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CONVERGENCE OF RANDOMLY OSCILLATING POINT
. PATTERNS TO THE POISSON POINT PROCESS
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Summary. Oscillating point patterns are point processes derived from a locally finite set
in a finite dimensional space by i.i.d. random oscillation of individual points. An upper
and lower bound for the variation distance of the oscillating point pattern from the limit
stationary Poisson process is established. As a consequence, the true order of the conver-
gence rate in variation norm for the special case of isotropic Gaussian oscillations applied
to the regular cubic net is found. To illustrate these theoretical results, simulated planar
structures are compared with the Poisson point process by the quadrat count and distance
methods.

Neywords: Poisson point process, asymptotically uniform distributions, weak conver-
gence, variation distance, rate of convergence, Poisson hypothesis testing, distance method,
quadrat count method

AMS classification: 60G55, 60D05

1. INTRODUCTION

In many natural situations, the aggregation proper to the Poisson point process is
not permissible. Therefore, hard core point processes or, more generally, processes
derived from the Poisson point process by dependent thinning (Stoyan et al. [11],
Diggle [4]) are often used. Unfortunately, mathematical tractability of such processes
is rather limited, which turns the attention to the extremal case of hard-core pro-
cesses, namely to lattice point processes, or more generally, to deterministic point
patterns. Their properties can be calculated relatively simply (cf. Persson [8], Hol-
gate [5], Saxl and Rataj [9]), and the passage to less idealized but still tractable
models can be realized by introducing random lattice faults (Brown and Holgate [2],
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Saxl and Rataj [9]) or by a superposition of a lattice and Poisson processes (Diggle
(3D)-

Whereas some faulted lattices retain their hard-core character even when substan-
tially randomized (e.g. by very severe random thinning), the introduction of other
faults can lead to the restoration of nearly complete or locally complete spatial ran-
domness. An example of this case are patterns in which the points of the originally
regular structure are allowed to oscillate independently randomly in space according
to a prescribed probabilistic rule. The present paper is devoted to the estimation of
the distance of such an oscillating point pattern from the Poisson point process.

If the probability distribution of the oscillation disperses in the limit over the
whole space, then the oscillating point pattern converges weakly as well as in the
variation norm to the stationary poisson point process. These facts are variations on
more general results displayed in Kallenberg [6] and Matthes et al. [7]. To find upper
bounds for the variation distance from the Poisson point process, Stein’s method [10]
has been successfully applied by Barbour [1]. In this paper, also a lower bound is
found and the results are applied to determine the true order of the convergence rate
in the special case of isotropic Gaussian oscillations of points of a regular cubic point
set. The theoretical results are then illustrated in Section 5 by examining simulated
planar point sets of this type.

2. CONVERGENCE TO THE POISSON POINT PROCESS

Let E = R? be the d-dimensional Euclidean vector space and #, 4, the systems of
all Borel and bounded Borel subsets of E, respectively. Let m be the d-dimensional
Lebesgue measure on E, mpg = m(B)~'m|B the uniform probability distribution
over B € # with 0 < m(B) < oo and 6, the Dirac probability measure concentrated
in z. Let ||.|| denote the variation norm of signed measures and * the operation of
convolution of measures.

Let (.#, M) be the measurable space of integer-valued Radon measures on E with
the o-algebra M generated by the sets {€ € .#: &(B) =k}, B € %o, k =0,1,....
The support S(€) of £ € ./ is a locally finite subset of E. A measure § € . is
called simple if f({r}) < 1 for all # € E. The mapping £ — S(€) defines a unique
correspondence between simple integer-valued Radon measures and locally finite sets
in E. .# can be endowed with the vague topology to become a Polish space, M
becoming the Borel o-algebra [6].

Under a point process we shall understand a measurable mapping X from a prob-
ability space (2, &, Pr) into (.#,9M). The probability distribution of X will be
denoted by Z(X). The convergence in distribution of point processes should be
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understood as the vague (or, equivalently, weak) convergence of their probability
distributions. For any Radon measure A on E; Py will be the Poisson point process
of the intensity measure A.

Given any measure £ € ./Z and any probability distribution g on E we define

the point process

(1) T,(6) = / 6ray,E(dz),

where {Y;: 2 € E} is a family of i.i.d. random vectors with distribution g. Note that
the support of T}, (§) is obtained from S(£) by shifting independently randomly each
point according to the distribution . The aium of this paper is to investigate the
quality of approximation of T,,(§) by a Poisson process.

Following Matthes et al. {7] (Chap. 5.2) we shall say that a family {s,: r > 0} of
probability distributions on E is asymptotically uniform (abbr. a.u.) if

lim ||ptr — ptr % 64f] =0 for any a € E.
r—oo

The intuitive meaning of asymptotical uniformity is that of the mass being dispersed
over the whole space as r — 0o. As a consequence of the asymptotical uniformity
we get (see Matthes et al. [7], Sect. 5.2.15)

(2) lim sup (B —x) =0 for any B € Hy.

r—00 rcE

Example 1. Let {Cr:r > 0} be a family of bounded Borel sets such that
(3) lim m¢, (Cy —a) =1 for any a € E.

Then the family {mc,} is a.u. (see Matthes et al [7], Sect. 5.2.1). Remark that
condition (3) is fulfilled e.g. for any family of convex bodies with inradii growing to
infinity.

Example 2. The family {7 : r > 0} of d-dimensional centred normal distri-
butions with variances »2/ is a.u. (see Matthes et al. [7], Sect. 5.2.13).

Let {s: r > 0} be an a.u. family of probability distributions on E, {Y]: z € E}
a family of i.i.d. random vectors with distribution g, for each » > 0, and let £ € A&
be simple. Then the family of point processes

{)dr,a = 6a+)’°ri r>0 a€ S(f)}
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formns a null-array in the sense of Kallenberg [6], Chap. 6, since (3, , are independent
for fixed r and

lim sup Pr{B..(B)>0}=0

T a€S(€)
by (2) (more exactly, Kallenberg’s null array will be obtained when choosing any
sequence r, — oo and realizing that the set S(€) is countable). Corollary 7.5 in
Kallenberg [6] states that the family T}, (£) converges in distribution to Py, as
r — oo for a given A > 0 iff

lim )" Pr{f.a(B) >0} =X m(B), B € %,

r—00

a€S(x)

which is equivalent to

r— 00

(4) lim /[l,-(B —a)é(dx) = Am(B), Be€ H.

A natural condition on £ ensuring (4) for any a.u. family {s,} can be found. We
shall call a imeasure & € .# homogeneous if there is A > 0 such that

lim sup |(wdrd)_1£(B(1:, r)) - ,\| =0,
r—00 IGE

where B(xz,7) is the closed d-ball of radius r centred at . The number A will be
called the sample intensily of €. The following result is a consequence of Matthes et
al. 7], Proposition 6.5.9.

Lemma 1. For any £ € ./ and XA > 0, £ is homogeneous with sample intensity A
if and only if (4) holds for any a.u. family {,} of probability distributions on E.

As an immediate consequence we obtain

Theorem A. Let £ € ./ be simpie and homogeneous with sample intensity

A € (0,00) and let {jt,: v > 0} be an a.u. family of probability distributions on E.
Then the family T, (§) converges in distribution to Py, as r — oco.

A substantially stronger result replacing the weak convergence of distributions by
the convergence in variation norm of restrictions to a bounded subset can be obtained
as a special case of Matthes et al. [7], Theorem 7.4.1.

Theorem B. Under the assumptions of Theorem A, the relation

lim [|2(T,., (€)1B) - 2(Pam|B)|| = 0
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holds for any B € %,.

Remark. If X is a point process, the set T,(X) can be also defined by (1),
assuming {Yz} to be independent of X. Theorem B remains valid for T, (X) if X
is stationary and ergodic with intensity A.

3. RATE OF CONVERGENCE

For estimating the rate of convergence of T'u,(€) in the variation norm, Stein’s
method developed originally for the rate of convergence of sums of random vari-
ables to the normal distribution [10] can be used. Let {g,.: r > 0} and £ be as in
Theorem A, and for given r > 0 and B € #, set

o.(B) = sup p.(B - a),
a€S(§)

A+(B) = (jir +€)(B) = / e (B — a)E(da),
nr(B) = Ar(B) — Am(B)

and

Wo(B) = [ (ue(B - 0)€(da).

By (2) and Lemma 1 we know that both o,(B) and 7,(B) tend to zero with r tending
to infinity, and the obvious inequality

(5) We(B) < A (B)o,(B)

implies also W,.(B) — 0, r — oo. Note that A, is a Radon measure on E.

Barbour [1] has applied Stein’s method to obtain estimates of the rate of con-
vergence to the multivariate Poisson distribution. From his result (Theorem 1) it
follows that

(6) 12(Tu. (OLB) = Z(Pa.|B)|| < W (B).
To obtain an upper bound for the variation distance expressed in Theorem B, it
remains to estimate the distance between two Poisson processes. Matthes et al. [7],

Proposition 1.6.26, have proved that

| 2(Pr) — 2(Pan)|| < 201A - A



for any finite Borel measures A, A’ on E. Hence we get
(™) |9(Pa.1B) = 2(Pam )| < 4 sup I (O]

By a minor modification of the proof of Proposition 6.5.9 in Matthes et al. [7],
it can be shown that the right hand side of (7) tends to zero. Thus (6) and (7)
give a reasonable upper bound for the variation distance between Ty, (€) and Py,
restricted to B.

To obtain a lower bound for the variation distance, consider the “void probabili-
ties”

H-(B) = Pr{T,,(¢)(B) = 0}

in order to compare them with the Poisson void probabilities exp (—Am(B)). If
{Y7:a€ S} is a family of i.i.d. random vectors with distribution g, we have

by (1)

H(B) = Pr{a+Y’ ¢ B for all a € S(€)}
=pr( ) (i ¢ B-—a})
a€S(€)

II (t-n(B-w)

a€eSs(§)

and, using the Taylor expansion of the logarithm, we get

log H.(B) = /log (1 = pr (B — a))é(da)
= ~A.(B) ~ 5W,(B) + o(W:(B))
and, consequently,

|H(B) — exp (=Am(B))| =
= exp (—Am(B))|log H,(B) + Am(B)|(1 + o(1))
= exp (=Am(B))|A+(B) + $W,(B) + o(W.(B)) — Am(B)|(1 + o(1))
= exp (=Am(B)) {|n-(B) + $W.(B)| + o(|n-(B)| + Wr(B))}, r— oo.

The upper and lower bounds for the variation distance
Av(B) = [|2(T,, (§)|B) — 2(Pam|B)|
are summarized in the following theorem.
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Theorem 1. Let {y,: r > 0} and € be as in Theorems A, B. Then for any B € #
(i) A(B) < W (B)+4 sup. [7-(C)|,

(i) An(B) 2 exp (=Am(B)) {{n-(B) + sW,(B)| +o(In-(B)| + W, (B)) }, r — oo.

To conclude this section, we will show that Theorem 1 gives the true order of the

rate of convergence for the special case of Gaussian distributions v, from Example 2.

Theorem 2. Let £ = & be the simple integer-valued measure supported by 2¢
and let pi, = v, be the centred normal distribution of variance r*I, v > 0. Then for
any B € Ay with m(B) > 0 there exist constants c,(B), cz(B) > 0 such that

e1(B) € hmmfr A, (B) < limsupr?A,(B) < ca( B).

r—00

Theorem 2 can be proved using the estimates summarized in the following lemma.
Let wq be the volume of the unit d-ball in E and b = 1 diam(B).

Lemma 2. Under the assumptions of Theorem 2
(i)  limsup rdo,(B) < wa(2m)~ %24,

(i) limsup rW,(B) < wa(2r)~Y>m(B)b?,

(iti) liminf »*W,.(B) > wa(2n)~%e~'m(B)?,
(iv) sup [9(C)| = O(exp(=2n?r?)), r — oco.
ccB

Proof. (i) Since g, (z) = (2r)~¥2r~dexp (-—%|1|2) is the density of 7, w.r.t.
m, we have

7o(B) < e (Bo0) = [ et

2

b
= dog(2m)- 474 [ g1 exp (= £ d
dwq(2r) 7 /Og exp( 21'2) 0
bd
_ ooy—d/2,—d
= dwq(2r) 7 (—d+o(])),

which implies (i). Further, (ii) immediately follows by (i), using (5) and Lemma 1.

(iii). Without loss of generality it can be assumed that BNJ[0, 1]d # 0 (the set B
can be shifted by any k € Z¢ without changing the value of W,.(B)) Then we have
for any z € E with |z| < r

v (B — ) 2 m(B)inf {,(z): |&| < r + 2b + Vd}

( (r + 2b + Vd)?

= (2n)—d/2r_dexp 577 )171([3)
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On the other hand, one can easily check that there are at least m(B(e, r — \/E)) =
wa{r — Vd)? points k € Z¢ with |k| < r. Putting these two facts together, we obtain

Wo(B) 2 Y. (1(B-k)*

lkl<r
2
> wa(r — Vd)?(2r) " %r 2 exp (—(7'—4_2%4}&)171(3)2
= wa(2m)~4r=4 (1 - @)dexp (= (47120 + VD)) m(B)?
=wa(2n)" 44" Im(B)? + o(r~ %), r — oo,

which proves (iii).
(iv). For any C C B we have (all summations will be taken over Z¢, x¢ is the
characteristic function of the set C)

A(C)= Z%(C —k)= Z/gor(x + k)xc(z)dz
k k
- T k+Dxc Hd
DX etk netr Dy
B /[0 1 (Z%(“ ")) (ZXC(y + 1)) dy.
, " 1

Let Fp., Fxc be the Fourier transforms of ¢, , x¢, respectively. Then Fe,(—2nk),
Fx¢(—2nk) are the k-th Fourier coeflicients of the 1-periodic functions Y~ ¢, (y+n),
n

Y xc(y +1), respectively (k € Z%), and the Parseval identity yields
1
Ar(C) = Fepp(2nk) Fxc(2rk).
k

Using the fact that Fxc(e) = m(C) and Fe,(y) = exp (—37%|y|?) we have

7 (C) = Z Fxc(2nk) exp(—2n2r?|k|?).
k#e

The relation
exp(=2n%r?|k]?) = exp(—2n2r?) exp (—=2n’r%(Jk|? - 1))

implies that
exp(—2r2r?|k|?) < exp(=2n%r?) exp(—|k|* + 1)
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if 2n272 > 1. Thus we have for great r

[9-(C)| < m(C) exp(—2n2r?) X:exp(—|k|2 +1)
k#o

and, since m(C') < m(B) and the last sum is convergent, (iv) follows and the proof
of Lemma 2 is complete. O

4. EXAMPLES

The aim of this section is to give some illustrations to the theoretical results
presented in the previous sections. Consider the planar case (d = 2) of the point
process

O, =T,, (‘50)

from Theorem 2 (i.e. & is the simple integer-valued measure supported by the regular
planar integer lattice Z? and 7, is the centered planar normal distribution with
variance r21). Theorem 2 states that the variation distance between the distributions
of O, and P = Py, is of order »~2 as » — oco. In order to demonstrate and
more closely investigate this convergence, several simulated realizations of O, will be
examined by the techniques of quadrat count and distance methods [11], [4].

Simulation. The simulation of O, for r = 0, ;13—, ‘11-, g, %, %, 1, 1.5, 2, 2.5, 3, 3.5, 4,
5, 6, 7 within the chosen square window B were carried out in two steps: first the
points of the regular unit square lattice Og lying in a region B’ much greater than B
(we have chosen m(B) = 5% = 0.16 m(B')) were shifted by independently sampled
values of 7,., then an isotropic random direction (with respect to the lattice direction)
of the square edge was selected and the position of the window B in the central part
of B’ was chosen. This procedure ensured that the mean number of points falling
into B was 625 independently of the size of » and no edge effect corrections were
necessary when using the distance method. For comparison, also a binomial point
process of N points (with N being the Poisson random variable with the mean m(B))
was generated to simulate P in B. Four chosen sections of B (of 156 points in the
mean) are shown in Fig. 1.

Testing. For the quadrat count technique, the sampling window was divided into
q = 2 translation equivalent rectangles Q;, j = 1, ..., ¢ (dividing a square window,_
we obtain rectangles with the edge length ratio 2 for j odd and squares for j even),
and the numbers n; of points falling into Q; were determined. Under the Poisson
hypothesis, the number nj is Poisson of mean m(B)/q and the counts in disjoint
rectangles are independent [11]. The following statistics have been used in order to
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Fig. 1. Section of the simulated realizations of the point pattern: a) P, b) Os,

d) Ogys, d)

03/2.

determine the minimum number 7¢(7) such that the Poisson hypothesis cannot be

rejected for O, with r > ro(2) at the 5% confidence level:

a) The standard x2-goodness-of-fit test comparing the distribution of n;(r) with

the Poisson distribution of mean m(B)/q (note that the size of the basic rectangle

roughly equals that of the lattice cell of Og for i = 9). The test statistic x2(r) for

i = 8 (seven size classes) is plotted in Fig. 2 together with the corresponding critical

value x§;0.05. The stationary Poisson process hypothesis is not rejected at the level

a = 0.05 for r > 70(8) = 1.25 and the observed value of x2(r) lies even below the

critical value of X205 for 7 > 3. The test was repeated also for i = 7 and 9 and the
values ro(7) = 2.5 and r4(9) = 1 were obtained.
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Fig. 2. The x2 statistics of the goodness-of-fit test for the distribution of the
quadrat counts n;(r) in 28 = 256 translation equivalent squares for a simulation of

O, and the critical value of x3. s (dashed line).

b) The indez-of-dispersion test is based on the statistic
1Dy = + 3 (n; — )
9 il - J ’

where 71 is the mean number of points per rectangle. Under the Poisson hypothesis,
1D, follows the x2-distribution of ¢ — 1 degrees of freedom. The two-sided test has
been carried out for the divisions of the window B corresponding to i = 8, 9, 10 by
examining the condition

2 2
Xg-1:0.975 < 1Dg < Xg_1;0.025-

ID, has never exceeded the second level but has not attained the first at r < ro(g)—
a demonstration of the residual regularity in the pattern. The values r(10) = 1,
ro(9) = 2.5 and r¢(8) = 3 show, similarly as in the preceding test, that the coarser
is the examined division the more sensitive to the residual regularity is the test and,
consequently, the higher must be ro. The values corresponding to the division ¢ = 8
are shown in Fig. 3.

c) In contrast to the previous two tests, which are insensitive to the position of
rectangles, the Greig-Smith test examines the degree to which the independence of
nj in neighbouring rectangles is fulfilled. It is based on the statistic
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1004, #
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Fig. 3. The statistics ID2s5(*) and GSa56(0) evaluated for O, and the double-sided
confidence interval J = [Y355.0.975, X355,0 025] for the both statistics at the 5 %-level
the slight difference between the distributions x3s5 and x3s¢ is omitted here). The
mean values of IDy55(M) and GSa56(0) obtained from five simulations of &2 are
plotted for the comparison.

where the second summation is taken over pairs of neighbouring rectangles merging
into one rectangle in the subdivision of the window into %q regions. Under the Poisson
hypothesis, GS, follows the y2-distribution with %q degrees of freedom (note that if
we calculate GS, for a sequence of subdivisiouns q, %q, %q etc., we obtain the quantities
I, I, I3, ... in the notation used in Stoyan et al. [11], Chap. 2.7). The testing has
been carried out for 7 = 10 and 9 (Fig. 3) and the Poisson hypothesis cannot be
rejected at the 5% level for r > 7o = 1. As we are comparing the neighbouring areas
of the size of one half of the lattice cell at i = 10 and of the size of the cell at : = 9,
this result simply says that when r attains the magnitude of the lattice parameter
the Poissonian positional independence of points is established at the lattice cell size
scale.

For the application of the distance method, uniform random points were generated
in the window B and the corresponding spherical contact distances o, (distances to
the nearest points of the pattern) were calculated for the above given values of 7. The
maximum value of oq is 0.71 in the unit square lattice and o < 3 with probability
greater that 1—10~'2 in P; consequently, the protective frame of width 5 secures that
practically all spherical contact distances are observable and no edge corrections need
be considered. The qualitative behaviour of the distribution functions F,.(b) = 1 —
H,(B(e,b)) of o, (cf. Sect. 3) may be seen from Fig. 4. The main differences between
spherical contact distribution functions in O, and P are the excess of medium paths
and the absence of long paths in O,.
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Fig. 4. The theoretical spherical contact distribution functions F(4) for Og and P
and the estimated F,(b) for r = 0.25, 2.

The results of the y2-goodness-of-fit test comparing the distribution of the spheri-
cal contact distances in O, and P are shown in Fig. 5 for numbers of classes £ = 10,
14 and 17; again the 5 %-level was chosen. In order to keep the theoretical fre-
quencies at a reasonably high level (~ 5), the corresponding numbers of examnined
paths were 100, 500 and 10000 for £ = 10, 14 and 17, respectively. To suppress the
effect of chosen realization in more detailed measurements, the number n of paths
per point was not allowed to surpass one. The value of n = 1 is recommended by
Diggle [4] as a minimum for an estimation of F(b), so that the sample for £ = 10
is heavily undersized; nevertheless the result obtained is reasonable. Consequently,
one realization was examnined at k = 10, 14 and twenty realizations were evaluated
at k£ = 17. It may be seen from Fig. 5 that the Poisson hypothesis was not rejected
at 5 %-level only for r > 4 at k = 17, whereas the values of » > 1.5 and r > 0.75
were not rejected at k = 14 and 10, respectively.

Summarizing these results, we conclude that in realizations of the oscillating point
patterns of the kind considered (normally distributed oscillations with zero mean
value in a unit square lattice) the regularity of the node pattern is considerably

destroyed at the area scale of the order of the variance r?

. As a consequence of
overlapping of these areas at » > 1, the differences between the Poisson point process

and oscillating patterns with standard deviation exceeding 4 are very small and highly
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?g q!m =8
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Fig. 5. The x2, statistics of the goodness-of-fit test for the distribution of spherical
contact distances in O, and the critical values x2 4 g5 at the 5%-level. The degree
of freedom m = 8 corresponds to the sample of 100 measured distances, m = 12 to
500 distances, m = 15 to 10000 distances (measured in 20 independent realizations
of the point set).

sensitive and detailed statistical approaches requiring sizeable sections of several
realizations would be needed to reveal the residual regularity in such patterns.

References

[1] A.D. Barbour: Stein’s method and Poisson Process convergence, J. Appl. Prob. 254
(1988), special volume, 175-184.

[2] S. Brown, P. Holgate: The thinned plantation, Biometrika 61 (1974), 253-262.

[3] P.J. Diggle: Robust density estimation using distance methods, Biometrika 62 (1975),
39-48.

[4) P.J. Diggle: Statistical Analysis of Point Processes, Academic Press, London, 1983.

[5] P. Holgate: The distance from a random point to the nearest point of a closely packed
lattice, Biometrika 52 (1965), 261-263.

[6] O. Kallenberg: Random Measures, Academic Press, London, 1983.

[7] K. Matthes, J. Kerstan, J. Mecke: Infinitely Divisible Point Processes, J. Wiley & Sons,
Chichester, 1978.

[8] O. Persson: Distance methods, Studia Forestalia Suecica 15 (1964), 1-68.

[9] 1. Saxl, J. Rataj: Distances of spherical contact in lattices of figures and lattice of figures
with faults. In: Geometrical problems of image processing. Research in informatics.
Vol. 4. (U. Eckhardt, A. Hiibler, W. Nagel and G. Werner, ed.), Akademie-Verlag,
Berlin, 1991, pp. 179-184.

[10] C. Stein: A bound for the error in the normal approximation to the distribution of
a sum of dependent random variables, Proc. 6th Berkeley Symp. Math. Statist. Prob.
2 (1970), 583-602.

234



[11] D. Stoyan, W.S. Kendall, J. Mecke: Stochastic Geometry and Its Applications,
Akademie-Verlag, Berlin, 1987.

Souhrn

KONVERGENCE NAHODNE OSCILUJICICH BODOVYCH SYSTEMU
K POISSONOVU BODOVEMU PROCESU

JAN RaTAJ, IVAN SAXL, KAROL PELIKAN

Oscilujici bodové systémy jsou bodové procesy odvozené z lokdlné konetné mnoZiny
v prostoru kone¢né dimenze nezavislymi stejné rozlozenymi kmity jednotlivych bodu. V pri-
ci je odvozena horni mez variaéni vzdalenosti oscilujictho bodového systému od limitniho
piipadu Poissonova bodového procesu. Odtud je dile uréena skute¢nd rychost konvergence
ve varia¢ni normé pro specialni pripad Gaussovskych kmitii pravidelné kubické bodové miiz-
ky. Pro ilustraci teoretickych vysledkit jsou porovnany simulované oscilujici bodové systémy
v roviné s Poissonovym bodovym procesem.
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