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Summary. A quasilinear noncoupled thermoelastic system is studied both on a threedimensional
bounded domain with a smooth boundary and for a generalized model involving the influence
of supports. Sufficient conditions are derived under which the stresses are bounded and continuous
on the closure of the domain.

Keywords: Quasilinear heat equation, Lamé system, noncontinuous heating regimes, Sobolev
spaces, Fourier transformation, supports, boundedness and continuity of the stresses with respect
to space variables and in time.

AMS classification: 73U05 (35B65, 35M05, 35R05).

0. INTRODUCTION

In [5] we proved the global boundedness and continuity of the thermoelastic
stress for a twodimensional model of a heated body, where the heating equation
was quasilinear with nonlinear boundary value conditions and the linear Lamé
system was considered. The heating regimes could be noncontinuous both in the
space variable and in time (only the monotonicity or bounded variation in time was
assumed). Also the influence of isolated boundary nonsmoothness was studied for
the model.

In the present paper we will extend the results. In Sec. 1 we study the threedimen-
sional case for a body with a sufficiently smooth boundary. We preserve the non-
continuity of the heating regime in time, but at least in one space variable we need
a sufficiently high differentiability. In Sec. 2 we study the influence of the boundary
singularities, particularly at the points of change of the boundary value condition
which describe the influence of the supports of the heated body on the stress.

We recall the origin of the problem being in technical practice — the original
problem has all coefficients in the heat equation temperature-dependent — and
consider a boundary value condition of the Stefan-Boltzmann type. The proved
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boundedness of the stresses indicates the suitability of the model (in the described
situations). The non-existence of the phase transition enables us to transform the
original problem to the following system of partial differential equations, where
we look for the temperature u and the displacement v:

Bu) = Au on 0=(0,7)x @,
(l) ot

M 1) = u) on $=(0.7)x 2, u(0,)=uy=0 on 2
L Ov

(1 —20)Av + Vdive = (2 + 26) Vy(u) on Q foreach te(0,7),
) (1—2)( +((vVv))>+20vdivv=(1+20)y(u)v on 00

for each te(0,7).

We remark that we avoid introducing the “transforming” one-to-one function A
(we transform also T). @ = R" is a bounded domain occupied by the heated body
having the boundary 02, T: S — R is a non-negative heating regime with T(0, -) =
= 0 on 0Q, B is a nondecreasing strictly positive function, i.e. there is a constant
Bo > 0 such that 8 = B, y: R' > R' is a sufficiently smooth function, g: R' - R!
(or g: T x R' - R" in Sec. 2) is nondecreasing with #(0) = 0. The appropriate
requirements concerning the differentiability of #, ¢ will be specified in the correspond-
ing parts of the sections. V denotes the gradient with respect to the space variables,
v the unit outer normal vector (at the points of 0Q), ¢ is a constant from (0, }) (the
Poisson ratio). For a sufficiently smooth function E (the Young modulus of elasticity)
we define the stress tensor

3) 2y = _—5—@‘-)——<( P )(— " §x> +6,20Y ""k)

(2 +20)(1 - 20) X; 0x,

ihj=1,..,N=dimQ,

0 i+j

esi,.=<1

which corresponds to the thermoelastic stress. For a domain M = R™ and a non-
negative vector « € R™ we denote by H*(M) the anisotropic Sobolev space (with
fractional derivatives if there is i for which a; is non-integer) of the Hilbert type
(oci is the order of the square integrable derivative in the i-th direction, i = 1, ..., m).
For the definition cf. [1], [5], ...

i=j
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1. THE THREEDIMENSIONAL CASE WITH LINEAR HEATING EQUATION
AND NONLINEAR BOUNDARY VALUE CONDITION

Under the above mentioned suppositions for 0Q of the class Cy ; and T non-
decreasing in time and bounded, it is possible to prove in the same way as in Thm. 1
of [12] and Prop. 3 of [5] that u € L_(Q) and du/dt € L,(Q). The monotonicity of T
could be replaced by its uniformly (on 02) bounded variation in time. If moreover
Te L,y(0, 7; H(0Q)), « € (0, ), then it is possible to prove as in Prop. 4 of [5]
(using the regularity results for linear elliptic equations) that ue H'*2*%(Q)
(the first number concerns the generalized differentiability in time, the second in the
space variables). Under the supposition of analyticity of § we are able to prove
for a monotone T that u e () Co(0, 7; H' **7(Q)), & = (1 + 2a)?/(14 + 12a). The

&>0

same result can be proved for T with uniformly bounded variation, but for f = S,
a constant. In 3 dimensions, however, such result does not yield continuity of u on
Q even for « = 1/2 for which &@(«) = 1/5. The proof of continuity of u via the imbedd-
ing theorem has the main role in the proof of continuity and boundedness of the
stress.

We recall the variational formulation of (1), where on (— o0, 0) we can suppose
u=0,T=0,

to to to
(4) J’ jﬂ(u)%wdxdt+J' JVqudxdt+f J gu)wdx dt =
—od 2 ot —0Jd 2 2]

-0

to
=J‘ AT)ywdxdt, t, <7, weH'(Q).
To obtain the required regularity of the stress tensor, we have to prove higher regula-
rity of u. There is small hope of obtaining better regularity in time and therefore
it is difficult to improve the regularity in the normal direction to the boundary if the
noncontinuity of T in time is supposed. Therefore it seems that the only reserve is
in the tangential directions of the space variables, which naturally needs higher
space differentiability of ¢(T). In the proof we will employ the method of shifts
in arguments and higher order differences. Therefore we suppose that f = f,,
a positive constant. Sup T will be denoted by B which is also the upper bound
N

for u being, of course, non-negative.

In the rest of the section we suppose sufficient smoothness of dQ and y. For the
proof of better tangential regularity we again employ the technique of the local
straightening of the boundary. Let x, € 02 be arbitrary. We suppose that x, = 0
and in a neighbourhood % of x,, 02 is described by a sufficiently smooth function
¢: R* > R! such that ¢(0) = 0, Vo(0) = 0 and @ n % = {x € R*; X3 > ¢(x,, x,)}.
Such a situation can be ensured by a suitable rotation and shift of the coordinate
system. The local straightening of the coordinates has the form [xi, x,, x3] —
— [X4, X2, X3 — @(xy, x,)]. Extending T onto (7, +) x Q by T(t, x)=
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= o(t) T(7, x), t > T, where w: R' - <0, 1) is a C,-smooth function such that
o((— 0, 47)) = {1}, o((57, + ®©)) = {0} and ©' < 0 on R' and using g, € C,(R")
such that go((—o0,27)) = {1}, 0o((37, +©)) = {0} and gy < 0 on R' we can
extend (4) for particular test functions to t € R'. Let By(x,) be the 5-ball with the
center x, such that § < 1/3 dist (x,, R* \ %) and |V¢| < &, for a given small &, > 0,
let g e R, (a sufficiently smooth partition of unity on Q with sufficiently small
diameters of supports — cf. [4]) such that g(x,) =% 0. After the straightening of the
boundary (4) will be transformed for w = 0%, ¢ = 0,8, w € H'(Q) into the equality

to
() f f Bo Ou 0%w + (Vu,Volw); +
~wJR2x(0,8) Ot
‘ o
+ B(u, 0*w) dx dt + f f () % dx dt =
R2J -0

to
= f j‘ y(T) 0%wJdxdt, ty,eR,
—wd R2

where the perturbation form # emerging from the straightening of the boundary
has small coefficients (its magnitude depends on &,) and

(e x2) = \/(1 +'_:zl (gi;’- (x, x2)>2> .

Denoting by (5)_, the shifted equality (5) in the direction h e R* x {0} we take
(5)-2n — 2(5)-n + (5) and put e = wo_), = cc_,, = ¢* Abu, where

(6) Af E,-EZO(_ 1y (f) f-=pn-

The resulting equality will be multiplied by |2|~272% « > 1, and integrated over R?.
We obtain an equality which we denote without writing as (7).

From (7) the natural energy-type estimate will be derived. On the left-hand side
of the equality we have the terms to be estimated, namely

(8) f Ih] 222 f (VALou)? dx dt dh +
R3%(0,3)
+ sup——f |n|~2~ 2“‘[ (Ahou)? (1, x) dx dh .
teR! R2x(0,8)

The other terms will be estimated on the right hand side. To do it, we exploit the
fact that

| o
O eatw-aiion - % (}) Mo,

the Lipschitz continuity of ¢, g, J, of the coefficients of the form £ and of the first
derivatives of all the functions mentioned. In this way we are able to estimate all
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the remaining volume integral terms by means of |u]|,;:.2(Q) and with the help of
Hu"Lw(Q, or by means of a strong norm whose finiteness is proved in the steps of the
proof preceding the step just executed. The only problematic terms are the boundary
terms containing nonlinearities. First, we will formulate our results provided G =
= »(T). Thus we must be careful only when estimating the term

(10) F T0s 117272 oo o) (A(2(w))) (A% (ou)) dx dr dh <
= (j.yo Ih!_z_zm Jrsx (03 (A5(ou))* dx dt dh .
S poxroxioy []727235700 (A 0y (w)))? dx dit dh)' 2,
F =supJ,

¢6

gs =<—=06,0)* and a, B, 20 — B, €(0,2).

We remark that in the two-dimensional case we could restrict ourselves to the use
of the first-order differences which together with the monotonicity of 4 enable us
to estimate the term corresponding to (10) on the left hand side of the resulting
inequality. Since the regularization procedure (cf. (15) below) and the trace theorem
(cf. Prop. 2 below or Theorem of [5]) imply '

QU|gsx 0y € Y HEM =G =5(R3 x (0}), weput By =3—¢, ¢>0
>0

can be arbitrarily small. To deal with the second integral on the right-hand side

of (10) we recall the following propositions, where f denotes the Fourier transform
of fand R} = (0, + o0).

Proposition 1.

h 2 '
j f <A".l{/£’?a) dh dx = ey x(@) J 1712 = de,
RN J RN Ihl RN

where N =2 1 and k = 1 are arbitrary integers, o e(O, k) arbitrary and f an arbi-
trary measurable function on R". cy ,(«) does not depend on f. .

Proof. Cf. Lemma 1 of [5], where cy 4(x) are calculated. O

Corollary. For an arbitrary couple f1, f, € H(R"), « > 0, the integers ky, ky,k, |
such that ky, k, > oo > 1 and k3 > a — I, we have

[ (84,10 (A8 £:60) o o

|h|(N/2+a)2

= ex (%) [ (B /(<) (4, () dhdx =

CN,kz(a) RNJ RN (lth/2+¢)2
o el [ VR VA g, g,
ey (@ = 1) Jrv ) m (lth/2+a—[)2 ]
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Proof. We apply Prop. 1 to f;, f, and f, + f, for k,, k, and to V'f,, V'f,,

Vi(fy + f,) fork = kj. a
Proposition 2. (Cf. [1].) Let Q be a domain in RN with asufficiently smooth
boundary 9Q. Let a = [ay, ..., ay] € R with at most one non-integer component

and o = [oy,...,ay] € RY, pe(l, + ). Then D’fe L(Q) if f e HY(Q) and

N
(*) z-i(l—1+a,.)<1.
i=to;\2 p

If (*) holds with 1/p = 0, then D°f € Cy(Q).
The proof for @ = R" follows from the one-dimensional case of Thm. 18.4 of [1]
via Prop. 1 and the mathematical induction in N.

Using Proposition 1, we can see that it suffices to estimate

)= ] (Wl ) 8 (R s i e,

-[i)
0x, 0x,

n > 0 sufficiently small,

because we use the Holder inequality with 1/n for the first and with # for the second
integral on the right-hand side of (10), with # > 0 arbitrarily small. Clearly,

(12) Ai(V(e g(u)) = #/(u-1) Al(e (Vu)) + (Vu) (Al(e #'(w))) + A1 (4(u) Vo) .
The last term in (12) is, of course, unimportant. We have to estimate

(13) ;‘1 const ([, [asx (o (5 ()2 (A% ¥(ou), A% (ou)), [h|~>2*~#0 dx dr dh +

s O . oo [0 () 120 e )

0 < n sufficiently small,
because |A} g'(u)| < sup |9”(»)| |Atu|. The first term in (13) can be estimated for
o« < 3/2 by [ulf. o sup Ig (»)])? . const. As B, can be chosen to equal 3/2 — ¢,

¢ > 0 arbitrarily small the exponent at lh[ in the second integral term in (13) is
greater than —2 for every o < 5/4 and the integral term can be estimated by
4B?||Vu|Z,0.r3) for such «. Thus, for « < 5/4 we can estimate all nonlinear terms.
Since on the left hand side of the energy inequality, we have estimated [gsx (o, -

.|h|72732** (AU, ASU), dx dh dt, where U denotes gou and & > 0 is arbitrarily
small, we have in fact proved that

(14) Uen H'#759422(R3 x (0,9)),
£>0
U/RJX{O) Eﬂ H3/4—-s,7/4-s,7/4——s(R3 % {0}) s
£>0
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where the indices denote the existence of square integrable derivatives of the indicated
fractional orders in time, in the tangetial space variables and in the normal space
va-riable, respectively. The second assertion is a consequence of the inequality

(15) g |1+ 2 ’63|1+£o < A (e, 20, ) (,gslz Iéi|21 4 |€i12+2a)’
i=1,2, e(e) 0 for & N0,

applied to the Fourier transform of U extended to R e.g. by means of the procedure
described in Chapter 1 of [9].

Supposing a sufficient regularity of the input data we will continue the regulariza-
tion procedure. Let Ufgs oy € () HY/*7%3/2%@0=e3/2%a02(R3 » (0}), a, €(0, 1) and

£>0

Uen H"?*os2*w=22(R3 4 (0, )) for the same a,, for every @ € R;. To estimate

£>0

the first (linear) term in (10), we can use the norm of the “new’ space (we put g, =
=3 + a,) ie. of H¥*7o32Fm=a32%a—y(R3 « {0}) with ¢ > O arbitrarily small,
because 7 in (11) is small. Thus we can take B, = 3 + a, — & (¢ > 0 arbitrarily
small) in (10), (11), (13). Applying Prop. 1 and its corollary to (10), we avoid the
necessity of supposing f; < 2. To estimate the first integral in (13) we need only
20 — By ® ay + 3 <%+ ap ie. a; <1+ ay. The second integral in (13) can be
estimated by means of the Holder inequality as follows

(16) (J'M leXZy,sx{o) ]Vulzp Ih[—2+e1 dh dx dt)”" .
(jﬂ §R3x{0) |hl“2 (,vhl_a1+1/2—sz A'{U)(Zp)/(l’—l) dx dh dt)(p_l)/p ’
) > 81 > 0 .

Now, we use Prop. 2 to estimate (16) by the “old” H>/*~%3/2%@=&3/2%do=e(R3 » ((}).
norm, ¢ > 0 arbitrarily’ small. From the estimate of the first term of (16) — to
establish it, we can change if necessary the parameter 4, the maximal diameter of the
support of the partition of unity — we obtain 1/p > (9 — 2a,)/(12 + 4a,). The
estimate of the second term yields a; < ao + 2 — (2/p) (1 + aof3),i.e.a; <% + %a,.
Simultaneously the exponent at |k multiplying A{U in the second integral of (16)
must be greater than —1 (cf. [1]), i.e. a, < $. Repeating the procedure, we obtain
recursively a sequence {4;} as follows

(17) Gy =min(} +4%a,3), d =1%.

As @, = §, @, = 3, after 2 steps and under a sufficient regularity of g(T), we easily
prove that
UG n H1,7/2—e,7/2—£,2(R3 + (0’ 5))’

>0

Ulgs x {0} e N H¥*7=37=37¢(R3 x {0})

>0

for every g € R;.
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From the Holder inequality
(18) [ctreogm= ] < Jof? + ¢, i=1,2,3, &(e)) NO for g N0
and the Cy-imbedding theorem (cf. Prop. 2 or Theorem 1 of [2]), we obtain that

UeN Co(R'; H**~*1"%R? x (0,7)))

>0

for UeH"?****(R® x (0,r)).

Confronting the present result with the result mentioned at the beginning of this
section, we obtain

Ue ) Co(R'; HE#455/5¢ (R2 x (0,8))) for &> .

>0

Proposition 3. If the regularization procedure can be proceed up to 177— + 23,
9o > O arbitrarily small, we obtain the stress tensor T € Co(Q; R?).

Proof. In this case & = 2 + 9. It suffices to prove that ¢ y(u) belongs also to
N Co(0, 75 H'?/7TH8012/7%806/57c = (R2 % (0, §))) for some $; > 0, because then

>0

we can use Prop. 2 of [5] and prove that the first derivatives of the displacement v
have the same properties. Using the continuity of E and Prop. 2 from this section
we arrive at the desired result.

To prove the required regularity of ¢ y(u) we apply the extension technique of [9]
and use (11) for the volume integral (over R? in x and h), the exponent at [h| will
be —2o and the function g4 is replaced by y. We use (12) and arrive at (13) with the
same modification as in (11). For the normal regularity we have a = a — 1 < 4.
The estimate of the first term of the modified formula (13) is easy, for the second
term we use the technique as in (16) in combination with Prop. 2. The estimate of
such a modified expression (16) implies 1/p > 1/6 for the first term, the estimate of
the second term gives a < $(1 — 1/p), i.e. a < . Together with the preceding
estimate we prove the square integrability of all normal derivatives of ¢ y(u) of
the order % — &, ¢ > 0 arbitrary. For the tangential case we have a = a4 — 1 =
=32+ 9;. Weput’? + 9 = 22[1/(1 — k)], k > 0, because 9, > 0, and proceed as
above. The only difficulty is the estimation of the term corresponding to (16). Prop. 2
yields 1/p > (7 — 14k)/(12 — 7k) for its first part, for the second part it gives
a < (2 + 2k)/(L — k). Thus we can easily find 9, > 0 such that the tangential
derivatives of ¢ y(u) of the order —17—2 + 9, are square integrable. O

To obtain the explicit dependence of the continuity of /g on the input data,
we shall carefully estimate the term

(19) frs [h] 7272 (Al 1 F) (Al 41 U) dx dh dt
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for F = ¢ y(T). Due to the corollary of Prop. 1 it suffices to estimate

(20) J |h] 727 2% (At 2F) (Afa+.U) dx dh dt <
RS

< 1 [hl'_z—(sz—l-H:) IA?GH'IFP dx dh dt_C.‘_z'[—“]tl@ +
1o 2,(a1+2(%)

+ ”f |h|=2=Cs+ 10 | AL UJ2 dx dh di ,
R5% (0,r)

g, n > 0 arbitrarily small.

By the trace theorem and Prop. 1 the second term is bounded by
frs+om |1 7272 (Afys 1 VU, Alyyq VU)s dx dh dt,

cf. (15), hence it suffices to assume F with bounded variation in time uniformly
with respect to x € 42 and belonging to L,(0, 7; H*"/'***%(6Q)), 8, > 0 arbitrarily
small. As f{ + 9, < 2, it is sufficient to take the second differences of F on the right
hand side of (20). As the inequality

(21) [5 [rs (A% Vo o(T), A% Vo 4(T)), || 727377 ** dx dh dt < + o0

must hold, we can use (12) for »(T) instead of g(u) and in the end we arrive at the

estimate like (16) with the exponent —i3 — 9, at |h| in the second term, where u

is replaced by T. To obtain its finiteness, we use Prop. 2 as follows

11\ 2/t 1\ 1 2 1
== =)+ -=)+-<l=>—T <=

2 2p) £\2 2p) ¢ £+1 p
o1, 21 11 41

—+-— 4+ - =<1=>f>—,
2p ¢2p (414 14

(22)

where ¢ is the necessary generalized spatial regularity of T. In this way we have
proved the following theorem.

Theorem 1. Let Q be a domain with a C,;,-smooth boundary. Let g from (1) be
C,-smooth, nondecreasing on R, let 4(0) = 0. Let B = B, be a positive constant,
o €(0,%) a constant, let y from (2) be C,-smooth, E from (3) a continuous function,
both on R . Let the heating regime T have a uniformly (for x € 0Q) bounded varia-
tion as a function of time, let, moreover, Te L,y(0, 7 ; H*''**%(3Q)) for some
84 > 0. Then the corresponding stress tensor belongs to Cyo(Q, R®).

Remark. 1. The same result could be reached for T having classical first derivatives
with respect to the space variables, if these derivatives are —;—3 + n-Hoélder continuous
uniformly with respect to t € <0, > for some n > 0.
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2. For T non-continuous in one of the space variables with discontinuities being
of such type that Te () L,(0, 7; H'/>7%T,)) it is still possible to prove ue ) C, .
>0

£>0

(0, 7; H*~%(Q)). For 4(T)e ) H'?*~=12=%9241(8) for some n > 0 and com-
4 >0

pletely linear situation (¢ is linear) it is possible to prove via the described localiza-
tion and imbedding method that u € Cy(Q), € Co(Q; R®). Of course we need the
boundary to be smoother along the variable in which T behaves “smoothly” than
was required in Theorem 1. For nonlinear ¢ the estimate corresponding to(lO),(l.3),
(16), (17) requires the fourth derivatives of composed functions and even a higher
one in the estimate corresponding to (22), and also the use of the imbedding theorem
is much more complicated. We avoid these technicalities.

The requirements concerning the behaviour of T in thc ““bad” spatial direction
can be even weakened, but then we must require much better behaviour in the
second spatial direction. It is small hope to obtain the bounded and continuous
stress tensor if T is essentially discontinuous simultaneously in time and in both
space variables.

2. THE INFLUENCE OF SUPPORTS

In this section we deal with a more general concept of a system (1), (2) for the
two-dimensional model, as we shall study the influence of supports of the heated
body. We suppose 02 = I' = I'y v I',, where I'; is the nonsupported part of I
(with the boundary condition (2)) and I', is the supported one. For the sake of
simplicity we suppose that I', is the union of a finite set of simple, bounded and
smooth curves. I'; U I, = M, will be then a finite set. I' will be smooth with the
exception of M, and an at most finite set M, where the nonsmoothnesses have the
convex character (cf. [5] Sec. 4 or the text before Theorem 3 below). In our situation
it is necessary to suppose (from the point of view of applications) that 4 from (1)
depends also on the space variable. We assume 4(x,0) = 0, xe I, g(x, *) is non-
decreasing for each x e I', 4 is continuously differentable on I'; x R', i = 1,2. At
the points of M, ¢4(-, y) can have different limits with respect to I'; and I',, y € R?,
and need not be continuous there. The assumptions concerning f - its strict positivity,
positivity of its first derivative on B,5(0) = R' and analyticity on the ball B,5(0) =
< Cfor a constant B = 1 — and the continuous differentiability of y will be the same
as in [5] Thms. 4 and 5. The heating regime T will be again non-negative, nonde-
creasing in time for each x e I, bounded by the constant B on S = (0, 7) x T,
having T(0, +) = 0 on I' and left continuous at t = J for each x € I'. The supposi-
tions concerning ¢ and E will be the same as in Sec. 1.

For a € (0, }) it is easy to show under the above mentioned suppositions that for
Te L,(0, 7; H(I')), we have g(+, T(+)) € Ly(0, 7; H¥(I')). The proof of the follow-
ing theorem is an easy modification of the proof of Theorem 4 of [ 5] and the regularity
results of [2], [3] concerning the elliptic equations.
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Theorem 2. Under all the above mentioned suppositions concerning Q, g, B, T
let Te L,(0, 7; HY(RQ), x € (0, %). Then there is a unique weak solution of (1) belong-
ing to ) Co(0, T ; H'**%(Q)) together with y(u), where & = da(a) = (1 + 2a)*:

£>0
(14 + 12q).

Thus in this case the regularity of the stresses depends merely on the solution

of the Lamé system, because the temperature is sufficiently regular. We need to prove

the regularity only in the neighbourhood of the points of M,. On I', we consider
the following different type of boundary value conditions

(23) v, =0, T, = () — (rjyv;) v=10;

(24) v=0.

The first case corresponds to ““zero friction” the second case to “friction equal to
infinity”.

First we will study the regularity problem for Q being an angle, i.e.in polar co-
ordinates

(25) Q=V:={[r,ol;reR,,we(0,w,)}, where a,e(0,2n).

We suppose R} x {0} = I';, R} x {w,} = I', and the input function y(u) in (2)
to be in some Co(0, 7 ; H'*%(Q)) for @ e(0,1). First we treat the case of “zero
friction”. We use the polar coordinates, transform r = ¢’ and apply the Fourier
transformation with respect to #. Introducing the notation s = 3 — 4, # the Fourier
transform of v, [v,, v,] its polar components, i.e. v, = v, cos @ + v, sin w, v, =
= v, cos w — vy sin w, A the dual variable in the Fourier sense, n = il and ¢, =

= ;(a;) (i(1 — n), +), we obtain the system

(26) G-DF+E+ )R> =)5 +2n—-29)0, =729 (n- l)q,,}’

G+ 1)+ (o= 1) (02 = 1) 5, +2(n + 03, = (7 - 9) d,

o € (0, w,)

Il

-)@+(m-1)5,)=0, o=00a,

6+ 1)@, +3)+ B —a)ni,=(7-9)q,,

g

=w0’

v, =0, w=0.

The homogeneous system corresponding to (26) has nontrivial solutions for every n,
solving the equation

(27) n, sin (2w,) = — sin (2n,0,) ,
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and in the Cartesian components the solution has the form
(28) (@) = [(cos (2nowo) + ng cos (2m,) + 4) cos (nyw) —
— nycos((ny — 2) ),
(v — cos (2nywy) — ng cos (2m,)) sin (new) + ng sin ((ny — 2) ®)],
The correspondence between (27), (28) and (58), (61) of [5] is a consequeﬁcé of
the following facts: Let V; = {[r, w]; re R}, |0| < @} and let y(u) be a symmetric

input function of (2) on V; (i.e. even in the variable x,), v(y(u)) the symmetric solution
of (2)on ¥, i.e.

(29) Ul(Y(“)) (xl’ - xz) = u,(y(u)) (xp xz),
vz(v(u)) (xu - X;) = "’72(1’(”)) (xv X2), [X1, X2 ] € Vy

Then 7;;(v(y(u)))is evenin x, on V;, i = 1, 2, t,,(v(y(u)))is odd in x, there. Therefore
such v(y(u)) solves our problem on V for the given y(u). Conversely, if we extend
7(#) and the solution v(y(u)) of our problem (on V) symmetrically in the described
manner onto V,, then v(y(x)) solves (2) on ¥, (if v(y(u)) is sufficiently regular up
to I',).

Expressed in the Cartesian components, the solution of the problem (26) has the
form

01(3(w)) (—in, ©) = Py(n, ©) + (4; + Ay0) cos (nw) —
— Ayncos((n — 2) w),
u?G(LI))(-in, o) = P,(n, ) + (—A; + Ay0)sin (nw) +
+ Aynsin((n - 2) ),

(30) Pi(n, ) = : + UJ-wsin (nw — (n + 1) &) q, (&) d¢,
1-0),
Pym @) = L0 J " cos (nw — (n + 1) &) q,(e) d¢ ,
1—-0]Jo
Ay = A(n) =
_ 1+ 0 ["ncos(2wo — (n + 1) &) + cos (2nw, — (n + 1) ¢)
1 - GL sin (2nw,) + n sin (2w,) '
- q,(8) d¢,

Ay = Ay(n) = - alr)o cos ((n + 1)¢) a,(¢) d¢

1—0J, sin(2nw,) + nsin (2w,)

Considering a more general setting of the problem (26), i.e. a general right hand side
2F = [2F,, F,] with the argument [i(1 — n), »]) in the equation and general right
hand side [2K(i(1 — n)), 2K,(i(1 — n)), 2K, (i(1 — n)), #o(—in)] in the boundary
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condition, the solution in the polar components attains the form

(31

5(—in, w) = P,(n, ) + A, cos((n + 1) w) +

+ Ay(s — n)cos((n — 1) @) + Azsin((n + 1) w) +
+ Ay(n — 9)sin((n — 1) o),

,(—in, @) = P,(n, @) — A;sin((n + 1) @) +

+ Ay(s + n)sin((n + 1) @) +

+ Azcos((n + 1) @) + A4(s + n)cos((n — 1) w),

with P and » defined as follows

(32)

1

;1(42 ~ ) L F((t = n), O [(n+ o) (sin((n + 1) (@ — Q) +

+ (s = n)sin((n — 1) (w = )] + F,(i(1 — n),0).
[(n = 9) (cos ((n + 1) (@ = {)) = cos((n — 1) (w = {)))] dC,

P(n,0) =

Po(n, ) = mfﬁ,@a — 1), O)[(n + ) (cos ((n + 1) (@ — 0)) =

— cos((n = 1)@~ Q)] + Folilt - ) 0).
@ = n)sin((n + 1) (@ = &) + (5 + n)sin((n — 1) (0 — ¢))] dC,

o, = 0,.(n, COO) =
- Zlﬁ J :OF‘,(i(l — .0 [(n + g)cos((n + 1) (e — 7)) —

—(n—1cos((n — 1) (w0 — 0))] +
+ F,(i(t = n), ) [(s = n)sin((n + 1) (0w — ) +
+ (n = 1)sin((n — 1) (w0 = )] dC,

G0 = 04(N, W) =
= d_j__i J‘:"F,(i(l —n),0)[=(n+ 9)sin((n + 1) (0 = Q) +

+ (n + )sin((n — 1) (0 = )] +
+ F,(i(1 = n), ) [(s = n)cos((n + 1) (w — 0)) +
+ (n 4+ 1)cos((n — 1) (w — £))] d¢,
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and the coefficients given by

(33) A = A,(n) =
_(n+1)Z,cos((n — 1) w) = (n = 1) Z, sin ((n — 1)) N

sin (2nw,) + n sin (2w,)
N As(n cos (2w,) + cos (2nwg)) + A4(n® — 1)
sin (2nw,) + n sin (2w,)
Ay = Ay(n) = Z, cos ((n+ 1) w,) — Zz.sin ((n + 1) wy) N
sin (2nw,) + nsin (2w,)
A + Ay(n cos (2w,) — cos (2nw,))
sin (2nw,) + n sin (2w,)

>

E}

4y = Ayn) = — d_ﬁ((n — 1) 82 —in) — 2 Rogicr = ),

n(o — 1)
A= A = - — (B (=),

a+ 1\ n(s—1)

Z, = Z,(n) = I(Zi:"f) (or(n, 00) — Ro(i(1 = n)),
Zy = Zy(n) = —— (oo wo) — Ru(i(1 — n)).

n(s — 1)

Of course, for n solving (27) the Green operator, whose Fourier transform is ex-
pressed in (30) or (31), has a pole. There are only single or double poles, the double
poles must fulfil the following additional condition to (27)

(34) cos (2nomw,) = — sin (2a)
2w,

which together with (27) implies that nj = 1/(sin? (2w,)) — 1/(4w}) for w, * (k[2) 7, k
aninteger. For a given w, there is at most one pair of double poles. For w, = (k/2) T
with k being an integer, there are no double poles. It is possible to calculate that the
singular function (a function solving the homogeneous problem) corresponding
to a pole has the form r™ ¢, (w) with v,, from (28). For n, = 0 such a singular
function is [1, 0], i.e. the shift in the tangential direction. For the single poles these
are the unique singular functions. For a double pole the appropriate second singular
function has the form r™ In r . z, (w), where (in the Cartesian components)

(35) (@) = [(% + ) wsin (now) — newsin ((ny — 2) ®) +
+ cos ((ng — 2) w) + 2 cos (now),
(€ — 9)  cos (now) — new cos ((ny — 2) ) — sin((ny — 2) ) —
— 9 sin (nw)],

% = cos (2nywe) + ng cos (2w,), P = 2w, sin (2n,w,) — cos (2w,) .
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As usual, «,, satisfies the system (26) with the right hand side 2[no(s + 1) v, +
+ Upows Mo(0 — 1) vy o + v1,,] and the right hand side of the boundary value
condition [#), K)] =1[0,0] at w =0 and 2[K,, K,] = [(s — 1) vp.u(®@0),

(3 = 9) vyy (wo] at @ = w, (cf. [2], [7], [11]).

Using the weighted Sobolev spaces with fractional derivatives as in [5] Sec. 4,
the technique based on the Cauchy residuum theorem as in [6], [7], [10] with the
help of the proof that the weak solution of the problem is in the space Hi,,,(V)
for some small o, > 0 (for definition of the weighted spaces we refer e.g. to [5], [7],
the idea of the proof is in [6], [11]), we prove similarly to [5] the regularity, i.e.the
boundedness and continuity of the stress for w, < m/2, because there is no pole
with Re no e (—1, 1 + n,) for suitably small 5, for such angles. Of course, we need
to avoid the boundary value condition that are not in the appropriate weighted
Sobolev space Hy/?**(I',) for some g, > 0, but this can be done with the help
of the same auxiliary function as in [5] Sec. 4 (cf. (64) there). For w, = 72, ny = 1
is a pole and the corresponding singular function is

(36) [x1, x,] = [—oxy, (1. — 0) x,] .

The stress tensor corresponding to it is 7,; =1, =17,;, =0, 7,, =1 on V, i.e.
it is continuous and bounded. All the poles are integers. Thus the weak solution
for w, = n/2 is also regular, the corresponding stress is continuous and bounded
on V.For w, > /2 there is a very small hope of obtaining the weak solution having
the stress bounded and continuous at the origin (cf. [7] Thms. 7.3 and 12.5 — there
is a small hope of obtaining zero coefficients at the singular functions in the corre-
sponding expansion for each t € (0, 7)).

The case with “friction equal to infinity”” can be studied in the same way as the
preceding case. The Fourier transform of the solution of the Lamé system must
satisfy the equation (26) with the boundary value condition v(0) = 0 and for ® = w,
the condition given in (26). The equation for poles has the form
2

=0,

(37) /(”m Mg, 4) = n sin? wy + 4 sin? ngw, — (%)

the corresponding singular solution of the modified system (26) has the form (in
the Cartesian components)

(9) @) = £ 2] molein (0 = 2 0) = sin () +
+ [#£2, —F 1] no(cos (now) — cos ((ny — 2) w)) +
+ 2d[ =S4, I, ] sin (now), F; = 2nqsinw, — cos (2nyw) — o,
S, = ngsin (2w,) — sin (2now) -
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The additional condition for the double poles to (35) is the following

(39) ng sin® w, + g sin (new,) cos (nw,) = 0, hence
1 /42+1 7 1 ,
ne = + — ~Z 1l - 2z - ),
° sinwo\( 4 2 £V ) )))
2
5”=s—m—2w—°, for wy, + 7.
Wo

For w, # = there can be at most 4 real double poles, for w, = = there is no double
pole. The first singular function corresponding to the pole n, has the form r™ «, (w),
v, from (38). For the double poles there is a second singular function having the
form r™ In r ¢o,(w), where ¢, is the solution of the system (26) with the right hand
side 2[no(s + 1) w0 + vng.s Mo(3 — 1) ©yp.0 + v1.,] and the boundary condition
e0,,(0) = 0, while for @ = w, the boundary condition is as in (26) with the right
hand side [(s — 1) v,y o(®0), (3 — 9) 4y (@o)], Where v, is given by (38). We avoid
the calculation of <, for this case.

The Fourier transform of the solution of the Lamé system with the above de-

scribed boundary condition can be expressed in the Cartesian componeits as
(40) 5i(m ) = L+ 7 ( J Sin (no — (n + 1) 7) qu(7) dt +
‘ 9 \Jo

1—
+ Dy(nsin((n — 2) ) — (n + 29) sin (nw)) + D,n(cos (nw) —

- cos((n ~ 2))).

¥,(n, ) = i i Z(f:cos (nw — (n + 1) 1) q,(7) dr +
+ Dy(ncos((n — 2)w) —

— cos (nw)) + Dy(nsin((n — 2) o) + (25 — n)sin (nw))) ,

Dy = Dy(n) = (44(n, wp, 9)) " ((2n sin? oy — 5 — cos (2nw,)) .

. Je° cos((n + 1) 1) g,(r) dr — (n sin (2w,) + sin (2nw,)) .

e sin((n + 1) 7) g,(z) d7),

D, = D,(n) = (4,9(n, wy, )~ ((2n sin® wy + 4 + cos (2nw,)) .

. Jeosin((n + 1) 7) g,(r) dt + (nsin (2w,) — sin (2nwy)) .

Jeecos((n + 1) 1) g,(r)dt), #(n, wy,s) from (37).
We remark that for the general case with the right hand side 2F(i(1 — n), 0) =
= 2[F,, F,] (i(1 — n), ®) of the Lamé system, the right hand side of the boundary
value condition #°(—in) = [v?, 53] (—in) at @ = 0 and 2K(i(1 — n)) = 2[K,, K,] .
. (i(l - n)) at w = w,, the Fourier transform of the solution in the polar components
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can be expressed as in (31) with P and o from (32) but with the coefficients defined
in (41), where #(n, wo,s) is from (37) and Z, = Z,(n) = (1/n(s — 1)) (K,(i(1 -
=) = ol o)y s = Za(m) = (s — 1) (Kufi(1 — m) ol @0)):

Ay = (47(n, @4, 9)) " (Zy((n — o) (n + D sin((n — 1) »,) +
+ (6 — n?)sin((n + 1) w,)) + Zy((n — a) (n — D) cos((n — 1).
. @) + (6% — n*)cos((n + 1) wy)) +
+ 3Y(—in) (n* = 1 — (n + 9) cos (2nawy) + n cos (2w,))) +
+ Po(—in) (n — 9) (n sin (2w,) — sin (2nw,)),

(41) Ay = (47(n, w4, 9)) " (Zy((n + D sin((n — 1) ) —
—(n+ 9)sin((n + 1) wp)) + Z,((n — 1) cos ((n — 1) wp) — °
—(n + 9)cos((n + 1) wy)) — v)(—in) ((n + 4) + cos (2nawy) —
— ncos (2m,)) + v3(—in) (n sin (2w,) — sin (2nw,)),

Ay = (47(n, o, )" (Zy((n* — 5*) cos ((n + 1) wo) —
—(n+9)(n+ 1)cos((n — 1) wp)) + Zy((n + o) (n — 1).
sin((n — 1) o) + (s — n?)sin((n + 1) wp)) —

— v(—in) (n + 4) (nsin (2w,) + sin (2nw,)) +

+ g(—=in) (n* — 1 + (o — n) (ncos (2w,) — cos (2nm,))) ,

Ay = (47(n, o, 9)) " (Zy((n + 1) cos((n — 1) w,) —

— (n = 9)cos((n + 1) o)) + Z,((1 — n)sin((n — 1) w,) +

+ (n — 9)sin((n + 1) w)) + 7 (—in) (nsin (20,) +

+ sin (2nw,)) — 33(—in) ((n — a) — n cos (2wy) — cos (2nw,))),

A;=Ayn), j=1,2,3,4.
As in the preceding case for the regularity of the weak solution of the problem,
the existence of the eigenvalues n, with Re ny in (0, 1) is essential. The equality

(37) can be written separately for the real and imaginary parts, if we denote n, =
= Re ngy, n, = Im ng:

(42) (n3 — n})sin® @, + o(sh?(nym4) cos? (nywe) — ch? (n,0,) sin? (nyw,)) +
2
+ (4 + 1) -0,
2
., :
sin :uo _ _,sin (2n,m,) sh (2n2w0)’ nen, 4 0
(X 2n,m, 2n,w,

(for nyn, = 0 only the first equation remains).
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Let w, € (0, m/2). Then for n, = 0 the second equation of (42) cannot have a solu-
tion with |n,| < 1. If n, = 0, then the first equation of (42) has the form ¢,(n,) =
= n} sin? w, + s sin? (n,0,) = ((s + 1)/2)%. Clearly for n,e€<0,1> ¢, is non-
decreasing in ny, the inequality ¢o(1) = (s + 1) sin® w, < ((s + 1)/2)? is valid only
if w, < arcsin ({/(1 — 0)).For w, > n/2itis possible to calculate that there is a pole
n, with n; = Renye(0,1). We remark that for w, = n such n, has the form
1 + (i/n) Argeh ((2 — 20)//(3 — 46)). To beable toapply the technique of the weight-
ed Sobolev spaces with functional derivatives based on results of [6], [7], [10], [5], ...
as in the preceding case, we need to have the right hand side of the Neumann condi-

tion in Hy'*>**(V) for some &, > 0. To achieve this we use the following auxiliary
function v,: R — R%:

(43) vo: [x1 %2] > o/ (3 + x3) ML{Q

— sin? w,
. [—sin 2wy, cos 2w0] , @y * arcsin (\/(1 — 0)),

where ¢ = 1 on (0, 7), ¢ = 0 on (25, +0) for some # > 0, ¢ sufficiently smooth
on <0, + ). Then for the weak solution v of our problem we have v — vy = 0
on I', and on I'y v — v, satisfies the Neumann boundary condition being in
Hg'***(I'), &, € €0, &). Therefore for w, < arcsin (\/(1 — o)) we can prove the regul-
arity of the weak solution — the continuity and boundedness of the stresses. For
w, 2 arcsin (\/(1 — o)) there is a very small hope of obtaining such a result.

Via the localization technique we can extend (as in Sec. 4 of [5])) the above results
to the case of a bounded domain Q with C,,,-smooth boundary, ¢ > 0, with the
exception of the points of My = I'; n I, and a finite set M, < I';, where I'; can
be nonsmooth, but I'e C, ;. For the sake of simplicity we suppose that for each
Xo € My U M, there is a neighbourhood ¥",, of x, and an open angle V, with the
vertex at xo suchthat¥", n Q = ¥"_ N V,, . For x, € M, we will call ¥, the contact
angle. Thus we have proved the following theorem.

Theorem 3. Under the assumptions of Theorem 2 let for the Lamé system the
Neumann boundary condition and the condition (23) be prescribed on I'; and on
I',, respectively, such that the above mentioned assumption concerning 0Q, My, M,
and the angles holds. Let all the contact angles be less than or equal to 7r/2 and let
all angles corresponding to the points of M, be less than n. Then the stresses corre-
sponding to the solution of the thermoelastic system (1), (2) are continuous and
bounded on Q. If the condition (24) is prescribed on I', instead of (23), all the con-
tact angles are less than arcsin (\/(1 — o)) and the other assumptions remain valid,
the assertion concerning the stresses remains true.

Remark. 1. We are able to extend the results of Theorem 3 to the threedimensional
model considered in Sec. 1 in the sense of the remark at the end of Section 1 to the
case, when the boundary oI, of the contact part of 3Q is sufficiently smooth and the
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heating regime “along” oI, is sufficiently smooth, too. The requirements of Theorem
3 in this case concern the angles in the normal direction to oI',. The same is true
for nonsmoothnesses of I'; having the form of edges. Of course. it is possible to
suppose also an analogous nonsmoothness of I',.

2. If the contact condition is described by the Signorini boundary value condition
(v, £0, T, = t;v; < 0,0,T, = 0) without friction (T, = 0 as in (23)), it seems that
we obtain the same results as for the case (23) of the boundary value condition at
least for the two-dimensional model. In fact, denoting the contact part of the boundary
by I',, supposing it to be a line segment (for the sake of simplicity) and assuming
that the set dsuppv,n I', is finite (for a function f: M - R', supp f =
= {x e M; f(x) # 0}, 0 denotes the boundary), we are able to prove that in the
neighbourhood of the points of 0 supp v, the stress is bounded and continuous —
the only singular function corresponding to that transition for w, = = is of the type
(36), the others do not fulfil all the Signorini requirements. At the transition points
.~ T, we are in the same situation as at the points of M, = I'; n I'; with the
condition (23) on I,.

3. CONCLUSION

In both parts of the paper we have studied the solution of the quasilinear non-
coupled thermoelastic model mainly from the regularity point of view in the sense
of the continuity and boundedness of the stresses. For technical practice the model
seems to be satisfactory only if such a regularity of the solution is satisfied. As the
singularities of the boundary itself or the qualitative transitions of the boundary
value condition are more important for the possible local nonregularity of the
stresses than the singularities of the heating regime, we summarize the results con-
cerning the admissible angles for various situations in the following table, where

Table 1.

1 2. 3
Neumann/Neumann (@) sin (nywg) = +£n, sin v, wo € (0, )
Dirichlet/Dirichlet (ii) 9 sin (nywg) = +ny sin wg wo € (0, )
Neumann/normal Dirichlet, (iii) sin (2nywg) = —ng sin (2wg) g € (0, (n/2))

tangential Neumann
Neumann/Signorini (i) or (iii), ny€e Ri#® . g € (0, (n/2)) **)
Neumann/Dirichlet (iv) n% sin? wqy + 9 sin 2nwg) = g € (0, arcsin (\/ 1— o))

= ((9 + 1/2)?

*) The Signorini inequality must hold for the appropriate singular solution.
*%*) Under the suppositions of Remark. 2.
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in the first column the type of the boundary singularity or the transition of the
boundary condition is introduced, in the second the equation for the poles and in the
third the admissible magnitude of the angle to ensure the regularity are indicated.
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Souhrn
REGULARITA RESEN{ TERMOELASTICKEHO SYSTEMU
S NESPOJITYMI REZIMY OHREVU. II. CAST
Jiki JARUSEK
Postadujici podminky pro spojitost a omezenost nap&ti na uzav&ru &asoprostorového valce

se odvozuji pro kvazilinearni termoelasticky systém na trojrozm¥rné omezené oblasti a pro
zobecn&ny systém zahrnujici vliv podpér.
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