,h €V,
(2.16) (D%p(u b 1) < MIAIVIELY  Yu,h ke V

where m and M are two positive constants.
The properties (2.10) and (2.11) imply that the functional

(2.17) B(w) = p(u) - b(w)
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is coercive lower semi-continuous in V. Thus this functional attains its minimum
in V which is the solution of the abstract boundary value problem (2.1). Moreover,
with respect to (2.11) the problem (2.1) has unique solution. The same holds true
for the problems (2.2) and (2.3). For the proofs see e.g. [5, 6].

Finally, note that the properties (2.10) and (2.11) can be guaranteed by the exis-
tence of the second Gateaux differential D?¢ with the property (2.15).

3. DEFORMATION THEORY OF PLASTICITY

In this Section, we shall briefly describe the problem of the deformation theory
of plasticity (physically nonlinear elasticity) which is a particular example of the
problem (2.1).

This problem in a domain Q C R?, d = 2 or d = 3, will be described by means of

(3.1) the displacement u = (u, -, uq),
(3.2) the small strain tensor e = (e;5), 1<1i,j<d,
(3.3) the Cauchy stress tensor 1= (1), 1<1,j<d,

see [6] for the details.

We shall consider isotropic material obeying the following stress-strain relation:
(3.4) Tij = (IC - %/t)eoé,-j + 2,uei,-

where k is the bulk modulus, j is the shear modulus, eg = €11 + ...+ eqq 1s the
volumetric strain and 6;; is the Kronecker delta.
We shall suppose that

(3.5) k= k(z,eo),
(3.6) = p(z,T)

where z € €2 is the vector of spatial coordinates and I' denotes the intensity of shear

stress,
(3.7) ['=T(e) = 2(621)2‘ ei; = eij — 3€0bij.
i

In our numerical experiments we shall use special hyperbolic expressions,
ko

A
_1—01\7060’ H._B"*‘ /%l'\

(3.8) k
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determined by the constants kg, a, A, B. These expressions come from the mechanics
of soil, see e.g. [3].

The boundary value problem of the deformation theory of plasticity with material
obeying the nonlinear Hook’s law (3.4), (3.5), (3.6) can be written in the form (2.1)
with

(3.9) V={v=(v1,,v4): v; € HI(Q), v;=0on g fori=1,...,d},

(3.10) a(u, v, w) = /n{[k(eo(u)) — 24P (w))] div v dive
+ 2p(T'(u)) Z eij(v) e;; (w)}da,

(3.11) b(u):/ﬂZf,-v,-dH/n;f,-vids

where V is equipped by the inner product
Ou; Ov;
(3.12) (u,v)y = / Z u,v,+zax1 0.:7]]

and the corresponding norm. It is assumed that I'(u) = ['(e(u)), e(u) = (eij(u)),

ou ou;
1 : 1.
(3.13) eij(u) = ((%J + 8:6,-)
F = (F,..., Fq) denotes the density of the given volume force, [y, 'y are two disjoint

parts of the boundary of Q on which the zero displacement and the surface force with
the density f = (f1,..., fa) are prescribed respectively.

Theorem 1. Let us suppose that k = k(z), i.e. that the bulk modulus does not
depend on the strain. Further suppose that

(3.14) 0<ko<k(xr)<ki<oo for all z€Q,
(3.15) 0<po<plz,s)<3k(z) forall z€Q,s>0.

Let us also suppose that k, pu are continuous and that u is continuously differentiable
with respect to s and that

OMi25)<0  forall zels>0

(3.16) o
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op(z, s)s

forall z€Q,s>0.
Js

(3.17) 0 < ko < p(z,s) +

Moreover, suppose that Iy is a part of boundary of Q with a positive measure. Then
all the properties (2.6)—(2.16) are fulfilled.

Proof. For the proof of this theorem see Chapter 8 of the book [6]. Note that
the condition (3.16) is exploited only for the proof of the property (2.13). a

4. INEXACT GENERALIZED PICARD AND SECANT MODULUS METHODS

For the solution of nonlinear problems (2.1)—(2.3), we shall consider two lineariza-
tion techniques, namely inexact generalized Picard and inexact secant modulus meth-
ods.

The inezact generalized Picard (IGP) method can be described by the following
abstract scheme:

given u® € H, compute u!, u?, ...
(41) uit! = ui +wiAi,
(4.2) Aie H:  ||A" = A'lap < 0ill Al ao,
(4.3) At e H: ao(AY,v) = b(v) — a(ui, u',v) YveH,

where H = V or H = V, when the nonlinear problem (2.1) or (2.2) is solved re-
spectively. Furthermore, w; are suitable constants, 7); are constants from the interval
(0,1) and ap: H? —= R! is a bounded symmetric positive definite bilinear form,
lollay = Vo, ).

The inezact secant modulus (ISM) method can be described by a similar abstract
scheme:

given u® € H, compute u!, u?, ...
(4.4) uitl = ol 4 AF
(4.5) A€ H: [|AT = Alla, < BillAla,,
(4.6) Ate H: a(u, A% v) =b(v) — a(ul,u,v) Vv e H.

Here H, n; have the same meaning as above and ||v||a, = \/a(u, v, v) where a(u’, -, ")
is supposed to be a bounded symmetric positive definite bilinear form, cf. the as-
sumption (2.6).

The IGP and ISM methods have been described in the form which is suitable for
the convergence analysis, see the next Section. But our practical interest concerns
the equivalent algebraic problem (2.3). ’
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In this case, the inezact generalized Picard method is described by the scheme:

(4.7) ut =+ w A
(4.8) AP ER™:  |AT = A4, < 0il|AY| 4o,
(4.9) AN eERY: A)Ai =71 =b— Al

where A; = A(u?), Ag is the symmetric positive definite stiffness matrix defined by

the bilinear form ay, ||v||a, = VT Agv.
The inezact secant modulus method 1s then described by the similar scheme:

(4.10) wtl = uf 4 A
(4.11) "eR™: ||AT = A'la, < mill A4,
(4.12) AleR": AA =r =b- A

where again A; = A(u'), ||v||a, = VT A;v.

Practically, the inezact correction A' will be obtained by an approximate solution
of the correction equation (4.9) or (4.12) by some suitable (inner) iterative method.
For example, the preconditioned conjugate gradient (PCG) method have been used
for this ask in our numerical experiments. Note that zero can be used as a good initial
guess for A’. Further, under the assumptions (2.7), (2.8) the condition numbers of
A; = A(u') are uniformly bounded so that one iteration of CG or PCG method is
sufficient to give (4.8) or (4.11) with some 7; < n < 1.

5. CONVERGENCE ANALYSIS

Theorem 2. Let us consider the problem (2.1) and let us suppose the existence of
a twice Gateaux differentiable functional ¢ such that the assumptions (2.9), (2.14)-
(2.16) are fulfilled.

Moreover, let us suppose that ag is a symmetric bilinear form on V for which

positive constants mg and My exist such that

(5.1) mollol} < ao(v,v) < Molloll} ~ Wv e V.
Then for
mo 1 — 2n;
(5.2) 0<1);<%, 0<w'<w,~<w"<2ﬁol_£’

the inexact generalized Picard iterations converge to the unique solution of the prob-
lem (2.1).
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Under the same assumptions the same convergence statement is valid when the

problems (2.2) or (2.3) are solved.

Proof. Let us define the functional ¥ as in (2.17). Then for ¢t > 0, we have
U(u' +tAY) = ¥(u') + tDY(u', AY) + L2 D2 (u' + OtAT, AT AY)
with 0 < © < 1. Using (2.16), we obtain the estimate
V(u' +1AY) < U(u') +tDW(u', AY) + LEEM||AY|E.
Now consider the first differential of W.

(5.3) DY (u', A?) = a(u’,u’, A7) — (A") = —ap(A%, AY)
= —ag(Af, AY) — ao(AT — AT, AY).

From the assumption (4.2), we obtain

GA) 18w~ 180 < 11 & s e 1A lag € T2 l1A -

Thus,

(5.5) W + 1A < W) - t||A"n2 PR — A1,
LR, < ) + POIATE,

where

JRN VR RS P S

P(t)=—t+1 =
(t) + 11— 2 my 11— 2

It can be easily verified that for 7; < % and w; € (v',w"), we'have P(w;) < —e <0
and therefore

(5.6) 0 < ellATIZ, < —P@i)llA'I7, < W(u') - w(u™h).

Hence, [|A’||,, — 0 for i — oo because the functional ¥ is bounded from below,
cf. Section 2, and the sequence ¥(u') does not increase.
Now we shall use the strong monotonicity of DW:

1
DV (u+ h,h) — DY (u,h) = / D%p(u + th, h, h)dt > m||h||%.
0
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Let u be the unique solution of (2.1), see Section 2, i.e., D¥(u,v) =0 for all v € V.
Then

mllu' — ul|Z < DY (u+ v — u,u’ — u) — DU (u, v’ — u)
= DV(u' vt —u) = a(u', v, ut —u) — b(u' — u)
= (5' —u) < Mo||Alv [lu” ~ ullv
Hence,
. My —.
(5.7) I = ully < TR < e 1,

My 1

 — ——
my/mg 1 —1;

At
1A la

and therefore ||u’ — u|ly — 0 for i — oo.

The above proof can be exploited also for the finite element problem (2.2), we
must only replace the space V by Vj. Finally, note that the algebraic problem (2.3)
is fully equivalent to the just mentioned finite element case. a

Note 1. The condition n; < % in (5.2) is sufficient but not necessary for the
convergence. With this respect we can note that if we replace (4.2) by a similar
condition

(5.8) AT = B lay < il Aoy

then under the assumptions of Theorem 2 we obtain the convergence for
59 i 1) 1 2 1 — I

(5.9) m<1, 0<wi <247 — (1= ).

For the proof of this statement, it is sufficient to follow the proof of Theorem 2.
The polynom P(t) in (5.5) is now replaced by

M
— 2
P(t) = —t+tg + &t e
From the other hand, for 7; — 1 the conditions (5.9) demand very strong damping

and therefore very slow convergence may be expected.

Note 2. The convergence statement of Theorem 2 remains valid also for the
inexact secant modulus method if we introduce the same damping factors w; to
(4.4). For the proof of this fact we must only replace the assumption (5.1) by (2.7)
and (2.8) and follow the proof of Theorem 2 with a; = a(u?,-,-) instead of ay.
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The following Theorem concerns the convergence of the inexact secant modulus
method without damping.

Theorem 3. Let us consider the problem (2.1) and let us suppose the existence of
a Gateaux differentiable functional ¢ such that the assumptions (2.7)-(2.11), (2.13)
are fulfilled.

Then for n; < 1 the inexact secant modulus method (4.4)—(4.6) converges.

Under the same assumptions the same convergence statement is valid when solve
the problems (2.2) or (2.3).

Proof. Let u be the unique solution of the problem (2.1), see Section 2, i.e.
De(u,v) = b(v) Yve V.
Then from (2.11) and the condition (4.6), we obtain

allu —ul|)? < Do(u +u' — u,u’ —u) — Dp(u, u' —u)

=a(u',u', vt —u) = b(u' —u) = —a(u', A ut — u)
Hence, from (2.8) it follows that
(5.10) allu = ||y < C|AY|v.
Denote @+! = u’ 4 A, then from the uniform V-elipticity (2.7) follows
|AZ < a(ut, AT AY) = a(ut, @ — o @ — o)
= a(u', @t @) — 2a(ut, @ ') + a(ul ) o)
= b(@ ) + 2J;(u') = 2J;(u') — 2J; (@' H)
where J;(v) = La(u',v,v) — b(v). Thus
(5.11) 1A < 2 (i) = (@]
For the norm ||v||a; = (a(u’,v,v))/? we have
lv — @ *1|2 = 2J;(v) — 2J;(a'+?).
Thus, the condition (4.5) can be rewritten as
'+t — @™o, < mifla™*! = 'lla,
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or
Ji(u*) = Ji(@*) <} [Ji(u') = Ji(@th)] .

This yields

Ti(w) = Ji(@*Y) = Ji(u) — Ji(u ) + Ji(ui ) — Ji(@ )
< Ji(u') = Li(uth) 4+ 2 [Ji(u') = Ji(@ )],

i.e.

(5.12) Ji(us) = (@) < 5 _1"? [Ji(u') = Ji(u*)] .
Now, let us define ¥(v) = ¢(v) — b(v) as in (2.17). From (2.13), we have
La(uf, ui*! ui*t) — La(u, uf, uf) — p(u+1) + p(u) > 0
and therefore

Y(u't) = p(uit!) — b(u't!)
< ) = b(u) + b(u) — bu ) 4 La(ul, ) = Laud i )
= \Il(ul) + Ji(uiH) — Ji(ui).

Hence,
(5.13) Ji(u') = J;(u' ) < W(u') — w(u'th).
Now, putting together (5.10)—(5.13), we obtain

) ) . 1/2
(5.10) =y < S { i v - vl

The functional ¥ is bounded from below, cf. Section 2, and with respect to (5.11)-
(5.13) the sequence ¥(u') does not increase. Therefore, (¥(u') — ¥ (u't!)) — 0 for

i —> oo and according to (5.14) the inexact secant modulus method converges. O
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6. EFFICIENCY OF COMPOSITE ITERATIONS

In this section, we restrict our attention to the solution of the algebraic problem
(2.3). We shall use the inexact generalized Picard or the inexact secant modulus
methods (4.7)—-(4.12) with the inexact correction given by solving the linear systems
(4.9) or (4.12) by a suitable iterative method. In this way, we obtain composile
ilerative methods. -

The efficiency of the composite iterative method will be a function of the relative
accuracy of computation of the inexact corrections. Thus, we are interested in ques-
tion how the value n; influences both the computational work W; and the reduction
factor q; of the composite iteration.

Let us denote by A? and A’ the exact and the inexact correction respectively and
assume that

(6.1) laf = Al <mll &), 0<m<1

where || - || is a suitable norm. Furthermore, let us define the reduction factors ¢; and
i by

(6.2) [lu'*! — ul| = gl — u

and

(6.3) @+t —ull = @lle’ - ull

where u't! = uf + w; A, @*! = u! +w; A* and u is the exact solution of the problem
(2.3). With respect to (6.1), we have

i+1 S ||ui+1 _ ﬁH‘l“ + “ﬁH‘l _ u”
<mlla*t =+ @ - ]
<

| @ * =l + il = ull + Gl — ull.

[l =]

Therefore, we obtain the estimate
(6.4) ¢ < Nidi + i + 4.

From this estimate, we can conclude two rough recommendations:

e it will be natural to take 7; < ¢;,
e but it is not efficient to take 7; < ¢;.
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Our numerical experiments, partly described in the following Section, shows that
the above recommendations can be strengthened. We have observed that ¢; is not
much greater than ¢; if ; < ¢;, see e.g. Table 1 in Section 7. Thus an efficient choice

of n; will be
(6.5) ni = &

where £ is a positive constant little less than 1, e.g. £ = 0.9.
Note that in our numerical experiments we watch the Eucledian norm |- | of the

residuals. Thus, (6.1) will be replaced by
(66) IB,‘Ai - Bigil S 7),‘|Bi5il

where B; = Ay or B; = A(u') for the GP or the SM method respectively. In (6.2)
and (6.3), we watch

(6.7) |[A(u')u’ —b| instead of [lu' —u| etc.

The recommendation (6.5) together with the fact that ¢; does not change very much
in the course of the iterative process lead to the following procedure for an efficient
control of 7;:

(i) in the first iteration take 7; sufficiently small to obtain ¢, close to ¢y,

(ii) in the subsequent iterations take

(6.8) ni =&q
or
(6.9) n =€y

supposing that ¢; ~ ¢i—1 ~ qi—1 ~ ...~ q;.
It is also possible to repeat the steps (i) and (ii) several times during the iterative
process. For example, the steps (i) and (ii) can be repeated in the moment where

we observe a substantial deterioration of the convergence.
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The strip footing problem—the mesh and the boundary conditions.

7. NUMERICAL EXPERIMENTS

To show the behaviour of the composite iterative methods, we have solved the
strip footing problem depicted in Figure 1.

The whole region of the strip footing problem consists of nonlinear elastic material
with bulk and shear moduli defined by hyperbolic expressions (3.8). We shall consider
two cases with different material constants:

material A: a =0, kg =70, A= .46, B = .01

material B: o« =2, kg =70, A = .46, B = .01
In the first case, the bulk modulus is constant.

The discretization in 25 x 19 = 475 nodes grid with the aid of linear triangular
finite elements is performed.

The discretization gives the nonlinear system of equations (2.3) which will be
solved by both the inexact generalized Picard-preconditioned conjugate gradient
(IGP-PCQG) and the inexact secant modulus-preconditioned conjugate gradient (ISM-
PCG) methods. The preconditioning for the conjugate gradient method is given by
the displacement decomposition-incomplete factorization technique, see [1], [2].

The results of numerical experiments can be seen from the following tables. Note

that zero initial guess was exploited in all computations.

number of iterations
n 1123 (4|5 |6[7]8]9
001 |.31(.21].45.|.46|.47|.47|.48| .48
.01 311.21| .45 |.46|.47|.47| .48 .48
.1 311.22( .43 |.45].47 .48 .48 | .48
ADAPT|.31(.29] .38 | .49|.54|.59 .43 .50 .48

Table 1. Reduction factors for the ISM-PCG method.

Table 1 shows reduction factors ¢; defined by (6.2) and (6.7) for the solution of
the strip footing problem with material A by ISM-PCG method. The first three
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rows show results corresponding to three choices of the accuracy 7; = 7 defined in
(6.6), the last row corresponds to the adaptive procedure for control of 7; exploiting
the (6.9) with £ = 0.9. The composite iterations are stopped when the ratio of the
Eucledian norm of the residual to the Eucledian norm of the rhs vector is less than
€ = 0.001.

MAT n;i =.001|n; = .01|n =.1ADAPT
A # COMPOSITE IT. 8 8 8 9
A # INN. IT. (PCQG) 242 180 110 78
A |COMP. WORK in WU | 7 452 5840 | 4020 | 3 333
B # COMPOSITE IT. 16 16 16 17
B # INN. IT. (PCG) 452 308 159 86
B |COMP. WORKin WU | 14072 | 10328 | 6 454 | 4 701

Table 2. Numbers of iterations for the composite ISM-PCG method.

Table 2 shows numbers of iterations and estimate of the computer work for solv-
ing the strip footing problem by the ISM-PCG method. The results concern both
material A and material B. The work unit WU is equal to the computational work
for performing the inner product with two vectors of the length equal to the dimen-
sion of the solved system. The choice of the relative accuracy for computation of
the inexact correction and the stopping criterion for the composite iterations are the
same as before.

MAT 7; =.1| ADAPT
B # COMPOSITE IT. 91 135
B # INN. IT. (PCQ) 531 199

B [COMP. WORK in WU [ 18 629 | 12 326
Table 3. Numbers of iterations for the IGP -PCG method.

Table 3 shows numbers of iterations and estimate of the computational work for
solving the strip footing problem by IGP-PCG method. The results concern only
the material B. The stopping criterion is the same as before.

MAT CG |CG-DD-IF
A # COMPOSITE IT. 8 9
A # INNER IT. 1 685 78
A |COMP. WORK in WU | 44 970 3 333

Table 4. Numbers of iterations for the composite ISM-CG and ISM-PCG methods.

Table 4 shows numbers of iterations and estimate of the computational work for
solving the strip footing problem by the composite ISM-CG and ISM-PCG methods.
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As the inner iterative method, we use first the conjugate gradient method without
preconditioning (CG) and second the conjugate gradient method with precondition-
ing by displacement decomposition-incomplete factorization technique (CG-DD-IF),
see [1], [2]. '

Finally, we would like to note that Table 1 gave a motivation for the recommenda-
tion (6.5) concerning the choice of accuracy for computation of the inexact correction.
Tables 2 and 3 demonstrate efficiency of the composite iterative process including
the adaptive procedure for control of the accuracy for computation of the inexact
corrections. Table 4 shows the role of a good preconditioning.

For a comparison, we can note that the solution of the strip footing problem with
the linear elastic material described by the bulk modulus ¥ = kg and the shear
modulus ¢ = A/B takes the computational work of about 1000 WU, when the
described PCG iterative method is exploited for the solution of the finite element
system.
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