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GROUP ANALYSIS METHODS FOR CONSTRUCTION AND
INVESTIGATION OF THE BIFURCATION EQUATION

B. V. LoGcmNov

(Received November 29, 1990)

It is known [1, 2] that the bifurcation equation (BEq) inherits the group symmetry
of the corresponding nonlinear problem. Therefore the problem of construction of
the general form of BEq by its symmetry group arises. In [1, Ch. IV] this problem
was solved on the basis of a known scheme from the invariant theory [3]. However,
the methods of group analysis of differential equations [4-6] are more effective for
this purpose since they allow to construct the full explicit form of BEq (not only
its main part) requiring significantly smaller computing work. In the present paper
the general theory is presented while applications considered by the author and his
students are indicated in [7-9]. The author is thankful to prof. N. Ch. Ibragimov for
his advice concerning the application of group analysis methods. The terminology
and notation of the general branching theory of solutions of nonlinear equations are
used, see [10]. .

1. The bifurcation equation 0 = f(§,€) = {fi(€,€)}1*: E® — E™ allows the group
G (i.e., is invariant with respect to G) if for its certain representations A, in Z" and

™ we have

By in E

(1) f(Ag€y€)=Bgf(§r5)'

Often we will not indicate the dependence of f on a small parameter €, which is not
essential for the group analysis. The equality (1) means that for the transformation

(2) EI Ay&a f = Byf

the manifold F: f — f(£) = 0 in the vector space E"+™ is an invariant manifold.
Considering the ¢-parametric transformation group (2) we shall suppose that F is
its nonsingular manifold, i.e. if {(X,; F,)}{~, is the basis of the Lie algebra of the
infinitesimal operators of the group (2), then the rank »{(X, ; F,,)}{F of the matrix
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M{(X,; F,)} = [7; {f]u =1,¢j=T,n;k=n+1,n+m (v is the number of rows
and j, k are the numbers of columns) on the manifold F' coincides with its general
rank r,. If now

(3) Il(&af)’ ey Iﬂ+m-—1‘.(gyf)

is a complete system of functionally independent invariants of the group (2), then
according to [4, 5] the manifold F may be represented in the form

(4) V(L&) Intm=r. (&, ) =0, S=1,...,m,

and a necessary condition for the possibility of construction of the general form of
BEq is rank [—g—;‘;] = m, which means the independence of the system (3) with
respect to the variables f;. This condition may be replaced by the requirement
(X, F) = 7.(X) ([4], p- 250). The scheme of construction of the general form of BEq
as an invariant manifold of the group (2) presented here leads to the reduction of the
order of the BEq with the aid of the complete system of functionally independent
invariants ([1], Ch. III).

It should be noted that for the construction of analytic BEq’s in high dimensions,
the use only of functionally independent invariants in the form of monoms of a
minimal degree in € reduces generally to omitting certain monomial summands in
the expansion of BEq with respect to £. In order to take all possible summands into
account it is necessary to use additional invariants, which leads to the repetition of
monomial summands. This repetition can be removed by factorization on relations
between the invariants, which is further denoted by the symbol [.. .]J°".
In applications it is usual to consider the real BEq, i.e.

(5) ka(Eve):ka—l(Ewe)'

For real BEq’s it is more convenient to realize the above described scheme in the
complex variables

Eak—1 = %(Tl +i12), &2k = €ak-1, € = Co,
1 1

fak—1 = ﬂ(tzk—1 +itar), far = ﬂ(tzk-l — itax);
a-. 1 0 a I} 1 0 .0
(9 ;9N 9 (2 ;%)
02k -1 ﬂ(afzk—x lafzk)’ 08k \/5(372k~1 la"'Zk)

1ok 0
_ L _ T -1 _ 1 e, X
Ag =B,y = Ag(ay = CoAf(aCo = diag ( 0, e"""‘) '
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This realization helps overcome technical difficulties connected with taking account
of the invariance (5) of BEq with respect to the complex conjugation.

Lemma. The 2-dimensional analytic BEq allowing the rotation group SO(2) has
the form

(6) [€) =Y CselCV M esgi6169)5 =0, j=1,2.

§$=0

If, in addition, it is invariant with respect to the reflection J(§) = (£2,&1), i.e
allows the group O(2), then in (6) we have a5 =0 for all S.

In fact,

. _ 9 -0 8 .0
Xf,f :er,t-—€EE‘+65£=— é7+f_a.7.

and the basic system of invariants may be chosen in the form

LW = (EE)% = (6162)%, Il = g - g_i’ I3 = g f2

Then the bifurcation system as a nonsingular invariant manifold of the SO(2) group
may be described in the form

fi = a[U(VE&) +iV(VEaE)] =0, f2 = &UVEGE) — iV (V)] =0

or, by virtue of its analyticity, in the form of (6). The additional symmetry J gives
af = 0. .

2. The results of sec. 1 make it possible to construct the BEq of periodic solutions
of problem invariant with respect to the group of motions of R¢ (£ > 2), when this
invariance is replaced by the invariance with respect to the crystallographic group
G! = G, x G!. For example, for £ = 3 the group G, is the discrete group of shifts
with basic translations a;, j = 1,2,3. G' is the symmetry group of the cell Iy
constructed on basic translations, / = m; /(1) + my/(2) 4+ m3/(® is an arbitrary vector
of the inverse lattice [11, 12], (/¢¥), a;) *= 2n6)y.

We consider the scalar case when in the subspace N(B) of zeros of the linearized
at the bifurcation point nonlinear operator a basis is chosen in the form ¢; =
exp(i{lj,q)),j =1,...,n, ¢ = (z,y,z). Let us agree to enumerate the elements
®; in such a way that if an odd number corresponds to a vector / even number cor-
responds to the vector —/. Thus the problem of construction of the general form of
the BEq allowing the group Ay,) = diag{expi(h,a),...,expi(l,a)} induced in
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N(B) by the 3-dimensional shifts LoU(z,y,2) = U(z + a1,y + a2,z + a3) and the
symmetry group G! of elementary cell Ilp is considered here.

For the case of a simple cubic lattice investigated in [1, 7], n = dim N(B) is equal
to the number of presentations of an integer S = |/;| = m? + m% + m$ in the form of
sums of three squares, i.e. the possible values of n, are the divisors 6, 8, 12, 24, and
48 of the order |Op| = 48 of the group Oy, or certain sums of these divisors. Since
J € Oy, the invariance of the real BEq with respect to J implies that the coefficients
of this BEq are real.

We will carry out the construction of the BEq for the case S = 3, ng = 8. Here
the BEq is invariant with respect to rotations (the symbol [2k — 1, 2k] — (i denotes
the rotation transformation with the matrix diag(e'?*,e~14x)),

[1,2] = (a1 + a2 + a3), [3,4] = (—a1 + a2 + a3),
[5,6]—'(01 —ay + ag), [7,8]—»(01 +a2—a3),

and to the substitutions of indexes of variables (the standard notation [13] for sub-
stitution elements of Oy is used)

) ) =(1,5,4,7)(2,6,3,8), C¥ =(1,7,6,3)(2,8,5,4),
¥ 2 (1,3,8,5)(7,6,2,4), J=(1,2)3,4)...(7,8),...

Writing down the basis of the Lie algebra of the group (2) corresponding to the above
indicated rotations, i.e.

Xl = (_51’€2v£31 _64 _657561 _677§8)’
x2 = (_El )62) _63)64165) _56) _67) 68)1
X3 = (—=€1,€2, —€3,€4, —E5, €6, €7, —€8)

(Fi can be written analogously), we obtain the system of invariants

Ik = (Eak_1b)%, k=1,...,4, |4+S=£—::-,

hia = &1€4€els, ha = £263€587,

S=1,...,8,
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where l13l4 = l11213l;. Hence the BEq has the form (the symbol [...]°"* means the
factorization of the expression in brackets by the relation ly3li4 = I;l2l3ls)

f1(€) = Cobr + Y Cragp(€162)7 .. (€1€8) " [1 (61€ab6bs) ™ - (€2€385E7) "]

Pa g8
=& Y, Cro(i&)™ ... (Erts)™
[Pk 20
(8) + Y Cra(6i&e)™ .. (Erta)PE; 7 (6a6sn)
Po k>0
+ Y ChalGE)™ . (6rts) e (Gatos)* = 0
P, ,k>0

fi(©) =Pj1/1(8) = i(Pj-1(€)) =0, j=2,...,8,
where

Py =Uss = Cf)’ o Cﬁ”z, Py = Cﬁf’), P3 = Cf,l)z, Py = Cff)a,
Ps = C, Ps=JC, Pr= Uy =CP o)

The construction of the general form of the BEq (8) invariant with respect to a
given group reduces by several orders the quantity of computing work for finding
the coefficients Cp,q,. In particular, the substitution (7) preserving the number j of
Jj-th equation in the bifurcation system gives the symmetry relations for the function
f;i(€) with respect to the arguments &j.

Remark. A vector case of the construction of the general form of BEq allowing a
given group was considered in [8] where a three dimensional problem about capillary-
gravitational waves in the liquid layer over a flat bottom was studied, where the
elements p; € N(B) were 2-componental.

3. In [9] the general form of the BEq was constructed for the Monge-Ampere
equation on a 2-dimensional (for simplicity of presentation) torus T2. Let (V,),
9= ||9ij(z)||f'j=1, be a C* compact Riemannian manifold without edge and © the
set of twice continuously differentiable realvalued functions ¢ on V; such that the
matrix g, = g + V2 is positive definite at every point of V, (V is the covariant
derivative in the metric g). On O the equation

det g,

9) Mig) = g z=e (M(O)=1)

is considered. For A < 0 this equation has only the trivial solution ¢, = 0, for A =0
all solutions are constants and for A > 0 the bifurcation of solutions is possible. Since
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on T* the covariant derivatives are the usual partial derivatives [14], [15], we have
on T¢

e}

Oxq;

L
—1)*
Mp) = 1+ ap+ 3 W det 1o, B ol sicr 0, =
k=2 :

Therefore for £ = 2 the equation (9) may be rewritten in the form By = R(#,A),
R(0,)) = 0, B: C2+a(T2) — C(T?),

1 (@ ey @ SYCA, = 9%
1) @enp=—z (G G )+ G ap=3 28
2 99:’;{21‘1’ ‘P;{ﬂ': ]2;-:2 J! ; 62:‘21
with periodicity conditions.
On the 2-dimensional torus T? = R2?/2nZ? the shift transformations Lp(z) =
o(z + a), a = (a1,a3) € T? and the reflection Sp(z) = p(—z) preserve the matrix g
and, consequently, (9) is invariant with respect to L, and S [14]. It si not difficult to

verify that the equation (9) allows also the group of a square

Pi(z) = (=z2,21), Pa(z) = (=21, —22), P3(z) = (22, —21),
P4(z) = (z1,—22), Ps(z) = (—z1,22), Pe(z) = (22,21), P72(z) = (—z2, —Z1).

By the method of separation of variables we obtain that A = A\, = S = |n|? =
n? +nZ are the bifurcation points for (10), and the corresponding eigenfunctions have
the form ¢, = exp(i{n, z)). The dimension of N(Bs) (Bs = A+ A,, o(z1+21,23) =
¢(zi,z2 + 2n) = p(z)) is equal to the number rs of representations of the integer
S = |n|? in the form of sums of two squares. If nj = ny then the multiplicity of the
eigenvalue A, = 2n? is at least 4; if n; # ny then the multiplicity of A, is at least 8.
The general formula for s may be found in [16]. We agree on the previous condition
about enumeration of the eigenelements ¢p.

Let dimN(Bs) = 8, n; #2. The zero space N(Bs) has the form ¢; = exp(i (/;, z)),
where /| = (n1,n2), b = (=ny,n2), b = (nz,n1), b = (=n2,n1), by = —hg_1.
The group of a square induces in =2 the representation expressing the following
substitutions of the indexes of &:

P, = (12)(34)(56)(78), P2 = (13)(24)(57)(68),
P3 = (14)(23)(58)(67), Pa = (15)(26)(38)(47),
Ps = (16)(25)(37)(48), Ps = (1728)(3645),

P7 = (1827)(3546).

(11)

Two-dimensional shifts L, generate in =8 the representation
A(a) = diag{exp(i (h, ), - - - exp(i{ls, a))}.
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Basic infinitesimal operators X;, X2 to the group A(a) have the form

0
X1 = (n1€1, —n1€2, —n1 €3, n1€q, n2s, —nals, —na7, naks) 3’

0
Xz = (n2€1, —n2€z, nals, —nzks, m&s, —n1€s, n1€7, —n1€g) 5%

The full system of functionally independent invariants is defined by the differential
equations (X; + F;)I = 0, i = 1, 2, with general rank r, = 2. Therefore we have 16 —
2 = 14 functionally independent invariants. Among them there are four invariants
of the form 1;(§) = &25-1€25, § = 1, ..., 4, eight invariants l44; (€, f) = f;j /&, 1 =1,
., 8. The other invariants must be written in the form of monoms of a possibly
minimal degree. They are found as solutions of the system X;1(§) =0,i=1, 2:

(12) h3(€) = (E164)V/ ™1 (E6€7)V™2,  11a(€) = (6163)N/"2(E68s)V/ ™2,
hs(€) = (E263)V/™ (Es€8)V/™2,  1i6(€) = (E264)V/™2(Es87)N ™,

where N = F»"':,ﬂnzﬁ The invariants (12) satisfy the following relations (l15(£) = l13(€),
l16(€) = h4(€)):

(13)  ha(@hs(®) = (bl (5l)Y"2, La(E)hs(€) = (112)V™2 (13, 1)/ ™

According to the theorem on the representation of a nonsingular invariant manifold
of the group (2) [4, 5], the first equation of the bifurcation system can be written in
the form

(14) fig,e) = Za(”(ew"*(s I52(€)152 (€)15* (6),
417 (s)i OO = 0,

where the symbol [...]°U* means the factorization of the expression [...] by the rela-
tions (13). The other seven equations of the bifurcation system are found from the
condition of its invariance with respect to the substitutions (11):

(15) fe(&,e) =Pr_1fi(€€) = fi(Pe-1(€),e) =0, k=2,...,8

The construction of asymptotics of small solutions of (14), (15) requires the spec-
ification of the values n; and ns.
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