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QUADRATIC SPLINES SMOOTHING THE FIRST DERIVATIVES
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Summary. The extremal property of quadratic splines interpolating the first derivatives
is proved. Quadratic spline smoothing the given values of the first derivative, depending
on the knot weights w; and smoothing parameter «, is then studied. The algorithm for
computing appropriate parameters of such splines is given and the dependence on the
smoothing parameter a is mentioned.
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1. INTRODUCTION

Given knots (Az) = {z;, ¢ = 0(1)n + 1} of a polynomial spline with prescribed
function values {g;}, algorithms for computing appropriate parameters of such an
interpolating spline as well as answers concerning the questions of existence and
various properties of such splines can be found in [1], [2], [3], [9]. The extremal
property of polynomial splines of an odd degree 2m—1 with respect to the functional

b
a0 = [ 1

was used to introduce splines smoothing function values, see e.g. [2], [6], [9].
Interpolary splines of an even degree 2m does not possess such extremal property
with respect to the functional of the above type—even if we interpolate at other
points than knots. Such an extremal property can be found, when we interpolate
some other appropriate functional instead of the function values. The best known
example is the interpolation of mean values on [z;,z;+1] (or local integrals)—see
e.g. [2], [6], [9]. The case of the quadratic spline interpolating mean values (local
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integrals) is studied in detail in [5]; the extremal property is there used to introduce
the quadratic spline smoothing mean values.

In this paper, the results from [4] concerning splines interpolating the first deriva-
tives are used to show that they have a certain extremal property with respect to
the functional

b
J(f) :/ [f"?dz.

This result is used to construct the quadratic spline smoothing the given values of
the first derivative.

2. QUADRATIC SPLINE INTERPOLATING THE FIRST DERIVATIVES

Definition 1. Let us have a set of simple knots (Az) on [a, b]:
a=20< 1< ...<ZTp < Tpy1=b, h;=2zi41 —x.

Any function s(x) with the properties
1° s(z) € C'a,b);

2°  s(z) is a quadratic polynomial in each interval [z;, zi41], i = 0(1)n,
is called a quadratic spline on (Az). Let us denote by (2, Az) the linear space of
all quadratic splines on (Az).

Theorem 1 (see [4], [7]). Let us have a mesh (Az) and real numbers s,
i = 0(1)n + 1, and one number s¢, k € {0,1,...,n + 1}. Then there exists a
unique quadratic spline s € (2, Az) such that the conditions

(1) s'(z;) =si, i=0(1)n+1 (conditions of interpolation),
s(zp) = sk (initial condition)
are fulfilled. Denoting s; = s(z;), t = z ; mi, we can write
i
(2) s(z) = (1 — t¥)s; + t2si41 + hit(1 = t)s,  for z € [z;, Tiy1],

where the unknown values s; can be computed from the given s, s;, i = 0(1)n + 1
via the recurrence relations

1
(3) S; — Si1 :§hi_1(s;_1+sg), i=1(n+ 1.

Example 1. For the data (z;,m;), so = 0,

xil—-4—3 2 -1 0 1 2 3 4 5 6
m; | 1.0 —-05 —0.1 -08 00 7.0 —0.1 -01 —01 20 1.0

the corresponding spline s € #(2, Az) is given in Fig. 1.
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Fig. 1
3. EXTREMAL PROPERTY

Denote by WZ(Az) the linear space of functions f with an absolutely continuous
derivative f’ on every interval [z;, 2;11], i = 0(1)n, and f” € L*[a,b].

Theorem 2. Let ¥ = {f € W2(Az); f'(zi) = mq, i=0(1)n+ 1},

b
(4) nn=[Ur@Pds (@=z0, b= o)

The minimal value of Ji(f) on the set ¥ is attained for every quadratic spline
s € #(2,Azx) with s'(z;) =m;, i = 0(1)n+ 1.

Proof. Let f,s€7,s¢c (2 Az) and s'(z;) = m;, t = 0(1)n + 1. Then
(5) 17 = 8”115 = 15 = 113 = 20" = 8", 823

(f//__sll“g//)Q:/xnmrl(f,/_~ o //dx_Z/ _ ”dx—
T

0

= z ( sz -/ 'H(f' - s')s”’dx) =0.

We can write (5) as

(6) 113+ 117" = s"115 = 17113,
from which ||s”|l2 < [|f”[l2 follows. O
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Let us mention that the extremal spline is not unique—we can add any constant
to it (to prescribe any initial condition).

Remark 1. The extremal property just proved is tightly connected to the ex-
tremal property of the polygon s;(x) interpolating the values m; at z; [s;(z;) = m;].
It is proved in [8], that s;(z) minimizes the functional (f’, f') on the set

Y = {f € Wj(Az); f(zi) = mi, i =0(1)n +1}.
We have s(z) = [ s1(z)dz in our case.

Remark 2. The extremal property does not hold for splines interpolating the
first derivatives at points t; € (x;, z;41)—such splines are described in [4], [7].

4. THE PROBLEM OF SMOOTHING THE FIRST DERIVATIVES

Suppose a set (Az) of spline knots with weighting parameters w; > 0 and real
numbers m;, i = 0(1)n + 1, are given. For f € W2(Az) and a regulating parameter
a > 0 let us define the functional

n4I*

b
™) () =a [ @+ Y wff (@) - m
a i=0 "

The first part of Jo(f) measures the “mean curvature” of f(z) balanced by the pa-
rameter «, the second part the least squares deviation of f’(z;) from m;, weighted
by the parameters w;. The function minimizing Jo(f) will represent a certain com-
promise between straightness and least squares approximation of m;, balanced by
the parameters o, w;.

Theorem 3. Let a set of knots (Az) and parameters o, m;, w; > 0,1 = 0(1)n+1
be given.

Then the functional Jo(f) attains its minimum on W#(Az) for some quadratic
spline s € (2, Az).

Proof. Suppose that Jo(f) is minimized on W2(Az) by some g € W2(Axz);
let us denote g} = g'(x:). Then for each s € (2, Az) with s'(z;) = g} we have

n+1 n+1

S = Z wi(gl’. - 1ni)2 = Z w,:[s'(:c,-) - mi]z.
i=0 i=0

The second part of J2(f) thus takes for g, s the same value S. However, according
to (6) and Theorem 2,

b b
/ [s"(z))*de / [¢"(2)]?dz for any g € W2 (Axz).
a a
This implies J2(s) < J2(9) and proves the theorem. a
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Definition 2. A spline s € (2, Az) minimizing Ja2(f) is called a quadratic
spline smoothing the given first derivatives on (Az).

Remark. When the parameters a, w; are not prescribed, we can choose them
to achieve some other appropriate properties of s(z).

5. COMPUTATION OF THE PARAMETERS OF THE SMOOTHING SPLINE

Given a knot mesh (Az), numbers m;, w; > 0, i = 0(1)n + 1, and a > 0, let
us denote by s; = s(z;), si = §'(xi), i = 0(1)n + 1 the parameters of the spline
s € &(2, Azr) which minimizes J2(f). The parameters s;, s are coupled together by
the relations (3); s(z) can be then described using the representation (2). For the
second derivative we have

" 3:’+1 - s; "
(8) s'(z) = — T =S for z € (zi, Tit1).
1
Denote s’ = [sg, ..., s;“]T; then we can write
b n+1
Ia(s) = [ [Pz + Y wi(sh - o) =
a =0
n Tit1 n+1
(9) =a Z/ [s"(x)])?dz + Z wi(sh —my)? =
i=0 V¥ i=0
n 1 n+1
= O‘E " [siyr — si)* + Z wi[s — m;)? = F(s").
i=0 i=0
Necessary conditions for s’ to minimize F(s’) are
oF —2a(s) — sp)
1 —_ == 7 r_ =
(10) [336] T + 2wo(sy — mo) = 0,
oF —20(s} 41 — 5%) | 20(sp — s_y) /
—_— = — = k=
[63;] he + e + 2wi(sy, — mg) =0, 1(1)n,
oF 2a(s), 11 — 8y) ,
[63;“] - hn + 2wn41(sh 41 — Mnt1) = 0.
Rearranging them, we obtain a tridiagonal system of equations (with p; = 7?—,
i

i =0(1)n)

[wo + po)so — pos) = wemo
(11)  —=pr-18k_1 + [wr + (Pr—1 + )]sk — xSk = wpmi, k= 1(1)n,

/
—Pnsp + (Pn + Wnt1)8p41 = Wny1Mny1
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for the unknown values s}, i = 0(1)n + 1., The matrix of this system is diagonally
dominant and thus regular.

Theorem 4. Given a knot set (Az), numbers m;, w; > 0, i = 0(1)n + 1, and
a > 0, then there exists a unique solution s’ of the system (11). Choosing one index
k€ {0,...,n+ 1} and a number sy = s(xy) arbitrarily, we can uniquely determine
the values sj, j # k using the recurrence relation (3).

The corresponding smoothing spline s € (2, Az) can be then written in the
form (2).

Remark 1. The value of Jy(s) depends also on the chosen value of & > 0. If
this value is not prescribed, we can search for its optimal value via the minimization
of J; using known minimization algorithms.

Remark 2. It can be seen from the coefficients of the system (11) that with
a — 0+ the smoothing spline tends to be the spline interpolating the values of the
derivatives m; (e.g. s’(z;) — m;); with @ — oo the spline s(z) tends to the straight

line with
n+1 _1 n41

si = const = ( E w,-) E w;m;
i=0 =0

(the weighted arithmetic mean). This follows from (11) [when we sum all equations]
and from the fact of minimization of the functional Jy(s).

Remark 3. It is possible to place the regulating parameter « into the second
part of the functional. When we define (as some authors do) the functional

b n+1
s(h = [ @Pd+ay wlf (@) - m
a 1=0
then in the same way as before we obtain for the parameters s; of the minimizing
spline a system of equations

1
h;’
(12) —Pr—15k_1 + (Pk—1 + P + qwg)s) — pksﬂwl = awgmg, k= 1(1)n,

! /
(Po + awo)sy — pos| = awemg, pi =

’ /
—pnsy, + (Pn + QW g1)8), 1) = QWngp1 Mg
The two limiting cases from Remark 2 will interchange their places now.

De Boor in [2] uses (more suitably from the computational point of view, when
we want to minimize Jz with respect to a) the regualating parameter o in the form
of a convex combination

n+1

b
Ja(f) = a/ [f"(2)dz + (1 = @) Z wi[f'(x5) — mg)2.

1=0
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In that case the system for the required parameters s reads

63
h;’
—Pk-15k—1 + [Pe—1 + pr + (1 = @)wk]s}, — pesiyy = (1 — a)wgmy, k= 1(1)n,

—Pnsp + [Pn + (1 = 0)wnia]syiy = (1 = Q)wny1mngr.

(13) [po + (1 — a)wo]sy — p03’1 = (1 - a)wemg, pi=

Example 2. For the data (z;, m;) from Example 1 with weighting coefficients

w; = 1 and a = 0, 2, 20, 10° the corresponding smoothing splines are plotted in
Fig. 2.

Y

Fig. 2
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Souhrn
KVADRATICKE SPLAINY VYHLAZUJ{CI PRVN DERIVACE
Jiti KoBza
V préci je dokdzina jistd extremalni vlastnost kvadratickych splajnii interpolujicich
zadané hodnoty prvnich derivaci (Véta 1). Pak je definovan splajn vyhlazujici zadané hod-

noty derivaci pomoci funkcionalu Ja(f) s parametrem o a vahovymi koeficienty w; (Véta 3,
Definice 2). Je odvozen algoritmus vypo&tu parametri vyhlazujiciho splajnu (Véta 4).
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