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EFFICIENT INEXACT NEWTON-LIKE METHODS 
WITH APPLICATION TO PROBLEMS 

OF THE DEFORMATION THEORY OF PLASTICITY 

RADIM BLAHETA and ROMAN KOHUT, Ostrava 

Surnmary. Newton-like methods are considered with inexact correction computed by 
some inrter iterative method. Composite iterative methods of this type are applied to the 
solution of nonlinear systems arising from the solution of nonlinear elliptic boundary value 
problems. Two main questions are studied in this páper: the convergence of the inexact 
Newton-like methods and the efficient control of accuracy in computation of the inexact 
correction. Numerical experiments show the efflciency of the suggested composite iterative 
techniques when problems of the deformation theory of plasticity are solved. 

Keywords: nonlinear systems, inexact Newton-like methods, composite iterations, defor­
mation theory of plasticity 

AMS classification: 65H10, 65N22, 73E99 

1. I N T R O D U C T I O N 

We shall be interested in efficient iterative methods for the solution of large non­
linear systems 

(1.1) A(u)u = b 

arising from the discretization of nonlinear (quasilinear) elliptic problems. Here, 
M,Ó E IRn and A(u) is an n x n matr ix with entries which depend on u. 

For the solution of the systém (1.1), we shall exploit Newton-like methods which 
iterations i —> i -f 1 consist of the following steps: 

(1.2) compute A*. BiAi = rť = b - i4(tiť)tiť, 

(1.3) put: t i ť + 1 = ti1 '+ wťAť 

where A1 is a correction, 0 < u){ ^ 1 is a damping parameter and B{ is a suitable 
n x n matr ix . We shall consider two particular choices 

(1.4) Bi=A0, 
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(1.5) Bi =A(ul) 

which give respectively the generalized Picard (GP) and the secant modulus (SM) 
method. 

Notě that we do not consider the actual Newton method for which B{ is the 
Jacobian, but we restrict our attention to the GP and SM methods which háve the 
following attractive properties 

• easier implementation within software for the solution of corresponding linear 
problems, 

• sufficient efficiency for the solution of many problems with milci nonlinearity, 
• possibility of application to problems with non-diíferentiable operators, cf. the 

application to the problems of the flow theory of plasticity [4]. 

Further, we shall study the inexact Newton-like methods for which the correc-
tion A* is computed only approximately by sorne suitable iterative method. This 
approach has the following advantages: 

• inexact computat ion of the correction can savé a great deal of the computational 
work, 

• during the iterative process zero becomes better and better initial guess for the 
computed correction, 

• the use of iterative methods for solving linear systems itself enhances the effi­
ciency when large linear systems are solved. 

In this páper, we shall answer two main questions: 

• the convergence of inexact Newton-like methods, 
• the eífective control of accuracy for computation of the inexact correction. 

The question of convergence of the inexact Newton-like methods will be studied 
simultaneously for nonlinear elliptic problems and their discretization by the finite 
element method. We shall consider the čase where the nonlinear elliptic problém 
can be formulated as a minirnizing problém for sorne convex functional. Our results 
will be an extension of the convergence results for the Newton-like methods with the 
exact correction which can be found e.g. in [5] and [6]. 

Concerning the second question, an eíficient stratégy for controlling accuracy of 
computat ion of the inexact correction is described. This stratégy was motivated by 
our numerical experirnents and is partly explained by the presented theory. 

Notě, tha t our techniques are based on the linearly convergent Newton-like meth­
ods. This makes sorne diíferences from the well-known results, see e.g. [7, 8], which 
mostly concern the quadratically convergent Newton method. 

Finally, we describe numerical experirnents showing the application of the inexact 
Newton-like methods to the solution of problems of the deformation theory of plas-
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ticity (physically nonlinear elasticity). These numerical experiments motivate our 
stratégy for control of accuracy for coinputation of the inexact correction and show 
the efFiciency of the described rnethods. Notě that similar techniques can be also 
applied for solving problems of the flow theory of plasticity, see [4]. 

2. A B S T R A C T NONLINEAR PROBLEMS 

Let us consider a nonlinear boundary value problems in the following weak form 

(2.1) find ueV: a(u}u,v) = b(v) \/v G V. 

Above V is a Hilbert space equipped with the inner product (•, -)v and the norm 
\\-\\y, a '• V3 — • R1, ci(u, •, •) is a bilinear form for any fixed u G V and 6: V — • 
R1 is a bounded linear functional. 

Together with the boundary value problém (2.1), we shall consider its finite ele­
ment approximation, i.e., the problém 

(2.2) find uh£Vh: a{uh)uh, vh) = b(vh) Vvh G Vh 

where Vh C V is a finite element space. We shall also consider the algebraic problém 

(2.3) finduGRn: A{u)u = b 

which is equivalent to (2.2). It means that A(u) is an n x n matrix, b G Rn and 

(2.4) (A(u)v, w) = a(uh, vhlwh) 

(2.5) (b,v) = b{vk) 

for all Uh, Vh, Wh G Vh and u,v,w G Rn such that the compoiients of u, v and w are 

simply the coefficients of the representation of uh,vh and wh, respectively, in the 

given basis of Vh. (•, •) is the inner product in Rn , (u, v) = uTv. 

We can find a lot of examples for the abstract boundary value problém (2.1). 

We can mention nonlinear heat transfer, diffusion, potential flow or magnetostatic 

problems. But in this páper we shall be interested in only one example which will be 

the problém of the deformation theory of plasticity (physically nonlinear elasticity), 

described in detail in e.g. [5, 6]. This problém will be also briefly described in the 

following Section. 

Considering the above mentioned examples of the abstract boundary value prob­

lém (2.1), we can suppose that 

(2.6) a(urr):V
2 —» R1 
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is a F-elliptic, bounded bilinear form for any íixed u € V. 
We can additionally suppose the existence of positive constants c and C such that 

(2.7) c\\v\\2
v ^a(utv,v) Vti,t;G V, 

(2.8) \a(u,v,w)\ ^ C\\v\\v\\w\\v \/u,v,w€ V. 

We can also suppose the existence of a Gáteaux differentiable functional <p: V — • 
R1 with the following properties: 

(2.9) D<p(u, v) - a(ti, ti, v) Vti, v G V, 

(2.10) hemicontinuity: t — • D(p(u + ťt;, A) is continuous for any ti, v, /i € V 
and / E (0,1), 

(2.11) strong monotonicity: there is a constant a > 0 such that 

D(p(u + ft, /i) - £>y?(ti, ft) ^ a||/i|lv- Vti, /i G V. 

(2.12) Lipschitz continuiiy: there is a constant /? such that 

\D<p(u + fc, Ar) - Dy>(ti, Jb)| ^ /?||A|HI*llv Vti, /i, Jb G V. 

The last property is 

(2.13) <p(u) — <p(v) ^ |a(t i , ti, u) — \a(u, v, v). 

It is also possible to suppose the existence of the second Gáteaux differential of <p 

with the following properties: 

(2.14) t i—>D 2 (p(u,h,k) 

is a continuous mapping in V for any fixed h,k G V, 

(2.15) m\\h\\l^D2ip{u,h,h) Vti,/iGV, 

(2.16) \D2<p(u, h, k)\ š M\\h\\v\\k\\v Vti, fc,J?6V 

where m and M are two positive constants. 

The properties (2.10) and (2.11) imply that the functional 

(2.17) <ip(u) = y>(ti) - 6(ti) 
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is coercive lower semi-continuous in V. Thus this functional at tains its minimum 
in V which is the solution of the abstract boundary value problém (2.1). Moreover, 
with respect to (2.11) the problém (2.1) has unique solution. The samé holds true 
for the problems (2.2) and (2.3). For the proofs see e.g. [5, 6]. 

Finally, notě that the properties (2.10) and (2.11) can be guaranteed by the exis­
tence of the second Gáteaux differential D2(p with the property (2.15). 

3. D E F O R M A T I O N THEORY OF PLASTICITY 

In this Section, we shall briefly describe the problém of the deformation theory 
of plasticity (physically nonlinear elasticity) which is a particular example of the 
problém (2.1). 

This problém in a domain Q C Rd, d = 2 or d = 3, will be described by means of 

(3.1) the displacement u = (l i j , •, u^), 

(3.2) the small strain tensor e = (čij), 1 ^ i) j ^ d) 

(3.3) the Cauchy stress tensor r = ( r t J ) , 1 <C i, j <C d) 

see [6] for the details. 
We shall consider isotropic materiál obeying the following stress-strain relation: 

(3.4) TÍJ — (k - | / i ) e 0 ^ j + 2fieij 

where k is the bulk modulus^ [i is the shear modulus, eo = e n + . . . + edd is the 
lumetric strain and 6{j 
We shall suppose that 

volumetric strain and 6{j is the Kronecker delta. 

(3.5) k-k(x,eo), 

(3.6) /í = /i(a?,r) 

where x G O is the vector of spatial coordinates and Y denotes the intensity of shear 
stress, 

(3-7) r = r(e) = X X - ) 2 , e'a = e'> - 5e«% 

In our numerical experiments we shall use speciál hyperbolic expressions, 

(3.8) k = - k°, , p 
1 — afc0e0 £ i / i p 
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determined by the constants Ar0, a , A, B. These expressions comefrom the mechanics 

of soil, see e.g. [3]. 

The boundary value problém of the deformation theory of plasticity with materiál 

obeying the nonlinear Hook's law (3.4), (3.5), (3.6) can be written in the form (2.1) 

with 

(3.9) V={v = (vu ., vd): Vi G Hl{Q)} "i = 0 on T0 for i = 1 , . . . , d} , 

(3.10) a ( t i , v , t i ; )= í {[k(e0{u)) - lp(T(u))]divv div w 

Jn 

+ 2/x(r(u)) ] T e0( i ;) etJ- (w)}dx, 

0" 

(3.11) 6 ( v ) = / Y^fiVidx+ í ^fiVids 
Jíl i JTi i 

where V is equipped by the inner product 

(3.i2) < * W 0 ? l , T O + ? 5 7 S í ] d ' 

and the corresponding norm. It is assumed that T(u) — V(e(u)),e(u) — (eij(u)), 

(3.13) e t J ( « ) = i ( £ i + 
! f dui duj 

dxj dxi 

F = (F,. . . , Fá) denotes the density of the given volume force, To, Ti are two disjoint 

parts of the boundary of Q on which the zero displacement and the surface force with 

the density / = ( / i , . . . , fd) are prescribed respectively. 

T h e o r e m 1. Let us suppose that k — k(x), i.e. that the bulk modulus does not 

depend on the strain. Further suppose that 

(3.14) 0 < k0 ^ k(x) ^ ki < oo for all x E Q, 

(3.15) 0 < p0 ^ ji(x, s) < Zk(x) for all x e 0 , O 0. 

Let us also suppose that k} p are continuous and that p is continuously difTerentiable 

with respect to s and that 

(3.16) JiíXiS\^o for all z E f t , O 0 , 
os 
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(3.17) 0 < KO ^ii(x,s)+ 0§lfls forsdl xGQ.s^O. 
os 

Moreover, suppose that To is a part of boundary ofťl with a positive measure. Then 
all the properties (2.6)-(2.16) are fulfílled. 

P r o o f. For the proof of this theorem see Chapter 8 of the book [6]. Notě that 
the condition (3.16) is exploited only for the proof of the property (2.13). • 

4. I N E X A C T GENERALIZED P I C A R D AND SECANT MODULUS M E T H O D S 

For the solution of nonlinear problems (2.1)—(2.3), we shall consider two lineariza-
tion techniques, námely inexact generalized Picard and inexact secant modulus meth­
ods. 

The inexact generalized Picard (IGP) method can be described by the following 
abstract scheme: 

given u° E H, compute u1 , u2 , . . . 

(4.1) ui+1 =UÍ+UJÍA\ 

(4.2) AiEH: ||A'' - 2 ť | | « 0 ^ t | ť | |S ť | | a o > 

(4.3) E*eH: a0(A\v) = b(v)-a(u\ui
)v) Vi> 6 H, 

where H = V or H = Vh when the nonlinear problém (2.1) or (2.2) is solved re-
spectively. Furthermore, CJ; are suitable constants, rji are constants from the interval 
(0,1) and ao: H2 —-> R1 is a bounded symmetric positive definite bilinear form, 

IMUo = \/ao0M0. 
The inexact secant modulus (ISM) method can be described by a similar abstract 

scheme: 
given u° G H, compute u1 , u2 , . . . 

(4.4) ui+1 = ui-{-A\ 

(4.5) AiEH: ||A'" - A % ť š * W k , 

(4.6) A{eH: a(ui
1A\v) = b(v)-a(u\ui,v) Vv G H. 

Here / / , rji háve the samé meaning as above and | H | a , = y a{ul
) i>, v) where a(u%, •, •) 

is supposed to be a bounded symmetric positive definite bilinear form, cf. the as-
sumption (2.6). 

The IGP and ISM methods háve been described in the form which is suitable for 
the convergence analysis, see the next Section. But our practical interest concerns 
the equivalent algebraic problém (2.3). 
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In this čase, the inexact generalized Picard method is described by the scheme: 

(4.7) ui+1 =ui+viAi
i 

(4.8) A l ' E R n : ||Zk* - 2S*|U0 < f»||2^|Uo. 
(4.9) A' E Rn : A0 A' = r1" = 6 - ^ V 

where 4̂,- = ^4(1/*), AQ is the symmetric positive definite stiffness rnatrix defined by 
the bilinear form ao, ||v||>t0 = \/vTAQV. 

The inexact secant modulus method is then described by the similar scheme: 

(4.10) ui+1 =tí l '-fA1 ' , 

(4-11) A ^ R " : HA^-A^IU^^ i lA^IU, , 
(4.12) A1* G Rn : AiA( = rť = 6 - 4 .V 

where again ^4; = A(ul), \\v\\A% — \/vTA{V. 
Practically, the inexact correction A* will be obtained by an approxirnate solution 

of the correction equation (4.9) or (4.12) by some suitable (inner) iterative method. 
For example, the preconditioned conjugate gradient (PCG) method háve been ušed 
for this ask in our numerical experiments. Notě that zero can be ušed as a good initial 
guess for A*. Further, under the assumptions (2.7), (2.8) the condition numbers of 
A{ = A(ul) are uniformly bounded so that one iteration of CG or PCG method is 
sufficient to give (4.8) or (4.11) with some rji < rj < 1. 

5 . CONVERGENCE ANALYSIS 

Theorem 2. Let us consider the problém (2.1) and let us suppose the existence of 
a twice Gáteaux differentiable functional (p such that the assumptions (2.9), (2.14)— 
(2.16) arefulňlled. 

Moreover, let us suppose that a o is a symmetric bilinear form on V for which 
positive constants m^ and M$ exist such that 

(5.1) ™0\\v\\2
v <J a0(v, v) <: Mo\\v\\2

v V v E V. 

Then for 

(5.2) 0^rH<h 0 < u / ^ c ^ u / ' < 2 ^ 1 ^ 

the inexact generalized Picard iterations converge to the unique solution of the prob­
lém (2.1). 
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Under the samé assumptions the samé convergence statement is vaíid when the 
problems (2.2) oř (2.3) are solved. 

P r o o f . Let us define the functional $ as in (2.17). Then for t > 0, we háve 

*( t i ť + *A1') = »( t i ť ) 4- *£>*(tiť, A1*) + £*a£>2»(uť + 6*Ať , A \ A'") 

with 0 < 0 < 1. Using (2.16), we obtain the estimate 

tf (t/1' + *A2') <$ «(w') + ť£>*(tiť, A2') + \t2M\\&%. 

Now consider the first differential of ^ . 

(5.3) D9(u\ A1") - a ( t i 2 V , A2') - 6(Ať) = - a 0 ( A \ A2') 
= - a o ( A i , A , " ) - a o ( S l " - A i , A i ) . 

From the assurnption (4.2), we obtain 

(5.4) ||A''||ao - ||A'||ao ^ 7,,-IIÁ'IL, i.e. ||A|U0 ^ -J_||A«'||ao. 

Tlius, 

(5.5) ¥(«' + <A'') < *(««) - i||Ať||20 + <||A - A^UIAML 

+ i ř 2 ^ | | A | | ^ o ^ •(«••)+ P(ť)||Ai||20 
7710 

where 
P(ť) = -* + l—*- + - / 2 — - -f i + -*2—. 

1 - 7/i 2 77J0 1 - 7]i 2 mQ 

It can be easily verified that for rjj < ~ and cjj G (u / ,u / ' ) , we háve P(WÍ) ^ — £ < 0 

and therefore 

(5.6) 0 ^ e| |A' | |»0 ^ -P (w i ) l |A i | | 2 0 ^ * ( « ' ) - * ( « i + 1 ) . 

Hence, HA'!^ — • 0 for i — • oo because the functional ^ is bounded from below, 

cf. Section 2, and the sequence ty(ul) does not increase. 

Now we shall use the strong monotonicity of D^: 

Dty(u + h,h)-D^(uji)= / D2tp(u + th,h,h)dt ^ 
Jo 

m||A|£. 
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Let u be the unique solution of (2.1), see Section 2, i.e., Dty(u,v) = 0 for all v £ V. 

Then 

ra||uť - u\\l <J D^(u + u{ - ti, u* - u ) - £ > ^ ( I Í , u* - u) 

= D^íu*,u{ -u)~ a(t4ť,tiť,uť - ix) - &(u' - IÍ) 

= a 0 ( A \ i / - IÍ) ^ M 0 | | A ť | | v | k - ti||v 

Hence, 

(5-7) ! K - u| |v ^ — | |A' | |v ^ — ~ | |A ' | | a o ^||A'||v < - 4 = «** 

< - 4 = r 1 - ii2S'n.Q 
m v /mo 1 - r/i 

and therefore Ijix* — it||v — • 0 for i — • oo. 
The above proof can be exploited also for the finite element problém (2.2), we 

must only replace the space V by Vh- Finally, notě that the algebraic problém (2.3) 
is fully equivalent to the just mentioned finite element čase. • 

N o t ě 1. The condition rji < i in (5.2) is sufficient but not necessary for the 
convergence. With this respect we can notě that if we replace (4.2) by a similar 
condition 

(5-8) ||Ať - 5 'IU < !fc||Ať||ao 

then under the assumptions of Theorem 2 we obtain the convergence for 

(5.9) m<l, 0 < WÍ < 2^(1 - ta). 

For the proof of this statement, it is sufficient to follow the proof of Theorem 2. 
The polynom P(t) in (5.5) is now replaced by 

P(t) = -t+U]i + U2 — 1 m 0 

From the other hand, for r)i —> 1 the conditions (5.9) dernand very strong damping 
and therefore very slow convergence may be expected. 

N o t ě 2. The convergence statement of Theorem 2 remains valid also for the 
inexact secant modulus rnethod if we introduce the sarne damping factors u>i to 
(4.4). For the proof of this fact we must only replace the assumption (5.1) by (2.7) 
and (2.8) and follow the proof of Theorem 2 with a, = a(ii l , •, •) instead of QQ. 

420 



The following Theorem concerns the convergence of the inexact secant modulus 
method without damping. 

T h e o r e m 3. Let us consider the problém (2.1) and let us suppose the existence of 
a Gáteaux difFerentiable functional (p such that the assumptions (2.7)—(2.11)7 (2.13) 
are fulňlled. 

Then for TJÍ < 1 the inexact secant modulus method (4.4)-(4.6) converges. 
Under the samé assumptions the samé convergence statement is valid when solve 

the problems (2.2) or (2.3). 

P r o o f . Let u be the unique solution of the problém (2.1), see Section 2, i.e. 

D(p(u,v) = b(v) V v G K 

Then from (2.11) and the condition (4.6), we obtain 

a\\u — ul\\y ^ D(f(u + ul — u.u1 — u) — D(p(u, ul — u) 
= a(u\ u\ u% — u) — b(u% — u) — —a(u\ A\ ul — u) 

Hence, from (2.8) it follows that 

(5.10) aWu-u^y^CW^Wv. 

Denote w t + 1 = u' + A', then from the uniform l/-elipticity (2.7) follows 

c||A4||í> ^ a(u\ A \ S ' ) = o(t»*',0 i+1 - u\ui+l - u4) 

= a{u\ ui+1, úi+1) - 2a(u4, ui+i, u4) + a(w4, u*, u4) 

= 6(ú4 + 1) + 2Ji(ui) = 2J i (u 4 ) - 2 7 i ( ú I + 1 ) 

where Ji(v) = ^a(u*,v,v) — b(v). Thus 

(5.11) W&Ul^-JJiW-Jiiu^)]. 

For the norm ||f||a, = (a(u\vyv))1^2 we háve 

\\v-ui+1\\li = 2Ji(v)-2Ji(ui+1). 

Thus, the condition (4.5) can be rewritten as 

|K'+ 1 -« , + 1 tU<^»?. i [« Í + 1 -« ť i |a i 
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or 
Ji(ui+1) - Ji(ňi+1) <; rif [Mu1) - Ji(ui+1)} . 

This yields 

Jť(u') - Ji(ui+l) = /,-(«') - J ,(« , + 1) + Ji(ui+l) - Ji(ui+1) 

š J,(««') - J ,(« , + 1) + »ř? [•/.(«*') - Ji(*i+1)\. 

i.e. 

(5.12) Ji(Ui) - J,(wí+1) ^ — L y [./,•(«') - /<(«<+1)] • 

Now, let us define $ ( D ) = <p(v) — b(v) as in (2.17). From (2.13), we háve 

5a(u , ' ,u , '+ 1 , t t , + 1) - $a{u*,«',«*') - y(« i"hl) + *>(«') ^ 0 

and therefore 

$(« i + 1 ) = y>(« ,'+1)-6(« i+1) 

<C y>(uť) - 6(uť) + 6(u') - 6(M Í + 1 ) + Ío(ti ' , u<+1, «<+1) - ^a(u\ u\ «') 

= *(«•")+ .7 i ( t i ' + 1 ) -J í (« < ) . 

Hence, 

(5.13) J,.(tiť) - J iK ' + 1 ) ^ «(ti') - * ( t / + 1 ) . 

Now, putting together (5.10)—(5.13), we obtain 

(5.14) ||u - u<\\v š % { ^ 4 ^ ) [*(M<) ~ *(«l+1)] } 
1/2 

The functional \£ is bounded from below, cf. Section 2, and with respect to (5.11)-
(5.13) the sequence ^/(u*) does not increase. Therefore, (ty(ul) — ty(ul+l)) —• 0 for 
i —• oo and according to (5.14) the inexact secant modulus method converges. • 
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6. EFFICIENCY OF COMPOSITE ITERATIONS 

In this section, we restrict our attention to the sólu tion of the algebraic problém 
(2.3). We shall use the inexact generalized Picard or the inexact secant modulus 
methods (4.7)-(4.12) with the inexact correction given by solving the linear systems 
(4.9) or (4.12) by a suitable iterative method. In this way, we obtain composite 
iterative methods. 

The efficiency of the composite iterative method will be a function of the relative 
accuracy of computation of the inexact corrections. Thus, we are interested in ques-
tion how the value r\i influences both the computational work W{ and the reduction 
factor qi of the composite iteration. 

Let us denote by A* and A1 the exact and the inexact correction respectively and 
assume that 

(6.1) ||Ať - Ať|| ^ tH\\E% <U * < 1 

where || • || is a suitable norm. Furthermore, let us define the reduction factors qi and 

(6.2) H u ^ 1 - t i | | = « , > ' - t i | | 

and 

(6.3) | |S i + 1 - u|| = fcllu* - K|| 

where t/ í+1 = u% -f CJJA1, 0 t + 1 = ul +u;t-A* and u is the exact solution of the problém 
(2.3). With respect to (6.1), we háve 

t ř+ 1 | | + | | t f + 1 - t i | | 

- f i l + l l^ 1 -"!! 

- t i | | + i? í | | t t i«ti | | + g i | | t i i-HI-

Therefore, we obtain the estimate 

(6.4) qi ^ mi + tu + qi. 

From this estimate, we can conclude two rough recommendations: 

• it will be natural to také 77,- $C gi, 
• but it is not efficient to také rn <?,• . 

IK+1 - tin < 1K+1 -
^ ií*iifli+1 

< •?.-||ef+1 
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Our numerical experiments, partly described in the following Section, shows that 

the above recommendations can be strengthened. We háve observed that qi is not 

much greater than qi if rji < </,-, see e.g. Table 1 in Section 7. Thus an efficient choice 

of rji will be 

(6.5) r\i = £qi 

where £ is a positive constant little less than 1, e.g. £ = 0.9. 

Notě that in our numerical experiments we watch the Eucledian norm | • | of the 
residuals. Thus, (6.1) will be replaced by 

where B{ = AQ or B, = A(ul) for the GP or the SM method respectively. In (6.2) 

and (6.3), we watch 

(6.7) |i4(u i)tiť - b\ instead of ||ti' - u|| etc. 

The recommendation (6.5) together with the fact that g,- does not change very much 
in the course of the iterative process lead to the following proceduře for an efficient 
control oí rji: 

(i) in the řirst i teration také r/i sufficiently small to obtain q\ close to </i, 
(ii) in the subsequent iterations také 

(6.8) rji = tqi 

or 

(6.9) fy=£f?£-i 

supposing tha t g, — g t_i ~ qi„\ ~ . . . ~ q\. 

It is also possible to repeat the steps (i) and (ii) several times during the iterative 

process. For example, the steps (i) and (ii) can be repeated in the moment where 

we observe a substantial deterioration of the convergence. 
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The strip footing problém—the mesh and the boundary conditions. 

7. NUMERICAL EXPERIMENTS 

To show the behaviour of the composite iterative methods, we háve solved the 
strip footing problém depicted in Figuře 1. 

The whole region of the strip footing problém consists of nonlinear elastic materiál 
with bulk and shear moduli defined by hyperbolic expressions (3.8). We shall consider 
two cases with diíferent materiál constants: 

materiál A: a - 0, k0 - 70, A - .46, B - .01 
materiál B: a = 2, k0 = 70, A = .46, B = .01 

In the first čase, the bulk modulus is constant. 
The discretization in 25 x 19 = 475 nodes grid with the aid of linear triangular 

íinite elements is performed. 
The discretization gives the nonlinear systém of equations (2.3) which will be 

solved by both the inexact generalized Picard-preconditioned conjugate gradient 
( IGP-PCG) and the inexact secant modulus-preconditioned conjugate gradient (ISM-
PCG) methods. The preconditioning for the conjugate gradient method is given by 
the displacement decomposition-incomplete factorization technique, see [1], [2]. 

The results of numerical experiments can be seen from the following tables. Notě 
that zero initial guess was exploited in all computations. 

1 
.001 
.01 
.1 

ADAPT 

number of iterations 
1 

.31 

.31 

.31 

.31 

2 
.21 
.21 
.22 
.29 

3 
.45. 
.45 
.43 
.38 

4 
.46 
.46 
.45 
.49 

5 
.47 
.47 
.47 
.54 

6 
.47 
.47 
.48 
.59 

7 
.48 
.48 
.48 
.43 

8 
.48 
.48 
.48 
.50 

9 

.48 
Table 1. Reduction factors for the ISM-PCG method. 

Table 1 shows reduction factors gt- defined by (6.2) and (6.7) for the solution of 
the strip footing problém with materiál A by ISM-PCG method. The first three 
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rows show results corresponding to three choices of the accuracy rji = 7/ defined in 
(6.6), the last row corresponds to the ad ap ti ve proceduře for control of rji exploiting 
the (6.9) with £ = 0.9. The cornposite iterations are stopped when the ratio of the 

Eucledian norm of the residual to the Eucledian norm of the rhs vector is less than 

£ = 0.001. 

MAT 

A 
A 
A 
B 
B 
B 

# COMPOSITE IT. 
# INN. IT. (PCG) 

COMP. WORK in WU 

# COMPOSITE IT. 
# INN. IT. (PCG) 

COMP. WORKinWU 

TK = .001 
8 

242 
7 452 

16 
452 

14 072 

TU = .01 
8 

180 
5 840 

16 
308 

10 328 

i» = . l 

8 
110 

4 020 
16 

159 
6 454 

ADAPT 
9 

78 
3 333 

17 
86 

4 701 

Table 2. Numbers of iterations for the cornposite ISM-PCG rnethod. 

Table 2 shows numbers of iterations and estimate of the computer work for solv-

ing the strip footing problém by the ISM-PCG rnethod. The results concern both 

materiál A and materiál B. The work unit WU is equal to the computational work 

for performing the inner product with two vectors of the length equal to the dimen-

sion of the solved systém. The choice of the relative accuracy for computation of 

the inexact correction and the stopping criterion for the cornposite iterations are the 

samé as before. 

1 MAT I U- = .1 l A D A P Ť I 
B # COMPOSITE IT. 91 135 
B # INN. IT. (PCG) 531 199 
B I COMP W O R K i n WU 18 629 1 12 3 2 6 | 

Table 3. Numbers of iterations for the IGP -PCG rnethod. 

Table 3 shows numbers of iterations and estimate of the computational work for 
solving the strip footing problém by IGP-PCG rnethod. The results concern only 
the materiál B. The stopping criterion is the samé as before. 

MAT 
A 
A 
A 

# COMPOSITE IT. 
# INNER IT. 

COMP. WORK in WU 

CG 
8 

1 685 
44 970 

CG-DD-IF 
9 

78 
3 333 

Table 4. Numbers of iterations for the cornposite ISM-CG and ISM-PCG methods. 

Table 4 shows numbers of iterations and estimate of the computational work for 
solving the strip footing problém by the cornposite ISM-CG and ISM-PCG methods. 

426 



As the inner iterative method, we use hrst the conjugate gradient method without 
preconditioning (CG) and second the conjugate gradient method with precondition-
ing by displacement decomposition-incornplete factorization technique (CG-DD-IF), 
see [1], [2]. 

Finally, we would like to notě that Table 1 gave a motivation for the recommenda-
tion (6-5) concerning the choice of accuracy for computation of the inexact correction. 
Tables 2 and 3 demonstrate efíiciency of the composite iterative process including 
the adaptive proceduře for control of the accuracy for computation of the inexact 
corrections. Table 4 shows the role of a good preconditioning. 

For a comparison, we can notě that the solution of the strip footing problém with 
the linear elastic materiál described by the bulk modulus k — ko and the shear 
modulus // = A/B takés the computational work of about 1000 WU, when the 
described PCG iterative method is exploited for the solution of the finite element 
systém. 
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