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RECURSIVE ESTIMATES OF QUANTILE BASED
ON 0-1 OBSERVATIONS
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Summary. The objective of this paper is to introduce some recursive methods that can
be used for estimating an LD-50 value. These methods can be used more generally for the
estimation of the y-quantile of an unknown distribution provided we have 0-1 observations
at our disposal. Standard methods based on the Robbins-Monro procedure are introduced
together with different approaches of Wu or Mukerjee. Several examples are also mentioned
in order to demonstrate the usefulness of the methods presented.
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PROBLEM FORMULATION

The problem is formulated as follows: on the level z (z € R) a random variable Y,
is observed, distributed according to the 0-1 law with an unknown parameter F'(z).
Having observations on different levels z we want to estimate the solution of the

equation F'(z) = v, where v € (0,1) is a given number. The function F is usually a
“distribution function; however, the fulfillment of conditions

F(z)<y, z<z",
Flx)>y, z>z"

for some real number z* is sufficient for a majority of algorithms.
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EXAMPLES

First we give some practical examples that can be mathematically formulated as
the above stated problem.

Example 1. Reliability of material

Let X be a random variable indicating the power under which some material is
defected. Performing an experiment on a power level z we get the result Y, with the
following distribution:

Y; =0 (no defect) with probability 1— F(z),
Yy =1 (defect) with probability F(z),

where F' is the distribution function of the variable X.

Our task is to determine the maximum power that does not effect the structure
of a high percentage of material, i.e. to find the solution of the equation F(z) = 7,
where v < 1.

Example 2. Explosive testing

The random variable X indicates the pressure under which an explosive will ex-
plode. The result on the level z is explosion or no explosion with probability F(z)
or 1 — F(z), respectively, where F' is the distribution function of X as in Example 1.
The task is to find the pressure under which 100y % of the explosive will explode. In
this case ¥ > 0 is usually taken.

Example 3. Biological experiments

We apply a dose z of a substance to an experimental animal. The result of the
experiment is 1 if the animal somehow responds to this dose. Otherwise the result
is 0. The response of the individual appears with probability F(z), taking F' as the
distribution function of the random variable that expresses the amount of the dose
necessary for the response. We want to estimate the level of the dose on which 100y %
of individuals response. The value for v is usually taken as 0.5 and the corresponding
level is then called LD-50.

Example 4. Range of feromon

Let G(z) denote the probability of the event that insects will reach the feromon
being « units far from it. The marked insects either reach the investigated feromon
or not. We look for the y-quantile of the distribution of the random variable X
denoting the maximum distance from which the insects reach the feromon. The
distribution of this variable is clearly given by the distribution function F' e -q.
Thus we look for the solution of the equation F(z) = 1.
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Example 5. Psychological testing

The problem is to construct a sequence of easier and more complicated questions
in such a way that the complexity of these questions gradually increases and respects
the individual abilities of the person investigated. After some time the individual
abilities are judged using the level of complexity of the questions. The following
model is used in psychology:

The examiner has a set of questions. The answers can be classified as “good”
or “bad”. We denote the answer to the question ¢ by the symbol u;; u; = 1 if the
answer is correct, u; = 0 otherwise. The question is characterized by the so called
characteristic curve P;(0) = Plu; = 1|6], where 6 is a real parameter denoting the in-
dividual abilities. Functions P(f) are assumed to be continuous and increasing. The
logistic curves are usually considered. The complexity of the question is defined as
the “y-quantile” of the function P;(#), more precisely as the solution of the equation
P;(z) = v, where v € (0,1). We put questions to the individual on different levels
iz. Taking into account his previous answers we try to find the complexity z* such
that the questions on this complexity level are answered correctly with probability
7. Psychologists consider this value to be the measure of ability of the individual
tested. (See [11] for more details.).

The following two examples have a more mathematical character. Nevertheless,
they do not lack their practical sense. Example 6 can be considered as the robust
version of the stochastic approximation problem of finding the root of some regression
function. Example 7 is a special case of 6 and deals with the problem of finding the
v-quantile having i.i.d. random variables.

Example 6. Finding a root of the general regression quantile function

Let observations at a point £ € X C R have a common distribution function G.
\ Let the function M(z) = G;1(y) = inf{t; G;(t) > 7} satisfy inequalities

M(z)<a for z<z*,
M(z)>a for z>z"

where z*

is a real number. The function M is called the regression quantile func-
tion. The problem is to find the point z* provided the observations Z,, distributed
according to Gz, £ € X, are available.

We transform the variables Z; to Y, = I[Z, > a], where I[A] denotes the charac-
teristic function of the set A. Thus we have the 0-1 variables on various levels z, the

probability of success being F(z) = EI[Z; > a] = 1 — Gy(a). For z < z* we clearly
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have F(z) < 7, while for ¢ > z*, F(z) > v (F(z) > v under some mild assump-
tions). The problem of finding the solution of the equation M(z) = a having the
observations Z is thus transformed to finding the solution of the equation F(z) = y
using 0-1 observations Y.

Example 7. Estimate of y-quantile based on a random sample

Let H denote a distribution function for which there exists exactly one 4* such
that H(y*) = v. We desire to estimate recursively the value v* getting sequentially
the variables X; (one per time unit) distributed according to the function H.

If X is an arbitrary random variable distributed according to H then Z, def m(z)+
X is distributed according to G, Lt H(y— m(z)). Any increasing function can be
taken in the place of m. Being at time i we put Z, = X; + m(z;),i=1,2....

If H is strictly monotone then G7!(y) = m(z) + v* and hence G;!(y) < 0 for
z < m~Y(—y*) and G;1(v) > 0 for £ > m~!(—7*). Taking into account that m
is a known function (m(z) = z is usually considered) we transform the problem
of finding the vy-quantile of H to the problem of finding a root of the regression
quantile function. Using the transformation from Example 6 this problem can be
further transformed to the problem of finding the solution F(z) = v having 0-1

observations Yy, = I[Z;, > 0].

Although the examples introduced above have the common mathematical back-
ground, the algorithms that are going to be suggested are more suitable in some
practical cases and less in other ones. In the sequel we will try to sort the algo-
rithms together according to their mathematical character, giving some notes on
their usefulness in specific applications.

GENERAL ASSUMPTIONS

The common feature of the methods introduced in this paper consists in defining
the level (or levels) on which we perform our experiment at the next time unit. For
all further developed methods and theorems of convergence we will suppose that our
observations at time n depend on the past only through the levels on which they are
performed. We also assume that the observations Y, on the levels z are distributed
according to the 0-1 law with a parameter 1 — F(z), where F' is a real function
having values between 0 and 1 (0 < F(z) < 1).

The majority of the methods cited below preserve their convergence properties also
under more general assumptions concerning the distribution of Y; and the behavior
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of F. We do not mention these assumptions here, pointing out that the general
results are formulated in the literature cited at the relevant places.

UP AND DOWN METHODS

The so called UP AND DOWN methods are characterized by a discrete set of
levels at which the experiments are performed. We shall suppose that these levels
form a set ‘

(1) L = {a+ ld; l'integer}

where a, d are given numbers. (Although in practice the set of levels can be of
another type it can be transformed to (1) using a one to one transformation.)

Having an observation Y, at time n we define the level of experiment at time
n+1as

(2) Tny1=2n+d if Yy =0,
Tp4l = Ty — d if Y:c,. =1.

This property characterizes the UP AND DOWN methods.

One of the first papers concerning the recursive estimate of the LD-50 variable
was that of Dixon and Mood. They combine the UP AND DOWN principle with the
maximum likelihood method. Their result consists in the assumption of normality of
F. Since we introduce only non-parametric methods here we refer to [6] for the full
algorithm and its numerical properties. A non-parametric UP AND DOWN method
is, for example, that of Derman. Here we propose his algorithm (see [5]) in a little
bit more general way.

DERMAN’S APPROACH

Assumptions P. Let there exist z* € R and vy € <%,1) such that

F(z)<vy pro =z<z",
F(z)>v pro z>z"

Let limji:nle(:c) -] >0.
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Algorithm 1. Perform an observation at time n on the level z,,, where

zy € L arbitrary,

Zp41 = Tn —d  with probability — if Y, =1,

Zn41 = Tn+d  with probability 1-— if Y, =1,
Zny1 = Tn+d  with probability 1 if Y, =0.
(For y = 1 this algorithm coincides with (2).)
We define an estimate of z* at time n as 6, which is the element of
o0
(3) argmaxz Hzp = i}.
ieL k=1

We put 6, to be the arithmetic mean of all the elements of (3) if this set has more
than one element.

Assertion 1. Let the assumption P hold true. If z* € L, the relation
(4) 0, € (& —d,z" +d)

holds for all n > Ng, where Nj is an a.s. finite random variable. If 2* ¢ L then
On € ([z*], [z* + d]), where [z] = max{y € L; y < z}.

The proof of the assertion is given in [5] under the assumption that F is a dis-
tribution function. In [3] it was proved that the assertion remains valid also for
F(z) v provided this convergence is sufficiently slow.

T—T 00

The Derman method can be applied also in the case of v € (0, %) However, in
this case the sequence {z,}3%, is defined in the following manner:
. . 1 .
ZTnt1 = 2, +d  with probability m if Yz, =0,

ZTnt1 = &, —d  with probability 1 if Y, =0,

1
2(1-7)
Znt1 = Zn, —d  with probability 1 if Y, =1.
We should notice that the disadvantage of this method consists in the fact that
limsup |z, — z*| = co. It means that the levels at which we perform observations

n— 00
can be arbitrarily far from the true value *. This fact should be taken into account,
especially when the price of the experiment increases with the distance of the level
from the value z*.
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METHODS OF THE ROBBINS-MONRO TYPE

In this section we suppose that there exist * € R, v € R such that

e<|x—12fl<1/e(F(x) —)E =) >0,
for all e > 0.

The Robbins-Monro method (RM) seems to be the method most frequently used
for finding the root of the regression function. RM is the a recursive scheme, where
the level of our experiment at time n is defined as the estimate of * at this time.
In the simplest form the sequence of levels given by RM can be expressed as

(5) Tnt1 = Tn — @n(Ys, —7)-

If Y a, = co and 5 a2 < oo, then z,, — z* almost surely (see [2] for proof).

An interesting insight into this method was given by Robbins, Lai [14]. They
pointed out that the level £, can be obtained as the root of the linear regression
based on the observations (z;,Yz,)"_,. Now we go briefly through their idea.

" Suppose a theoretical model

(L) Yo, = Bzi + a + &,

where ¢; are independent variables with N (0, o?) distribution. If 3 is supposed to
be known then we get the maximum likelihood estimate of the root of the equation
Bz + a = 0 in the form

(6) Tp4l = Ty — ﬂ_lgn»

where &, = %zzi, Un = %E(Y,i —%). Setting a, = #, we get the identity
between the sequences defined by the relations (5) and (6). In the paper of Robbins
and Lai the parameter # (which is usually unknown in practice) is estimated using
the maximum likelithood method again. Thus the recursive scheme suggested in their
paper is of the form

(7) Tn4l = Tn —
where b, = bV (ﬁn"/\ B) for n > ng, b, € (b, B) arbitrary for n < ny,

n

k - 2 Yo (i — Zn)

0<b<p<B, "0=iﬂf{k; Z(xi—ik)2>0} and f,=1=1 .
= z:(xl "in)

i=1
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Assertion 2. Let F/(z*) > 0 and let F be continuously differentiable in a
neighborhood of *. Then for the sequence {z,}52, defined in (7) the convergencies

Vi(en —2*) 2 N(0,4(1 = v)/(F'(=))?)
Bn — F'(z*) as.

hold true.

See [15] for proof.

Using the results of Sacks [17] the asymptotic normality can be shown also for the
sequences £, defined in (5) with a, = £, if a > W%FT In this case the asymptotic
variance is equal to #;Z%i_:% This variance is minimized for a = (F'(z*)) ~'. Thus
the value b, from (7) can be interpreted as the estimate of this optimal choice which
is usually unknown in practice. The values b, B can be considered as an apriori
knowledge concerning the parameter 3.

Another approach to estimating the unknown value (F ’(:l:*))_1 is based on the
differences of the function F. This method (in literature usually called adaptive) can
be used also in the case when the apriori knowledge about b and B is not correct.
From the results dealing with adaptive algorithms, that of Fabian [9] is well known:

dn (Yn - 7)

(8) Tn4l = Tn — n

where Y, = (Ye, 4en + Yon—c,)/2, dn = ((C1log(n + 1))“1 VAZY) A Con®,

n-1

Yeiove: = Yoc,
An:(n_l)—lz_ﬂ_’:ﬁ%__%_a,
7

ji=1
0< Ci <Oy 0<a<%, cp =cn”?, 16(%,%.

In practical realization of (8) we perform two observations at time n on the levels
Tn +Cny, Tp —Cpn.

Assertion 3. Let F have the second bounded derivative in a neighborhood of
z*, let F'(z*) > 0. Then we get

z, — z°  a.s.

Va(za —2%) 2 N(0,7(1 - 1)/ (F'(z"))?).

See [9] for proof.
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The methods of the RM type belong to the most frequently used recursive sta-
tistical approaches. One of their disadvantages in the case of estimating a variable
LD-50 may consist in the following fact. The experimental levels at which we can
perform our observations usually form a discrete set (e.g. of the type of L). This
fact contradicts the demands of the RM type algorithms. The transformation of the
RM algorithm to the case of a discrete set of levels of observations can be found in
[8]. Another disadvantage of these algorithms can appear when we need to know in
advance the levels at which we shall perform our experiments. This situation arises
e.g. in a preparation of psychological tests (see Example 5 & [11]). Fixing the num-
ber of items in a test (denote this number by k which is usually greater then 25) we
need to combine all possibilities of answers to prepare the test on a computer. In
the case of RM type methods this represents 2% possibilities. On the other hand, the
UP AND DOWN methods need only %k(k + 1) possibilities.

NON-PARAMETRIC METHODS BASED ON THE PARAMETRIC APPROACH

The methods of the RM type can be viewed as parameter estimates in the model
(L). However, the linear fit is not the best what we can do in the case of 0-1 variables
and a regression function which is a distribution one. Therefore other parameter-
izations were suggested using more suitable models. The convergence results were
obtained also in these cases. The general idea of these methods can be expressed as
follows: The function F is supposed hypothetically to be of the form F(z) = H(z|9).
Using observations (z;, y#i)?=1 7
the parameter @. For the level of our experiment at time n + 1 we take the solution
of the equation F,(z) = 7, where F,,(-) = H(-|6,). This level is denoted by zn41 as
in the previous algorithms.

In the case of RM type methods we have H(z|0) = a + Bz, 8 = (, B).

Wau in [18] suggested for the LD-50 problem the following logistic parameterization
of the function F : H(z|0) = (14 e *®=®)™" X >0, 8 = (a, ). In this case the
maximum likelihood function is of the form

we evaluate the maximum likelihood estimate 8, of

n
L\ alzi,Ye,i=1,...,n) = H H(zi|\, a)Y= (1- H(z,~|/\,a))(1_y"),

i=1

hence the likelihood equations are

9) Y H@ha)=Y Vi,
i=1

i=1

Z ziH(zi|\, )= ixiY,'.
i=1

i=1
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Thus the estimate of the y-quantile of F' is defined as the value L, =a-\"! log(1/y—
1), where @&, X solve (9). This value defines also the level 541 on which we perform
our experiment at time n + 1. For practical purposes we should know under what
condition there exists a solution of (9). Due to Silvapulle [19] there exists exactly
one solution of (9) if

(x:\in: zxax) N (xr:lina z;\ax) 75 @

or
zn+1in < zr-r-xin = Trax < z:mx
or
2"r_n'm < J“';in = x;;ax < zr;ax;
where
x:mx = max{:r:;,Y,‘. = 1}, zxin = min{:c,-; YT;’ = 1},
Thax = max{:c;; Yo, = 0}) x;nin = min{xi; Y, = 0}

If this condition is fulfilled for some ng then it is fulfilled also for all n > ny. For
n < ng we should use another method, e.g. of the RM type.

In [18)] the convergence of this method is proved for A given. For A obtained as
the solution of (9) the asymptotical efficiency of the method is proved provided the
a.s. convergence holds true. In his paper Wu performs also some simulation studies
according to which the previous algorithm gives better results then the RM method
for small and medium n. See [18] for some numerical illustrations that exhibit better
behavior of this method as compared with RM algorithm for small and medium
sample sizes.

METHODS BASED ON A MORE GENERAL PARAMETRIC MODEL

Mukerjee in [12] suggested the approximation of the unknown distribution function
(in his paper the regression function, generally) by the so called isotonic regression.
The set of levels at which we perform our observations is the same as in the case of
the UP AND DOWN methods, i.e. the experimental levels are taken from the set L
defined in (1).

Let us introduce the following notation for the rest of our paper:

Xn ... levels,; on which we performed our experiments up to time n,
n(z) ... number of observations on the level £ made up to time n,

yi{z) ... the value of the i-th observation on the level z (: = 1, ..., n(z)).
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Isotonic regression based on the observations (z;, Yz, )i is defined as

n(x)
. 2
(10) argmin 3 > (wi(@) - (=),

z€X, i=1

where RF = {t : X, — R; t(z) < t(y), if ¢ < y}. The recursive scheme based on
the isotonic regression is described by the following algorithm:

Algorithm 2.
1) Choose a < b € R arbitrarily and set X := LN (a,b), n:= 0. At every point
of X perform at least one observation.
2) Fit the values obtained up to time n by isotonic regression, i.e. find the element
of (10) and denote it by t},. (Notice that ¢}, is unique). Define
t" = max{min X, — d,max{z € Xn; t, < 7}},
%Y. = min{max X, + d,min{z € X, ; t;, > 7}},
‘'where we set max{) = —oo, min{ = oco.
Choose 8, € (t7) t%7 ) arbitrarily and perform experiments on the levels [6,],

min’

[0n + d], where [y} = max{z € L; ¢ < y}. Set n:=n+ 1 and repeat step 2).

The general convergence theorem from the paper of Mukerjee can be rewritten for
our purposes in the following way.

Assertion 4. Let there exist z,, < zps € L such that

F(z)<y for z<zn,,
2

F(z)>y for z2zMm.

Then for 8,, from Algorithm 2 the relation
P[0, ¢ (zm,zm) infinitely often] = 0

is valid.

The proof is given in [12].

For completeness we should mention the algorithm for solving (10) which is, how-
ever, given e.g. in [1]. Here we would suggest other algorithms for finding the
y-quantile of the distribution function F' whose character is similar to Mukerjee’s
algorithm but the problem (10) is simplified.
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Instead of looking for the isotonic regression and for the interval (¢]7,t%2,) we
estimate the y-quantile directly as any element of

n(x) n(z)
(11) argmin Y Y (L= y)wi(2)+ Y > v(1 - wi(z)).
b rgoi=1 r30 i=1

Recalling that y;(z) is equal to 0 or 1 we get that the set (11) is equal to

n() n(z)

. + -
(12) argminy Y (wi(@) -7+ Y (w=) -7,
0 ggoi=1 £330 i=1
where 2zt = max(0, 2), 2~ = max(0,—z). The following algorithm for finding any
element of (11), or (12) is analogous to that one of Dupat [7] for finding the root of
the quasiisotonic regression.

Algorithm 3. Set z; := minX,,. Let 11 € L be the smallest number such

that
n(z)

Z Z(yi(z)—'r) <0,

z€(xy,r1) =1
T€EXn

r9 > r; the smallest number such that

n(z)

> Y (w@)-1) <0, ete.

s€(r1+d,rz) =1
T€Xp

We take 6 € (—o00, z1) arbitrarily if r; does not exist. Otherwise we denote by r*
the last one from the ri’s defined and take 8 € (r*,7* + d) if »* < maxX,. If
r* = max X, then select § € (r*,00). 0 is an element of (11) or (12).

Let any 6 € (I1,l;) be an element of (11), where ly,ly € L U {co}, and let

n(z) ~

> 3 (wi(x) —7) = 0. Then any § € (z,z +d) is also an element of (11).
z€(z2,11) i=1
T€EXn

Denote
ot = ma.x{minX,, —d; inf{f; 0 is an element of (11)}}

and
Ol = min{max X, + d; sup{0; 0 is an element of (11)}}.

The relation between Hﬁ'lx(min) and t',:,’:x(min) is expressed in the following assertion.
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oY S ™Y ey L Y,

Assertion 5. 03 2 tyin, Umax S tmax:

Proof. Wedenote Omin = Gmm and tmin = tml’; for simplicity. We prove the first
inequality, the second could be proved similarly. We suppose that tmin > min X,, —d,
otherwise the assertion is clear. Let Omin < tmin-

Denote by t* the solution of (10). There must exist a natural number ¢ such that

t*(Omin + d) = t*(Omin + 2d) = ... = t"(Omin + cd).
Define
M= {emin»"’ d,0min + 24, ... ) Omin + Cd}
and
t(z) = mln{'y, ( min + (c+ 1)d)} for z €M,
{(z)=t"(z) for ze€X,\M.
. . n(z 2 .
It is obvious that 3> > (yi(z) — k) is a decreasing function in & for k£ <
T€EM i=1
n(x) n(zx)
HXVS Y. > ¥i{x), where n(M) = Z 1 is the number of observations per-
zeM i=1 TeEM i=1

n(z)
formed on the levels from M. Further, we get ;.'(175 > Y wi(z) > 7 using the
z€EM i=1

n(xr)
inequality > 3 yi(z) — v > 0 which follows from the definition of fmi, by virtue

TEM i=1
of (12). This fact implies that the function Y Z (¥i(z) — k)? is decreasing for
zeM i=1
k<.
On the set M the values f, t* are constant, less than v and ¢ > t*. This contradicts
the fact that ¢* is an element of (10). O

The next result is an immediate coiollary of the previous assertion and Assertion 4.
Assertion 6. Let the assumptions of Assertion 4 be valid. Replacing ¢t by
67 and Y, by 677, in Algorithm 2 we get for 8, from this algorithm that

min max max

min

P[0, € (zm,zm) for infinite number of n] =0.

Algorithm 2 thus can be used taking the estimate of the y-quantile based on
solving (11) or (12). These problems are easier to solve than the isotonic regression
problem.
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The algorithms studied in the last two sections are particularly useful in such
situations when some observations are given in advance on different levels without
any order.

At the end we give several numerical results that demonstrate the behavior of the
algorithms introduced. Table 1 shows the results when the median of the N(0,1)
distribution was to be found. In Table 2 we consider the problem of finding 70 %
quantile of x? (8) distribution which is equal to 9.524. The methods used were
the Derman method using Algorithm 1, Robbins-Monro method (according to (5)
with a, = 2), adaptive Robbins-Monro method according to (8). In this method the
constants d,, were replaced by d}, = (A;1Vr;)Ars, where 1, ry are chosen constants
and A, has the same meaning as in the definition of d,. Further, the isotonic
regression approach using algorithm 2 and Robbins-Lai approach using formula (7)
were employed. Each method was applied from time 0 to Stoptime giving one
sample trajectory of the algorithm. In order to obtain more knowledge about the
asymptotic properties of our procedures we took T such sample paths for each of the
procedures. The value of T is given in the first column of the numerical tables. We do
not introduce the whole history of the processes but only their values at the times that
are given in the second column. In the third column the values of specified procedures
are computed at the time moments considered. These values are taken from the last
path of our T samples. In the fourth column the averages through the T samples
are given. Finally, the sample variances of our procedures at specified time moments
are given in the last column. We do not comment the results because they depend
very heavily on the parameters of each of our procedures. However, the results
probably give some ideas concerning the procedures behavior. For more information
the time consumption per one path simulation is given (results were computed on
IBM XT compatible without coprocessor). This information can be misleading in the
case of the Derman procedure because type of random number generator other than
for the other four methods had to be used. We use the Stochastic Approximation
program system for our computations (see Charamza [4]). Using this system a lot of
simulations under different initial conditions and different parameter values can be
easily obtained.
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TABLE 1

Derman procedure.

d = 0.1000, StopTime = 100, Time consumption = 13.509000s

T time estimate average variance
20 0 2.000000 2.0000 0.0000
20 10 1.500000 1.5225 0.0322
20 20 0.850000 0.9148 0.1191
20 30 0.600000 0.5946 0.0985
20 40 0.600000 0.3423 0.0955
20 50 —0.050000 0.2375 0.1163
20 60 —0.050000 0.1375 0.0665
20 70 0.000000 0.1200 0.0430
20 80 —0.050000 0.0525 0.0583
20 90 —0.100000 0.0175 0.0419
20 100 0.000000 0.0275 0.0385

Procedure Robbins-Monroe.

a = —3.0000, StopTime = 100, Time consumption = 6.838000s

T time estimate average variance
20 0 2.000000 2.0000 0.0000
20 10 0.314881 0.1136 0.0986
20 20 0.487888 0.1045 0.0663
20 30 0.465465 0.0536 0.0514
20 40 0.217214 0.0485 0.0405 _
20 50 0.158326 0.0470 0.0335
20 60 0.104783 0.0518 0.0261
20 70 0.194576 0.0623 0.0272
20 80 0.153601 0.0527 0.0197
20 90 0.049032 0.0497 0.0156
20 100 0.018173 0.0355 0.0126

Adaptive Robbins-Monro procedure.

¢ = 1.0000, gamma = 0.3000, r; = 0.1000, r, = 5.0000, StopTime = 100, Time
consumption = 13.534000s

T time estimate average variance
20 0 2.000000 2.0000 0.0000
20 10 —0.197529 0.0376 0.1476
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20 20 —0.220077 0.0828 0.0666
20 30 —0.137035 0.0536 0.0410
20 40 —0.080158 0.0433 0.0230
20 50 —0.005332 0.0519 0.0186
20 60 0.070421 0.0569 0.0165
20 70 0.013817 0.0379 0.0118
20 80 —0.039966 0.0253 0.0107
20 90 —0.103091 0.0239 0.0080
20 100 —0.103091 0.0202 0.0078
Isotonic regression (see Algorithm 2).
d = 0.1000, StopTime = 100, Time consumption = 12.883000s
T time estimate average variance
20 0 2.000000 2.0000 0.0000
20 10 1.250000 1.2050 0.0205
20 20 0.450000 0.6000 0.0563
20 30 0.150000 0.3550 0.0752
20 40 0.150000 0.2000 0.0647
20 50 0.150000 0.1250 0.0504
20 60 0.150000 0.1250 0.0251
20 70 0.150000 0.0500 0.0168
20 80 0.150000 0.0350 0.0192
20 90 0.150000 0.0450 0.0173
20 100 0.050000 0.0150 0.0150

Procedure of Robbins and Lai.

b=0.1, B =5.0000, StopTime = 100, Time consumption = 8.271500s
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T time estimate average variance
20 0 2.000000 2.0000 0.0000
20 10 —0.572960 —0.0774 0.1535
20 20 —0.393169 —-0.0151 0.0801
20 30 —0.295483 —0.0614 0.0416
20 40 —0.199799 —0.0190 0.0388
20 50 —0.193787 —0.0140 0.0415
20 60 —0.246730 —0.0036 0.0308
20 70 —0.102382 0.0165 0.0238
20 80 —0.019223 0.0230 0.0185
20 90 —0.094940 0.0270 0.0181
20 100 —0.125221 0.0124 0.0161



TABLE 2

Derman procedure.

d = 0.4000, StopTime = 200, Time consumption = 161.932000s

T time estimate average variance
10 0 2.000000 2.0000 0.0000
10 20 6.000000 5.7467 1.8744
10 - 40 6.200000 7.7200 1.5307
10 60 9.200000 9.0800 1.9307
10 80 9.200000 8.9400 1.4316
10 100 8.200000 8.8600 1.3249
10 120 8.200000 8.8000 1.3244
10 140 9.200000 9.3000 0.3667
10 160 9.200000 9.2800 0.3129
10 180 9.200000 9.3000 0.2600
10 200 9.200000 9.4600 0.4804

Procedure Robbins-Monroe.

a = —5.0000, StopTime = 200, Time consumption = 41.689000s

T time estimate average variance
10 0 2.000000 2.0000 0.0000
10 20 9.271491 8.5825 0.8635
10 40 9.917205 8.9442 0.4873
10 60 10.027956 9.1096 0.3826
10 80 9.808527 9.1442 0.3134
10 100 9.748349 9.2024 0.2568
10 120 9.787566 9.2491 0.2426
10 140 9.829480 9.2465 0.2445
10 160 9.799907 9.2425 0.2217
10 180 9.831373 9.2929 0.1949
10 200 9.750808 9.2982 0.1624

Adaptive Robbins Monro.

¢ = 1.0000, gamma = 0.3000, »; = 0.1000, r, = 5.0000, StopTime = 200, Time
consumption = 84.525000s

T time estimate average variance
10 0 2.000000 2.0000 0.0000
10 20 8.408059 9.6082 1.3243
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10 40 8.380440 9.5545 0.8003
10 60 8.353868 9.5636 0.5391
10 80 8.500834 9.4958 0.3527
10 100 8.521206 9.4720 0.2723
10 120 8.553610 9.4962 0.2355
10 140 8.641721 9.4900 0.1562
10 160 8.722310 9.5018 0.1245
10 180 8.783905 9.4855 0.0973
10 200 8.754266 9.4878 0.1151
Isotonic regression.
d = 0.4000, StopTime = 200, Time consumption = 83.092000s
T time estimate average variance
10 0 2.000000 2.0000 0.0000
10 20 7.800000 7.6000 0.6133
10 40 9.400000 9.1600 0.4693
10 60 10.600000 9.5600 0.7538
10 80 9.800000 9.5200 0.2862
10 100 9.800000 9.3600 0.3716
10 120 9.000000 9.3200 0.2773
10 140 9.400000 9.4000 0.2844
10 160 9.400000 9.4000 0.1778
10 180 9.400000 9.4800 0.1351
10 200 9.400000 9.5600 0.2560

Robbins and Lai procedure.

b= 0.1, B =5.0000, StopTime = 200, Time consumption = 43.693000s

T

time

estimate
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average variance
10 0 2.000000 2.0000 0.0000
10 20 9.349952 9.6220 1.3684
10 40 10.330679 9.7979 0.4026
10 60 10.352507 9.8537 0.3575
10 80 9.936621 9.7053 0.2875
10 100 9.830108 9.7168 0.2212
10 120 9.900507 9.7468 0.2218
10 140 9.977772 9.6548 0.2195
10 160 9.865312 9.5860 0.2169
10 180 9.921364 9.6457 0.1781
10 200 9.781967 9.6193 0.1593



FINAL REMARKS

The algorithms introduced here do not cover all possibilities for solving the prob-
lems of LD-50 type. Other algorithms of the RM type were introduced (see [13]) even
for the case of dependent observations (see [10]). By their modifications we could
gain many other schemes. We should mention at least one reference concerning the
non-recursive methods for solving the problem studied above. Several methods of
this type were studied intensively in [16].
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REKURZIVNI ODHADY KVANTILU ZALOZENE NA 0-1 POZOROVANICH
PAVEL CHARAMZA

V préci jsou uvedeny nékteré rekurzivni procedury pro nalezeni veli¢ciny LD-50 mime-
-li k dispozici nula-jednitkova pozorovini. Tyto metody mohou byt obecné&ji pouzity pro
odhad y-kvantilu neznimé distribuéni funkce. Kromé standardnich metod typu Robbins-
Monro jsou uvedeny i piistupem odlisné metody. Jsou rovnéz zminény praktické mo#nosti
pouZiti zvolenych metod.
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