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TESTING A TOLERANCE HYPOTHESIS 
BY MEANS OF AN INFORMATION DISTANCE 
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Summary. In the paper a test of the hypothesis /J + ccr <£ M, // — CG ^ m on parameters 
of the normal distribution is presented, and explicit formulas for critical regions are derived 
for finite sample sizes. Asymptotic null distribution of the test statistic is investigated under 
the assumption, that the true distribution possesses the fourth moment. 

Keywords. Hypothesis testing, Fisher information matrix, concentration of the statistical 
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1. INTRODUCTION AND THE MAIN RESULTS 

Let us assume that a statistician has to decide whether at least 100(1 — A) % 
of the statistical population satisfies the relation 

(1.1) xe{m,M} 

where x is an investigated quantity and m < M are tolerance limits. This requirement 
corresponds to the hypothesis 

(1.2) H0: P[x e <m, M>] ^ 1 - A 

which can, in principle, be tested in two ways. The simpler procedure consists in 
testing the hypothesis that the parameter p — P[x e <m, M>] of the binomial 
distribution satisfies the inequality 

(1.3) p ^ 1 - A . 

As is well known, this test rejects the null hypothesis, if less than k amongst n ran­
domly chosen elements satisfy (1.1). A disadvantage of this approach is that an ele­
ment of the sample is declared to be defective regardless of the magnitude of the 
violation of (1.1). Thus part of information contained in the sample is not utilized and 
it is therefore logical to believe that a test based on numerical characteristics (mean,. 
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standard deviation) will be more powerful. The fact also is that in practice the Tole­
rance limits m, M in (1.1) are often chosen subjectively. Since even a small change 
of limits can lead to a situation when the binomial test evaluates quality of the sample 
in a quite different way (from good to very bad), the test rejecting (1.2) on the basis 
of a "distance" (in some sense) from the ideal situation will be more appropriate 
than the binomial test. 

Let the parametric set be 

(1.4) O = l(^\fieR9a>o\, 

and for 0 = (fi, a)' e 0 let 

(1.5) f(x, 0) = (2na2)~1/2 exp [ - ( * - fi)2J2a2] 

be the density of the normal N(/L, a2) distribution. Let m < M be real numbers, 
c > 0 and 

(1.6) H = j ( H e0; fi + ca ^ M,fi- ca^ ml . 

If c is the 1 — A/2 quantile of the N(0, 1) distribution and 0 e H, then 

Pd[x e <m, M>] = <Z> (*LzA - <p (l!Ll£\ ^ 2<f>(c) - 1 = 1 - A . 

Although for such a c (1.6);Only implies (but does not coincicide with) (1.2), from 
the point of view of the previous arguments it is of statistical interest to test this 
hypothesis under the normality assumption. We also remark that while the binomial 
test for a given sample size provides only a finite number of levels of significance, 
the set of levels of significance, available when the test (1.15) is used, is an interval, 
which is notable for small sample sizes. 

The Fisher information matrix, defined in [3], p. 460 by the equality J(9) = 

fdiogf(x90) d\o$f(x,e)\ ';.... .f/rcw:l> 
= cov l -^-^—~ , £--- , takes in the case of (1.5) the form 

det ee 

(1-7) J(9) = l n , , - 2 

J 

2 
cт-үo 
0, 2a 

If xl9 . . . , x „ i s a random sartiple from N(/t, a2) and 

i n ri " _ n1/2 

X = - %Xj, s= - *T(xj -x)2\ 
nj=i \ji j=i J 

then 5 > 0 with probability 1 and in such a case 

M >-CC-l-) 
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is an estimate of (1.7). The square of the sample information distance generated by 
the sample matrix (1.8) can be written in the form 

(1.9) ?(Z,y) = e5^y),Q(z,y) = lz-yl = 

= [(z. - yiy + 2(z2 - y2yy». 

If we denote for C a R2 and s > 0 

(1.10) ^(0),c) = inf^(Q,,);,ec} 
and for 9 = (ft, o)f e 0 put 

(1.11) P9(A) = P ^ ) 6 A | ^ , a 2 ) J 

then the following assertion is true. 

Theorem 1. Ifn > 1, then for (1.6) and 

(1.12) Gn(t) = sup P L ((*), H\ >t; 9 B H\ 

the equality 

(U3) C„(,)=p[,(0,fl)>,|,(^,(^J)] = 

" P [ K 0 ' O ) > , | N ( O , C " ) ] 
holds, where 

(1.4) D = j ( H e < 9 ; ^ + ca £ 1, ^ - cer = - l l . 

Hence the probability (1.12) depends only on n, t and c. 
The theorem states, that if the test <p is defined by the formula 

(1.15) ę(xx, . . . ,*„) = 

reject H if Q[[X) ,H) > t 

accept H if Q 
» 

then the probability of rejection is maximized over H at its vertex V = ((M + m)J2, 
(M - m)'/2c). Thus if a e (0, 1) and 

(1.16) Gn(t) = u, 
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then a is the probability of the error of the first kind. The acceptance regions of this 
test are described in the following theorem. 

Theorem 2. Let t > 0 and 

(1.17) 4 » { ( * ) » > 0 and $ ( ( * ) , ff)srj. 

(I) If we denote 

(1A8) B = B(m,M, t) = sup i s ; there exists x such that §11 X\, H\ g t> , 

(1.19) L(s) = L(s, m, M, t) = inf {x; (x, s)' e A J , 

(1.20) U(s) = U(s, m, M, t) = sup {x; (x, s)' e A J 

then 

(1.21) A, = j r ) ; 0 < s < + oo, s S B, x e <L(s), U(s)>l 

where 

(1.22) _ _ _ _ _ _ _ _ ( _ i , U ) 

/i >n\ r,\ M + m M~mTT( 2 . . \ 
(1.23) L(s) = — — Ul- s, - 1 , 1, t , 

2 2 \ M - m / 
TT/ v M + m (M - m) r r / 2 « , \ 

(II) The upper bound satisfies 

(i.24) B ( - u . o - - r 8 W 2 i , a " o r ;/ 0 < ' < 2 1 / 2 

V ; ' l + oo j / 2 1 / 2 < f . 

(III) Let us denote 

(1.25) <5 = [2(1 + 2 c - 2 ) ] 1 ' 2 , s* = [c(l - tld)]-1 . 

J / 0 < f < 5, then 0 < s* < B ( - 1, 1, f) and 
(L26) p(..-i.i..)-[1+'['^(r_^)-']tf 0<*-** 
(1.27) l [s 2 . 2 - 2(s - c - 1 ) 2 ] 1 ' 2 >/ s * < s < B ( - l , l , f ) . 

(IV) IffZS, then 

(1.28) l/(s, - 1 , 1, 0 = 1 + s[t2 - 2 ] 1 / 2 . 
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Theorem 2 enables us to perform the test (1.15), because according to (1.17) and 
(1.21) it is sufficient to verify whether x e <L(s), U(s)>, where L, U are determined by 
(1.23). The shape of the acceptance regions is shown in Fig. 1. 

Fig. 1. Hypothesis 1.6 and its acceptance regions A t 

The case when the assumption of normality of the examined population is not 
valid, is dealt with (from the point of view of large samples) in the following assertion. 

Theorem 3. Let Q be a probability measure on (R1, £%x) such that j x 4 dQ(x) < 
< + oo, Let us denote 

fi = Jx dQ(x), a2 = J(x - fi)2 dQ(x) , fij = J(x - fx)j dQ(x) , 

assume that a > 0 and put 

(1.29) 1, џ3J2<т3 

^3/2<x3, fa - a4)l4ay ' 

(1.30) K = {yeR2;y2^-\yi\lc}, 

(1.31) G(t, V) = P[Q(Z, K)> t\ N(0, V)] 

where Q is the metric (1.9). Finally, let 

(1.32) nmÙ(["s), 

If(n, a)' e H, then for every t > 0 

(1.33) lim P[T„ > 11 &(x) = Q] g G(t, V) 
r*J~> + OO 

in the sense that the limit on the left-hand side Of(1.33) exists and equality in (1.33) 
holds if n = (M + ra)/2, a = (M - m)\2c. • 

Thus, if the moments \i, a2, JLL3 and /i4 of the true distribution are the same as in the 
normal case, then the limiting size of the test (1.15) is the same as under the normality 
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assumption. Hence if we have no reason to assume that the true shape of the fre­

quency curve differs from the normal curve in a significant way, we can expect that 

the test (1.15) with the constant t chosen so that (1.16) holds will have the size 

approximately a even for moderate n, because for these sample sizes the appro­

ximation based on the CLT usually yields good results. 

If the hypothesis (1.6) is not true, i.e. at least one of the inequalities jn + ca > M, 

pi — cu < m holds, the making use of x -> \x, s -» a we get Tn -> + oo and the power 

of the test based on the statistic Tn will tend to 1, if a is fixed. 

We remark that for testing the hypothesis (1.6) also the likelihood ratio test 

statistic can be employed, but its critical regions are such that the computation of 

explicit bounds (especially the upper bound of the type (1.18)) leads to an expression 

which seems to be irresolvable, and therefore exact determination of the size of such 

a test cannot be performed for finite sample sizes. The asymptotic size of the LR test 

can be computed from the formulas derived in [5] and [6]. 

2. PROOFS OF ASSERTIONS FROM SECTION 1 

Lemma 1. The set (1.17) is convex and (1.21) holds. 

Proof. Since H is convex, for every z e R2 there exists a unique point n(z) e H 

such that in the notation (1.9) 

Q(Z, n(z)) = inf {Q(Z, y); y e H) . 

Hence if S = (x, s)', 6* = (xl9 st)' belong to At, then (cf. (1.9)) 

\\\<x0 + (1 - a) 6* - (an(9) + (1 - a) n(0*))\\\ = 

^ a p - n(9)\\\ + (1 - a) | | |0* - rc(0*)||| ^ (as + (1 - a) sx) t . 

Since a7i(0) + (1 — a) n(0*) e H, by means of (1.9) we obtain that At is convex. 

Ш + m x 

This together with 

(©•*)-((• 
and the continuity of Q(-, At), (1.9) and (1.10) yields (1.21). 

Lemma 2. (I) If a > 0, b are real numbers and 

(2.1) r ( f ) - ( £ ( 2 ) ) ' h(x)-ax + b, »,(,)-, 

then 

(2.2) P[At | N(џ, a2)] = P ^ ( ( J ) , T(H^J ^ 11 N(aџ + b, (aaf^ 
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where 

(2.3) T(H) = \(H e 6>; ^ + c<r S aM + b, \i - ca ^ am + bi . 

(II) If a > 0 is a fixed number, then the function 

(2.4) P(^) = P(A, | N(n, a2)) 

is non-decreasing on ( - c o , (M + m)/2> and non-increasing on <(m + M)/2, -f-oo). 
Proof. It is well known, that x has the density 

Уl 

a 
( ^ ) , 9г(y) = [n(2n)-iy» exp [-nj2/2] 

Since £ = ns2ja2 has chi-square distribution with (n — 1) degrees of freedom, making 
use of the formula for density of the transformed random variable (cf. [ l ] , p. 47) 
we obtain that the density of s equals 

£ g2 (~\ , g2^) = C(n) sn~2 exp ( -ns 2 /2) x (0 .+ Q0)(s) 

where C(n) is a constant depending on n. As is shown in Section 3.b.3 in [3], the 
random variables x, s are independent, from which 

(2.5) P[A, j N(n, a2)] = f gx ( * ^ ) g2 ( i ) ^ 2 dx ds . 

(I) The equality 

(2.6) ^ z) = gfflyX T(z)) 
s t2(s) 

implies that 

(2.7) T(A,) = { ( * ) ; s > 0 and fi ( ( * ) , T(tf)) g ,} 

where T(H) is the set (2.3). Since the Jacobian of the mapping (2.1) is a2, (2.2) can be 
easily obtained from (2.5). 

(ii) n 

(2.8) * « - - - - , b = - ( M + m \ 

M — m M — m 

then according to (2.3) and (1.14) 

(2.9) » T(H) = D 

and from (I) we obtain that 
(2.10) P(fi) = P[B, | % * , a2)] = P.(>*) 
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where 

(2.11) B , = {(J);S>O^(0),D)^}, 

H* = apt + b , a = aa . 

Since Q [ [ ), D ) = g , D ), according to Lemma 1 we have 

(2.12) в t = Ц'sV>s< + o c 

(2.13) P.tø*) = „)-£[• 

, 0 < s ^ ß, x є < - U ( s ) , U(s)>l 

n 1 / 2 (-U ( s ) - /.*) 

and (2.10) together with (2.5) yields 

'n™(U(s) - y*)\ / 

. a~1g2(s\d)ds . 

Since the derivative of (2A3) can obviously be obtained by differentiating under 

the integration sign, denoting by / the density of <P we get 

dp.(>*) 
(2.14) 

ÔЏ* 

7 /̂ 2(-U(s) - ť)\ _ f (nll\U{s) - /i*) п 
. n 1 / 2 < Г 2 a 2 [ - ) d s 

Let /x* > 0. Since U(s) ^ 0, 

| - U ( s ) - / i * | ^ | U ( s ) - / I * | , 

the derivative (2.14) is non-positive and P is non-increasing on (M + m)/2, +oo). 

The equality <P(x) = 1 — #(—x) together with (2.13) implies that 

(215) Pi(,u*) = Pi(-/.*) , 

and the lemma is proved. 

P r o o f of Theorem 1. If we denote by dH the boundary of the set H, then making 
use of Lemma 2 (II) we obtain that 

(2.16) Gn(t) = 1 - inf {Pe(At); 6 e 8H n 0} . 

But (210) and (2.15) imply that 

(2.17) inf {Pe(At); 0 e dH n &} = inf{F(<r);0 < a ^ c'1} 

where 

H°) = P[í ( (*) , ß ) Ś í | ІV(І - c<r, <x2)l 
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Putting in Lemma 2(1) 

- i , b = -a'1 + c a = a 

we obtain that 

F(a) = P *),!>(*)) _ ř | iV(0, l )] 

^ ) = { ( ; ) ^ ^ + ccr* ^ c, jii — co* __ c — 2 a " 1 

which implies the assertion of the theorem. 

Lemma 3. If 3c __ 0 and s > 0, then in the notation (1A0) and (1.14) 

(2.18) 

(2-19) 

(2.20) 
'11*1. 

(x - I ) 2 

+ 2 

(x + cs - I ) 2 2 

2 + c2 

x 2 + 2(s - c - 1 ) 2 

ř/ x > - s + 1 , 
c 

i/ -s + 1 _•*••_ - fs - - V 
c c 

X + cs > 1 , 

Zf - S + 1 _ _ X _ _ - S ~ -
C C \ C 

5Č + CS __ 1 , 

(2.21) 

Proof. If we denote 

then in accordance with (1.9) we have 

(2.22) |||x||| = {x'Jx)1'2 . 

Since in the notation C = {xeR2; a'x + b __ 0} and 

____+_) ,-» , y ^ C 

a J xa 

if x e C , 

the inequality (x — 7t(x))' J(7r(x) - y ) __ 0 holds for every y e C, (2.23) is the 
projection on C in the norm (2.22). k 

Let C,- = {xe R2; a'jX + by __ 0} and let 7C|1#g#ifcJbe the projection on f) Cjy in the 
y = t 

norm (2.22). If we put V = [xe R2; a'jX + bs = 0J = 1, ..., k}, then according 

(2.23) тr(x) = 
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to Lemma 4.2 in [4] the formula 

.j~-lj+l.-n(X) i f nl...j-lj+l,.-n(X) G'Cj , 
(2.24) nU*) = \Пlľ 

(x) if n1...j-1J+1...n(x)<ECj9 f - 1 , . , , « 

holds. In this notation 7iy is the projection on Vin the norm (2.22). We remark that 
(2.24) follows from the fact that O(z, K) is increasing on y, n(x) towards the point y 
for all y e K, where n is the projection on the closed convex set K in the norm (2.22). 

Obviously 

D = Cx n C2 n C3 

where 
C1 = {x e K2; xi + cx2 ^ 1} , C2 = {x e K2; - x X + cx 2 <; 1} , 

C3 = {XGR2; - x 2 ^ 0} , 

and according to (2.23) 

r*\ _ (_* + c&' Z Jj / ^ " ^ 
2 + c 2 

(2.25) 

i f { " I t É C i , 
c/ \s, 

if Г єC,, 

(х — cs + 1) / — 2 
i f 

i f 

C2, 

є С , 

If x > - s + 1 , then 
c 

iC. , w - r ^ c . 

and from (2.24) we obtain that -O-G G C2. Proceeding in this way and 

making use of (2.24) and (2.25) we obtain after some calculation that for x = 0, s > 0 

(2.26) 

if x > - S + 1 , 
c 

•r 2 < ^ - ^ 2 / 

if - 5 + l ^ x ^ - ( s 

o ' -ls - -1 

Taking into account (1.9) and (2.26) we easily obtain (2.18)-(2.21). 
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P r o o f of Theorem 2. (I) If a, b are the numbers (2.8), then taking into account 

(2.7), (2.3) and (2A2) we see that 

™=шoм 
(2.27) t2(B) = B(-1, 1, f) tt(L(s)) = L(t2(s), - 1 , 1, t) 

tl(U(s)) = U(t2(s),-l,l,t) 

where according to (2.11) and (212) 

(2.28) L(s, -1,1, t) = - U(s, - 1 , 1, f) . 

From (2.27) and (2.28) we can easily obtain (1.22) and (1.23). 

(II) According to (2.21) for s > c'1 

Є Чs , D) = 2^2[1 - (es)-1] 

which together with (I) implies (1.24). 

(Ill) Obviously 0 < s* < B(-1, 1, t). Let 

0 < S S 5* . 

If u = U(s, — 1 , 1, t) is the number (1.26), then 

. (2 + c2) s ^ 2 
U = 1 — i h - S , 

c 2 s* c 

which leads to 

2 < . 2 / 1\ 

(2.29) « > 0 , - s + l > u ^ - ( ^ s - - j . 

Since (1.26) implies II + as > 1, by virtue of (2.19) we have 

(2.30) *(Y"W 

- ^ ,2 

But (2.29) and (2.19) imply that Q (( 1, D j is increasing in a neighbourhood of w 

on the right from u, which together with (2.11) and (2.12) yields (1.26). 

Let 

(2.31) s* < s S B(-l,l,t). 

The number (1.27) can be written in the form 

(2.32) u = s[t2 -2(1 - ( c s ) " 1 ) 2 ] 1 / 2 , 
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which together with (2.31) and (1.24) yields u ^ 0. From (2.31) and (2.32) we get 

[<-Ш < i 

Hence by (2.21) the equality (2.30) holds, and (1.27) is proved. 

(Ill) Since u ^ 1 + 2c~1s, the relation (1.28) follows from (2.18). 

Proof of Theorem 3. The central limit theorem yields 

i 4 1 д 
= - I (*j - tf ~(џ- x)2 = - E (xj - џ)2 + ^n-1 !2) 

П 7 = 1 П 7 = 1 

Ч:>) 
Hence denoting 

Y. 

and making use of the multidimensional central limit theorem we obtain that 

(2.33) ^ - ( J ) ) ] - . * ! - . "-(£„-.-)• 

But if l 2 J is an internal point of U c R2 and 

/ - ( / : ) : ^ R ! 

is a function whose components f1?f2 possess in the interior U° of U all derivatives 
of the first order and these are continuous on U°, then similarly as in [2], p. 366 one 
can prove that 

(2.34) Jžf n^/fy,) - / M Y ] -> JV(0, DWD' 

where 

D 

JSMУ) дf_(ý) 
I дyt дy2 

" Uш sш 
\ дyt дy2 

Combining (2.33) and (2.34) we get 

(2.35) SЄ Mö-Ш 
In the notation (1.32) we have 

(2.36) T„ _ Q(L, C„) 

tø-
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where 

fc-"t(0-(í 
and Q is the distance (generated by the norm (2.22)) from the set 

Cn = {yeR2; y2 ^ -n1/2a, yt + cy2 S nlf2Mu 

yi ~ cy2 ^ nli2M2) , 

Mt = M — (/L + ca) , M2 = m — (fi — ca) . 

If /i = (M + m)/2, a = (M - m)/2c, then Mx = M 2 = O and obviously (cf. (1.30)) 

(2.37) Q(z,Cn)->Q(z,K) 

from above. Combining (2.35) —(2.37) we obtain that (1.33) holds with the equality 
sign. Since 

Q(z,Cn)-*Q(z9K*) 

from above, where 

{y e R2; yt + cy2 ^ 0} if fj, + ca = M, \i — ca > m , 

K* = l{y e R2; yt — cy2 ^ 0 } if n + ca < M, JJL — ca = m , 

[K2 if \i + ca < M9 JJL - ca > m , 

the theorem is proved. 

References 

[1] J. Andčl: Matematická statistika. Praha, SNTL 1978. 
[2] H. Cramér: Mathematical Methods of Statistics. Princeton University Press 1946. 
[3] C. R. Rao: Linear Statistical Inference and Its Applications. (Czech translation). Praha, 

Academia 1978. 
[4] F. Rublík: On testing hypotheses approximable by cones. Math. Slovaca 39 (1989), 199—213, 
[5] F. Rublik: On the two-sided quality control. Apl. Mat. 27 (1982), 87—95. 
[6] F. Rublík: Correction to the paper "On the two-sided quality control". Apl. Mat. 34 (1989), 

425-428. | 

S ú h r n 

TESTOVANIE TOLERANČNEJ HYPOTÉZY 
POMOCOU INFORMAČNEJ VZDIALENOSTI 

FRANTIŠEK RUBLÍK x , 

V práci sa předkládá test hypotézy // + CG ^ M, JLI — c& ^ o parametroch normálneho 
rozdelenia, založený na vzdialenosti, generovanej výběrovou Fischerovou informačnou maticou, 
a sú odvodené explicitně vzorce pre kritické oblasti tohto testu. 
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