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ON THE NUMERICAL SOLUTION
OF AXISYMMETRIC DOMAIN OPTIMIZATION PROBLEMS

IVAN HLAVACEK, RAINO MAKINEN
(Received January 12, 1990)
Summary. An axisymmetric second order elliptic problem with mixed boundary conditions
is considered. A part of the boundary has to be found so as to minimize one of four types of cost

functionals. The numerical realization is presented in detail. The convergence of piecewise linear
approximations is proved. Several numerical examples are given.

Keyvwords: shape optimization, axisymmetric elliptic problems, finite elements.

AMS Subject class: 65N99, 65N30, 490A22.

INTRODUCTION

One often meets elliptic problems in three-dimensional domains Q which are
generated by the rotation of a bounded plane domain D around an axis. Then the
most suitable approach is to use the cylindrical coordinates. If the data of the problem
are axisymmetric, the problem is then reduced to the two-dimensional domain D.

Let a part I of the boundary 0D be optimized. In this work we present the numerical
realization of the problem, which was given by Hlavacek in [5]. However, some
changes in the set of admissible boundaries were made which were suggested by the
numerical experiments done by the second author. Therefore the proofs of those
results in [5] which need modification, are presented in a revised form.

1. THE STATE PROBLEM

We shall consider a class of admissible domains D(x), where
D(a) ={(r,2) |0 < r <ofz), 0 <z <1}

and the function o(z) — the design variable — belongs to the following set of ad-
missible functions

Uyg = {cxe COH[0,1]) | 0 < ttpyin < o(2) S e |2(2)] £ €,

1
lo"(z)] < €, ae. in (0, 1), f a?dz = C3}

0
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with given positive constants p, %may C1, Ca, Cy. Here CV°'([0, 1]) denotes the
space of functions with Lipschitz-continuous derivatives.

Lemma 1.1. U, is compact in C([0, 1]).
Proof. See the proof of Lemma 2 in [4] with a slight modification.
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Figure 1.1
Corollary 1.1. U,y is compact in C([0, 1]).

Proof. Proof follows immediately, since «, — « in C(")([0, 1]) implies that o, — «
in C([0, 1]).

Let I'(x) denote the graph of the function «,
ry=d(a)n{z=0}, I'y=0aD&)n{z=1}.

We shall consider the following boundary value problem

3
-y _Q(Ai(x)a_“) =F in Q),
i=1 3xi axi
. 3
(1.1) ZA" givi =G on Sl(a)u S(x),
i=1 6xi
l u=0 on Sz(“)’

where Q(«) is generated by rotation of D(«) around the x;-axis, S,(«) by rotation
of I'(a), i = 1,2 and S(«) by rotation of I'(x), (see Figure 1.1), v; are components
of the unit outward normal with respect to 0Q(a).

Let Q be the cylindrical domain generated by rotation of the rectangle D =
=(0,0) x (0,1), 6 > oty
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Assume that the function F in (1.1) is determined as the restriction to Q(x) of an
axisymmetric function F € I*(9),

G = 0 on S(x)
|Gy on S(a),

where G, is determined as the restriction to S;(«) of an axisymmetric function
G, eI¥(S,), S, = 00 n {x; = 0}.

Assume that the coefficients A; are restrictions to Q(x) of axisymmetric functions
A;e L*(Q). A, = A, a.e. and a positive constant a, exists such that
(1.2) Afx) 2 a, ae. in Q.
Let us denote A; = 4, = a,, A3 = a,.

Passing to the cylindrical coordinate system, we transform the standard variational
formulation of the problem (1.1) to the following state problem:
(1.3) fFind yeV(D(x)) such that

’ la(e; y, v) = L{o;v) Vve V(D(x)),
where

V(D(a)) = {ve W) (D(x))|yv =0 on I,(«)},
a(o; y, v) = J <a oy Ju +a Qﬁ;) rdrdz,
D(a)

r}7r or Foz 0z
L{o; v) = fordrdz + f gyvr ds
D(a) Iy(a)

and where the functions feL, (D) and geL,,([,). 'y = D {z =0}, are
given. Here W, ,(D) denotes the weighted Sobolev space, with the following norm

2 2 1/2
“u”n,D = (j l:uz + (—?) + (ig) :l rdrdz) 5
D r 0z

y: Wy (D) = L, (') is the trace mapping. Finally, a,, a. € L*(D),
(1.4) a(r,z)z ay, afr,z)=a, ae. in D.

Remark 1.1. The variational formulation (1.3) corresponds with the following
“classical one™:

YO (N2 (a2 = F in D),
r or or 0z 0z

a,ngrﬁ»azgvz:O on I'(a),
(1.5) or oz :
arQ v, + azé)‘) V. =g on Fl(OC),
or 0z

y=0 on Iy(a).
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Next we shall show that the solution of the problem (1.3) depends continuously
on the design variable «. To do this we shall construct an extension Eu e W, (D)
of the function u € V(D(x)) as follows:

(1.6) Eu(r, ) z{z(za(z) —r2) on g(;)b(a)’

Proposition 1.1. Assume that a sequence {a,} - 1, @, € Uy, converges to a function «
in C([0, 1]). Then
Ey(o,)|pwy = () (weakly) in W, (D(x)),
where y(a) is the solution of the state problem (1.3) on D(«).
Proof. See [5] pp. 221 —223.

2. SETTING OF DOMAIN OPTIMIZATION PROBLEMS
AND THE EXISTENCE OF OPTIMAL SOLUTIONS

We shall consider the following four types of the cost functional:

n

Jile,y)y =1 (v — y)?rdrdz,
J D(a)

rl

Jale, ) =1 (v(of2), 2) = p,)? dz,

JO

Ja(o, y) = ale; . y),

f Ov 2 P 2
_i4(0€, _V) = a, @ _ Kl> +{a, 9y _ K, rdrdz,
o D(a) 0" aZ

where y(x(z), z) = yy denotes the trace of y on the curve I'(x), v € L, (D). v, €
e IX([0, 1]) and K; e L, (D), i = 1, 2 are given functions.
We define the Domain Optimization Problems:
p Find o*eU, such that
(P:) e, y(@) £ i 9(@) Vae U, ief{l,2,3,4),
where y(x) denotes the solution of the state problem (1.3).
To be able to prove the existence of an optimal «* we need the following

Proposition 2.1. Let the assumptions of Proposition 1.1 be satisfied. Then
lim ji(o,, ¥(2,)) = jiot, ¥(2)), i=1,2,3

n— o

lim inf j,(a,, y(a,)) = Jala, y(@)).

n— oo

Proof. See [5].
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Theorem 2.1. There exists at least one solution of the problem (P,), i e {1, 2, 3, 4}.
Proof. Let {,}, %, € U4, be a minimizing sequence of j(x, y(x)), i € {1,2,3,4},i.e.

(2.1) lim j (o, ¥(2,)) = infj(a, y(«)) .

n—w aelzq

By the Corolldry 1.1 the set U,q is compact in C([0, 1]). Hence there exist a sub-
sequence {o, } < {a,} and o* € U,4 such that

lima, —o* in C([0, 1]).

ny
k= o

Then Proposition 2.1 and (2.1) imply that
Jile*, y(@*) llm mfj (% ¥(a,)) = infj (o, p()) .

aeUaqa

Consequently, at «* a minimum is attained. Q.E.D.

3. APPROXIMATION BY FINITE ELEMENTS

In the present Section we propose an approximate solution of the domain opti-
mization problems (P;), i € {1, 2, 3}, making use of piecewise linear design variable
and linear triangular finite elements for solving the state problem. In the case i = 4,
it is more suitable to use dual variational formulation for the state problem. For the
dual approach we refer to the paper [7].

Let N be a positive integer and h = 1/N. We denote by 4;, j = 1,2,.... N, the
subintervals [(j — 1) h, jh] and introduce the set

Ul = {1,, & COM([0, 1) [0 < tppn < () S e -
fx"ldj € PI(Aj) V4;, j=1,2, .., N

1
lallll é C]! léi,zahl é Cz, J‘ a: dz = C3}’
0

where C°"}([0, 1]) denotes the set of Lipschitz-functions, P,(4;) is the set of linear
functions defined on Aj and 87, denotes the second difference

Spou(jh) = [%((J + 1) h) = 2e4(jh) + %((j — 1) h)],

j=1,2..,N—1.

Let D, = D(,) denote the domain bounded by the graph I', = I'(%,) of the
function o, € U’,. The polygonal domain D, will be carved into triangles by the
following way. We choose a, € (0, ;) and introduce a uniform triangulation of
the rectangle Z = [0, o] x [0, 1], independent of a,, if h is fixed.
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In the remaining part D, \ Z let the nodal points divide the segments [, 2,(jh)],
j=0,1,2,...,N, into M equal segments (see Figure 3.1), where

M =1 + [(opae — ) N]

and the brackets [ ] denote the integer part of the number inside. Consequently, we
obtain a strongly regular family {7 ,(«,)}, h = 0, «, € Ul of triangulations (cf. [5]).

RER

i
1
i
I
1
1
'
'
1
1
|

% Cmin max

R

Figure 3.1

Let us consider the standard space V, of linear finite elements
V,, = {v,€ C(D,) 0 V(D,) |vy|r € Py(T) VT e T y(w,)} .
We define the approximate state problem:

Find y, = (o) €V, such that
(3.1) .
aloy; vy 0y) = Ly(ayi v,) Vo, e V.

Here L,(o,; v,) denotes a suitable approximation of L{x,; v,). For instance, let us
define

(3.2) Y [fron)eery meas (T) + Y [gro,]eq, meas (1),

TeJ n(an) IeT n(an)

where G(T) denotes the center of gravity of the triangle T and G(I) the midpoint
of the interval I = T~ I'\(«). Henceforth we shall assume that

(3.3) feH'(D)n C(D)., r*D’feIXD) for |p|=2,
(34) g is piecewise from C?.

One can show, see [S] — Lemma 9, that for any «, € U}, the problem (3.1) has a
unique solution.
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Proposition 3.1. Let (3.3), (3.4) hold. Assume that {o,}, h — 0, is a sequence
of w, € Ul converging to o in C([0, 1]). Then

51_{1(1) j,-(oc,,, y,,(oc;.)) = ji(a, Y(“))

holds for ie {1, 2, 3}.
Proof. See [5].

Lemma 3.1. For any o€ U,y there exists a sequence {0}, h — 0, o, € Uly, such
that w, — o in C([0, 1]).

Proof. We use some results of [ 5]. Since our new set U4 is contained in the set U2,
defined in [5] — p. 214, Lemma A.1 of [5] yields that for any « € U,q there exists
a sequence {0}, h — 0, o, € Uy, such that o, — o in C([0, 1]), where

Usd = {a e Uxg| a)4, € Py(4)) ¥ j} .

Consequently, it would be sufficient to prove that the sequence {«,} from Lemma
A.1 satisfies also the condition for the second difference.
We may write (see point 2° of the Proof of Lemma A.1 in [5] — p. 240}

b “h(zj) = 5/? .Bh(zj) =
1 \ ,
= [Bu(zj+1) — 2 Bz)) + Bulzj-1)], j=1,2,...N—1,
where z; = jh. Recalling the definition of B, (see [1] — Proof of Lemma 7.1) we have

1 zj+(h/2)
(35 Bz) = _J Bz)dz, j=0.1,...N = 1/h

zj=(h/2)
where f = Z,0.
In order that f3, can be defined also for j = 0 andj = N, we extend f to the interval
(=& 1 + &), ¢ > 0 in the “antisymmetric” way, i.e.

B(z) — B0) = ~[B(—=2) = B(O)], ze(-=0)

and similarly in the interval z e (1, 1 + ¢).
Consequently, we may write

1| [zt m
(3.6) 93 oz)| = - j [8(z + h) — 28(z) + B(z — h)]de] .

;= (h/2)
j=1,2,..,N—-1.

Using the Taylor’s expansion

Bz + h) = B(z) + h B(z) + J.Zihﬁ"(t) (z+ h—1)de,

ze€e ﬁ, 1—-£z
2 2
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we obtain

(3.7 |B(z + h) — 2 B(z) + B(z — h)| <

< rhlﬂ'/(t)l(z +h—1)di+ f 8] (1 = = + ) dt < C,h?

z z—h

since

IIA

Iﬁ”(t)l = ](ZM“)" (t)] (1 - u) l“”(t)l =G,

te —-lf,l.—kﬁ , Vh < 2¢.
2 2

Note that in the proof of Lemma A.1 of [ 5] one can choose the constant parameter
k = 1. In fact, k = 1 is compatible with both (A.11) and (A.18). The latter assertion
follows from the fact that

1 1
S?=j Jodz >J yadz=J yodz +J yo dz
0 0 I+ 1=

which implies

—I yo dz >f yaudz — S7.
I- I+

Therefore we have again
Zyo=2Z,0eCP M ([—e, 1 +¢]) forsome &> 0

and the second derivative (Z,,2)” exists almost everywhere in [ —¢, [ + ¢].
Now inserting from (3.7) into (3.6), we arrive at

(3.8) |67 a(z))] < Coy j=1,2,..,N —1.
Q.E.D.

Lemma 3.2. Let {0}, h — 0, be a sequence of o, € UL, such that o, — o in C([0, 1]).
Then o € U,q.

Proof. Let us define function y, e C'*"'([0, 1]) by

oc,’,(l—ﬁ), :gl—ﬁ
y,,(z)= 2 2

piecewise linear interpolate of points

h h h h
jih +—, o, (jh+-)), j=0..,N—1, —<z<1l-—-.
(J 2 '<j 2)) ! 2 2




Now 7, € E,q Vh, where E,y = {e C®'([0,1])|-C, S B S C,, |B| £ C, ae.
in (0, 1)}. As E,q4 is compact in C([0, 1]) we can find a subsequence {y, } such that
m, = 7 in C([0,1]) and |y(z,) — y(z2)| £ Calzy — z,| ¥z, 2, € [0, 1]. From this
and the inequality

C
Yh y(z) - ?2

’ C .
h < oy(z) < yiz) + 7211 a.e. in (0, 1)
we obtain the convergence of the corresponding subsequence «, — y in L*(0, 1).
For this subsequence we have

J‘-y(r) dr = I lim o, (1) dt = lim J—a;m(t) dt = lima, (z) = «(z).
P hn =0 =0
Thus 3 = o’ e C-'([0, 1]).

Finally we have |o'(z,) — «(z,)| = [7(z)) = »(z.)| £ Cy|zy — 25| Vz,, 2, € (0, 1).
Consequently, o € U,4 holds. Q.E.D.

For a fixed parameter h, we define the Approximate Domain Optimization
Problems:
(P,i) {Find af € U", such that
" Jilors yalo)) < Jilews ya(ew)) Vo € Upy s
where i € {1, 2,3} and y,(a,) is the solution of the approximate state problem (3.1).
The existence of at least one optimal solution of (P,;) follows easily (cf. [S] — p. 238).

Theorem 2. Let the assumptions (3.3), (3.4) hold. Let {a,}, h — 0, be a sequence
of solutions of the Approximation Domain Optimization Problem (Py;), i € {1, 2, 3}.
Then a subsequence {a, } < {o,} exists such that

(3.9) a,, = o* in C([0,1]),
(3.10) Eyy, b = ¥(@*) (weakly) in Wy ,(D(a*)),

where o* is a solution of the Domain Optimization Problem (P;), Ey, are the
solutions y, (w, ), extended according to the formula

(3.11) Ey(r,z) = y(2a(z) — r, z),

y(a*) is the solution of the state problem (1.3) on D(a*).
The limit of any uniformly convergent subsequence of {ah} represents a solution
of (P;) and an analogue of (3.10) holds.

Proof. Since U,q is compact in C([0, 1]), a subsequence {a, } = {o,} exists such
that (3.9) holds. By Lemma 3.2 a* € U,,.

Let 2 € U,4 be given. By virtue of Lemma 3.1 there exists a sequence {f,}, B, € Uly,
such that §, —» « in C([0, 1]).

292



We have

J i(“h,,.a )’h,,,) =j i(ﬂh,,,s yh.,,(ﬂh.,,)) Vh,,

by definition.
Passing to the limit with h,, — 0 and using Proposition 3.1 on both sides, we obtain

Jile*, y(@*)) < (o y(«) -

Consequently, a* is a solution of the problem (P;).
The convergence (3.10) follows from Proposition 3 in [5]. The rest of the Theorem
is obvious. Q.E.D.

4. NUMERICAL REALIZATION

4.1. Formulation of the equivalent mathematical programming problem. We now
express our Domain Optimization Problem (P,;), ie{l,2,3} for fixed h > 0 in
matrix notation.

Let us denote

X = (xg, Xy, ooy Xy) " = (0(0), (), ..., oy (NR))T € RN+
the r-coordinate vector of the design nodes
(ay(jh), jh) j=0,1,...,N.

For fixed h the approximate solution y,(a,) is given by the vector of nodal values
q = q(x), which is the solution of the linear system of equations

(4.1) K(x) q = f(x).

K(x) is the stiffness matrix of our problem and f(x) is the vector arising from the
discretization of L(o; v) in (1.3).

Consequently, the problem (P,;) expressed in algebraic form is equivalent to the
following mathematical programming problem

(420) {Find x*e U such that

Ji(x*, q(x*)) < Ji(x, q(x)) VxeU,

where q(x) solves (4.1) and U denotes the set of admissible design vectors given by

X; S Omaxs> J=0,1,..,N;

U= {x e R o,

—Ch € xjuy —x; S Ch, j=0,1,..,N —1;
—Coh® S xj45 — 2X;4, + X; S Coh?, j=0,1,..,N —2;

h 2 2 N 2
—2-(X0+XN)+thj=C3
j=1
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Remark 4.1. In the above definition of U the integral constraint [, ap dz is
approximated by means of the trapezoidal rule. As a7 is piecewise quadratic, an
exact evaluation of the integral is also possible.

4.2. Sensitivity analysis. In order to utilize efficient numerical optimization
algorithms in solving (4.2i), we need an efficient method for evaluating the gradient
V. Ji(x).

Lemma 4.1. Let p denote the solution of the adjoint state problem
(4.3) K(x)p =V, Ji(x, q).
Then the gradient of the cost functional with respect to x is given by
(44) ViJi(x. 4(x)) = V.Ji(x, q) + p*(V.f(x) — V.K(x) q) .

Proof. Differentiating J,(x, q) with respect to x; we obtain

(4.5) aJ(x, q(x)) _ aJi(x, q) + (V,J(x, q))rﬂ .
0x; i 0x;
As K(x) and f(x) are smooth functions of x we may differentiate (4.1) implicitly
to obtain

(4.6) aK(x) q+ () (G S

Xj axi

Using (4.3) and (4.6) we may write

@) (I @) 2 = (K p) 22— pTK(x) L~
_ pr () _ 0K(x) )
P ( 0x; 0x; 1)
Substituting from (4.7) into (4.5), we arrive at (4.4). Q.E.D.

The components of the stiffness matrix and the force vector are given by
ki; = a,awi?-q—l)—j+aza—(p~"% rdrdz
D) or or 0z 0z

fi= fo;rdrdz +J‘ go;rdrdz,
I'i(a)

D(a)

and

where ¢;, j = 1,..., M = dim V,, are the basis functions of V.
To compute 8f(x)/0x; and IK(x)[0x; we utilize the isoparametric element technique.
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We assume for simplicity that g = 0 and a,, a, are constants. Let
AD L

X, = [r® @
#3) 53

denote the matrix of nodal coordinates of an element 7. Then the element stiffness
matrix and force vector corresponding with T are given by

Kp = J' BTABr|J| do d¢
T
and

fr = j Nr)J| do dz .
T

Here T denotes the reference element, N and B contain the values of the elements
basis functions and their derivatives respectively,

a, 0
A=\|"
(0 a,) ’

and |J] is the Jacobian determinant of the isoparametric mapping T — T: (o, {) +>
— (r(e, ¢), z(o, {)) which is defined by the element basis functions

3
r(g, C) = Z:lmj(ga C) ’.(j) )

3
D) = T 00 1) 2.

Employing quadrature formula with quadrature points (g, {;) € Tand weights W,,
k=1,...,0 we have

Q
K =kZl mBkTAkBk"k“kl
and

Q
fT =k=21 Vka(rk’ Zk) Nk"k“kl .

Here the subscript k denotes the evaluation at the k:th integration point. In what
follows we denote ()’ = 8/ox; ().

Lemma 4.2. We have
B, = —B.X;B,

’
T
Zi

Il

(X2)" N,
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Proof. See [2] and [8].
The following Lemma completes our sensitivity analysis:

Lemma 4.3. The derivatives of the element stiffness matrix and the force vector
are given by

Kr = kZ W (BT AkBk"k“kl + BkTAkB;J‘kUkI +

+ BIAB )| + BIAB L]
and

d
fr = Z Wi [(ﬁ‘ re + ﬁ ZI’c) Nkrk“kl + .kak"l:Uk[ + kakrkUk],] .
x or 0z

Remark 4.2. The sensitivity analysis above is in fact valid for all isoparametric
Lagrangian finite elements (with obvious modifications). As in usual the stiffness
matrix and force vector are formed by summing element contributions, it is natural
to use the same element by element technique when computing (4.4).

Example 4.1. In the case i = 1 we have
J1(x, q(x)) = (q(x) — 90)" M(x) (q(x) - 9o) .

where M(x) is the “mass™ matrix and q, is a vector of nodal values of the function y,.
The gradient V J,(x, q(x)) is given by

V.Ji(x, 9(x)) = (q(x) — 90)" V.M(x) (q(x) — qo) +
+ P1(Vuf(x) — V.K(x) q(x)),
where p solves
K(x) p = 2 M(x) (4(x) — qo)
Example 4.2. In the case i = 3 we have .
T3(x, 9(x)) = q(x)" K(x) q(x) .
The gradient V J;(x, q(x)) is given by
V.J3(x, q(x)) = 2 q(x)" V. f(x) — q(x)" V.K(x) q(x) .
In this case no adjoint state problem needs to be solved numerically, since
V., Ji(x, q(x) = 2 K(x) q(x)
resulting p = 2 q(x).
5. NUMERICAL EXAMPLES
In this section we present numerical results of several test cases. Iﬁ optimization
we have used Sequential Quadratic Programming algorithm E04VCF from NAG-
library. EO4VCF is essentially the code NPSOL due to Gill et al. (see [3]). The state
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problem (4.1) and the adjoint problem (4.3) were solved iteratively using precon-
ditioned conjugate gradient method. All computations were done in double precision
using VAX 8650 computer.

Example 5.1. In this example we study the convergence of the approximate
solution o, as h — 0. We relax the cpnstraint for the second difference, so the

situation here corresponds with the theory presented in [5]. Here f = 0,q, = a, = |
and

{1, for 0<r<1/2
9=, for 12<r<s.

We choose o, = 06, ., = 1-2, C, = 15 and C; = 1. The results for h = 1/8,

-
h = 1/16 and h = 1/32 are presented in Table 5.1 and Figures 5.1 —5.3 respectively.

In all cases the initial value of the unknown boundary was chosen to be o” = I.

Table 5.1

h SQP-iter. (o) Ja(og) CPU-sec.
1/8 17 24499 x 1072 2439 x 1072 8-8
1/16 21 2543 x 1072 2493 x 1072 52
1/32 11 2:555 x 1072 2:508 x 1072 105

J

/

H

G\,

F

E

D\

C

—

A — 0-450E -+ 00, B — 0-400E - 00, C — 0-350E + 00, D — 0-300E -+ 00, E — 0-250E 4 00,
F — 0-200E + 00, G — 0-150E + 00, H — 0:100E 4 00, I— 0-500E — 01, J — 0-C00E +- 00

Figure 5.1 (h= 1/8)

Example 5.2. In this example we study the effects of regularizing the approximate
boundary in the case i = 3.

We choose h = 1/16, ayn = 06, oy = 12, C; = 2, C3 = 1 and off” =1 ds the
initial guess. The initial cost equals to 2:54 x 1072 In Table 5.2 C, = + oo means
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that no restrictions were set on the second difference, C, = 0 means that an additional
constraint

Xp=4(xjo1 + x;m0), J=13,5N -1

was posed. The latter has the meaning of reducing the number of degrees of freedom

of a, to maintain stability. Note that this is also consistent with the theory in [5]
as a, 1s still piecewise linear.

~

bmmb/m‘n S I

A — (-450E -+ 00, B — 0-400E 4 00, C — 0-350E + 00, D — 0-300E -+ 00, £ — 0-250E + 00,
F— 0-200E - 00, G — 0-150E -+ 00, H — 0-100E + 00, I — 0-500E — 01, J — 0-000E +- 00

Figure 5.2 (h= 1/16)

~

»TOTM M © T

A — 0-450E +- 00, B — 0-400E + 00, C — 0-350E 4+ 00, D — 0-300E + 00, E — 0-250E + 00,
F — 0-200E + 00, G — 0-150E + 00, H — 0-100E + 00, I— 0:500E — 01, J — 0-000E + 00

Figure 5.3 (h= 1/32)
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The results are plotted in Figures 5.4—5.6.

Table 5.2
C, SQP-Iter. Ja(o) CPU-sec.
+ o 11 2:489 x 1072 30
0 6 2:492 x 1072 2
5 5 2:495 x 1072 16
J—
e
\
H
G
F
E
D
c
B\
Ap— T

A — 0-450E + 00, B — 0-400E -+ 00, C — 0-350E -+ 00, D — 0:300E -+ 00, E — 0-250E - 00,
F — 0-200E + 00, G — 0-150E -+ 00, H — 0-100E + 00, I — 0-500E — 01, J — 0-000E + 00

Figure 5.4 (C, = 4 o)

-~

rOTM M © I

=

A — 0:450E + 00, B — 0-400E + 00, C — 0-350E 4 00, D — 0-300E + 00, E — 0-250E +- 00,
F — 0:200E + 00, G — 0-150E +- 00, H — 0-100E + 00, I — 0-500E — 01, J — 0-000E + 00

Figure 5.5 (C, = 0)
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SN

A — 0-450E ~+ 00, B — 0-400E + 00, C — 0-350E + 00, D — 0-300E -+ 00, £ — 0-250E -+ 00,
F — 0-200E + 00, G — 0-150E 4+ 00, H — 0-100E + 00, I — 0:5CO0E — 01, J — 0-GCOE -+ 00

Figure 5.6 (C, = 5)

rOTM M O T

Example 5.3. In this example we have i = 1 with y, = 0:3, 2,,;, = 0-5, &, = 5,
C, =2,Cy=1,h=1[16 and &, = 1. The initial cost is j,(x"") = 9-317 x 107°.
In Table 5.3 and Figures 5.7—5.9 we see the results of the runs with different regu-
larization parameters C,.

Table 5.3

C, SQP-Iter. Ja(o) CPU-sec.

+ 00 25 1948 x 1073 67
0 19 1960 x 1073 54
5 16 2:007 x 1073 44

M

L

K

J

/

H

G

2

E

D

C

B

A

A4 — 0:600E + 00, B — 0-550E + 00, C — 0-500E 4 00, D — 0-45GE + 00, E — 0-4C0E + 00,
F — 0-350E + 00, G — 0-300E + 00, H — 0-250E + 00, I — 0-200E -~ 00, J — 0-150E -+ 00,
K — 0-100E + 00, L — 0-500E — 01, M — 0-0COE - 00

Figure 5.7 (C = +x)
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PrIOUMM O T -~ &« X~ X

M~

A — 0°600E + 00, B — 0-550E + 00, C — 0-500E 4 00, D — 0-450E +- 00, E — 0-400E -+ 00,
F— 0-350E + 00, G — 0-300E -~ 00, H — 0-250E -+ 00, I — 0-200E -~ 00, J — 0-150E - 00
K — 0-100E + 00, L — 0-500E — 01, M — 0-000E -+ G0

Figure 5.8 (C, = 0)

s

PHZOTMM O T -~ < X~X

——

A — 0-600E -+ 00, B — 0-550E - 00, C — 0-500E + 00, D — 0-450E + G0, E — 0-400E -+ 00,
F — 0-350E 4 00, G — 0-300E -+~ 00, H — 0-250E - 00, I — 0-200E + 00, J — 0-150E -+ 00,
K — 0-100E + 00, L — 0-500E — 01, M — 0-000E + €O

Figure 5.9 (C, = 5)

Example 5.4. In this example i = 2 with y,(z) = 0-2(1 — z). The following
parameter values are fixed: o, = 06, tpe = 12, Cy =1, C; = 1. We vary
parameters h and C,. In Table 5.4 and Figures 5.10—5.13 we see the results of
computations with o{> = 1.
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Table 5.4

h C, SQP-Iter. J2(e?) Ja(oh) CPU-sec.
1/20 + o0 17 1-339 x 1073 3-587 x 107* 130
1/30 + 00 15 1-879 x 107 4-524 x 107* 290
1/10 8 14 7986 x 1074 3242 x 10°* 22
1/20 8 20 1:339 x 107 4-503 x 10™* 137

J

-

T

e
T

5

A — 0-450E + 00, B — 0-400E -- 00, C — 0-350E - 00, D — 0-3CGE -+ G0, E — 0-250E + 00,
F — 0-200E +- 00, G — 0-150E -+ 00, H — 0-10CE + 00, I— 0-5CCE — 01, J — 0-000F -+ 00

Figure 5.10 (h = 1/20, C, = +~)

»rWOTM M O

|

rwogm M o T

A — 0-450E - 00, B — 0-400E + 00, C — 0°350E + 00, D — 0-30CE + 00, E — 0-250E + 00,
F — 0-200E +- 00, G — 0-150E -+ 00, H — 0-100E -+ 00, I— 0-50CE — 01, J— 0-000E + 00

Figure 5.11 (h= 1/30, C, = + =)
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A — 0-450E -+ 00, B — 0-400E -+ 00, C — 0-350E + 00, D — 0-300E - 00, E — 0-250E + 00,
F — 0-200E -~ 00, G — 0-150E + 00, H — 0-100E + 00, I — 0-500E — 01, J — 0-000F 4 00

Figure 5.12 (h = 1/10, C, = §)

~

rTOoOOmmMm © T

A — 0450E -- 00, B — 0-400E -+ 00, C — 0-350E - 00, D — 0-3COE - 00, E — 0-250E + 00,
F — 0-200E - 00, G — 0-150E +- 00, H — 0-100E + 00, I — 0-5CCE — 01, J — 0-000F - 00

Figure 5.13 (h = 1/20, C, = §)

6. CONCLUSIONS

The numerical tests confirm the theory in [5] as we obtain a converging sequence
of solutions {a;}, h — 0. However, from a designer’s wiewpoint the shapes for
large h are not acceptable. Moreover, in practice the use of fine meshes only to
regularize oscillating boundaries is not desired due to larger computing costs.

The regularization procedures proposed in this paper have rigorous mathematical
basis and proved to be efficient in the numerical tests. In almost all cases regularization
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reduced considerably the number of iterations in the optimization routine. The
changes in the optimal cost were not substantial.

It is still recommended to have some flexibility of constraints in the domain op-
timization code. Because it is of great interest to find a least possible value of the
cost, although the corresponding design would be for some reason unacceptable.
One can then continue the optimization by adding more constraints on the regularity
of the boundary and comparing the effect of regularization into the optimal cost.

It is also worth of noting that the optimization problem is generally non-convex.
Thus the computed ““minimum’ may be only a local minimum. Therefore in practice,
it is advised to perform several runs with different initial guesses for the possibility
to find a better solution.

In the case of optimization of an axisymmetric elastic body, the same regularization
procedure has proved to be efficient. For the theoretical study of this problem, see [6].
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Souhrn

NUMERICKE RESENI OPTIMALIZACE TVARU OBLASTI
V OSOVE SYMETRICKYCH ELIPTICKYCH ULOHACH

IvaN HLAVACEK, RAINO MAKINEN

UvaZuje se osové symetricka elipticka uloha druhého fadu s kombinovanymi okrajovymi
podminkami. Je tfeba nalézt ast hranice oblasti tak, aby minimizovala jeden ze Etyf typu ude-
lového funkcionalu. Je uvedena numericka realizace ‘metody koneénych prvku a dukaz konver-
gence po &astech linedrnich aproximaci feSeni.
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