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ABOUT A SPECIAL CLASS OF NONCONVEX 
OPTIMIZATION PROBLEMS 

LlBUSE GRYGAROVA 
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Summary. The article deals with certain nonconvex optimization problems which have features 
analogous to those of the linear optimization problems. We can find their absolute extrema and 
the set of all optimal points of such nonconvex optimization problem represents the closure of 
a face of a spherical polyhedron which is its feasible set. 

Keywords: A nonconvex optimization problem, a spherical polyhedron, a face of a spherical 
polyhedron. 

AMS Classification: 90C30. 

Convex optimization problems have two features which are advantageous for 
their numerical calculation, namely that any of their local extrema is at the same 
time their absolute extremum, and that the optimal solution set (the set of all 
optimal points) of a convex optimization problem is convex. Linear optimization 
problems (LO problems) have in addition the property that their optimal solution 
set is the closure of a face of a convex polyhedron (which is the feasible set of 
a LO problem). 

The aim of this article is to pick out certain nonconvex optimization problems 
(NO problems) for which we can find their absolute extrema and, in addition, whose 
optimal solution sets have features analogous to those of the optimal solution set 
of a LO problem. Instead of considering a feasible set in the form of a convex 
polyhedron, as is the case with LO problems, we have now a fesible set in the form 
of a so-called spherical polyhedron (which is the intersection of a polyhedral cone 
with a hypersphere, and thus a nonconvex set). We search for a nonconvex objective 
function so that the optimal solution set of a NO problem should represent the closure 
of a face of a spherical polyhedron. The formulation of the NO problems dealt with 
in the article was inspired by the geometrical idea described in Corollary 6. We are 
looking for either the smallest or the largest angle between the projection of a vector 
of a spherical polyhedron in a certain plane and a certain vector of the plane. Corol­
lary 7 implies that there exist some other nonconvex functions as well as some other 

147 





and the half spaces 

(1.5)b Ha := {x e E„| (ax sin a + o0 cos a, x) > 0} , 

H~ : = {x e Ew| (OJ sin a + a0 cos a, x) < 0} 

we have 

0 < f(x-i) < f(x0) < f(x2) < K for any xxeH~ n Ha
+ and 

x2eH0 n H; 

Proof. Obviously a e (0, n). For any point x e Pa we obtain (by (1.3) and (1.4)) 

arccos (o l5 x) [(o l5 x)2 + (o0, x ) 2 ] ~ 1 / 2 = a . 

Hence 

(a1? x) = [(o1? x)2 + (o0, x ) 2 ] 1 / 2 cos a => sg (a1? x) = sg cos a , 

(l - cos2 a) (o l 5 x)2 = - ( a 0 , x)2 cos2 a , 

(oj sin a + a0 cos a, x) = 0 . 

We have therefore x e Ra and thus Pa a H~ n Ra. The statement H0 n Ra cz Pa 

can be proved analogously. The set Pa = H0 n Ra is therefore the open halfhyper-
plane in E„. 

For the boundary dPa := clPa \ Pa we obtain from (l . l) a , (V5)a 

dPa = Ran R0 = {x e En| (oj sin a + a0 cos a, x) = 0 , 

(o0 ,x) = 0} = L„_2 . 

For an arbitrary point xx e H0 n Ha let us define at := f(xx). Then from the 
equality 

aj = arccos (a l9 x) [(au x)2 + (o0, x ) 2 ] ~ 1 / 2 

we get by (1.3) and ( l . l ) b 

(oj sin a{ + o0 cos a-, x t ) = 0 . 

Hence 

( a t , x , ) cos ai 
- v x u- = 1 = cot aj . 

(a0, Xi) sin ax 

Since xx e Ha , we get (by (l.5)b) also (o t sin a + o0 cos a, xx) > 0, and therefore 

(auxA cos a 
- -- * i ; > = cot a . 

(a0, Xj) sin a 
So, we have cot VLX > cot a, and thus al = f ( x t ) < a = f(x0). The statement 

f(x0) < f(x2) for an arbitrary point x2e H0 n Ha can be proved analogously. 
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SPHERICAL POLYHEDRON 

If b- =# o (i = 1, ..., m) are arbitrary vectors in E„ (n ^ 3), then the set 

(2.1) K : = { x e E „ i ( b , . , x ) ^ 0 (i = l , . . . ,m)} 

is evidently a polyhedral cone in E„ with a vertex at the origin point o. Obviously 
0 4= K * E„. 

C o n v e n t i o n . Throughout this article let us suppose that the polyhedral cone K 
from (2.1) is not a linear subspace in En. 

Definition 1. The set 

(2.2) M:= QnK, 

where 

(2.3) Q : = { X E E „ | ||X|| = O} , O>0, 

is called a spherical polyhedron (of the hypersphere Q). 

C o r o l l a r y 1. Under our supposition, dim K ^ 1, and therefore M =# 0. 

C o r o l l a r y 2. Because the set L of all vertices of the polyhedral cone Kis a linear 
subspace in E„ 2), dim L = 0 if and only if L = {o}. 

Definition 2. The intersection of the hypersphere Q with a (d + l)-dimensional 
face of the polyhedral cone K(d ^ 0) is called a d-dimensional face of the spherical 
polyhedron M from (2.2). In the special case ofd = 0 we call it a vertex, and for 
d = 1 an edge of the spherical polyhedron M. 

Lemma 2. Let K he the polyhedral cone from (2.1) and L the set of all its vertices. 
Then there exists a vector a0 e rel.int Kp such that for the closed half space 

(2.4) c l H 0 : = { x 6 E „ l ( a 0 , x ) g O } 

we have K _ cl HJ" and for the hyperplane R0 Of(l.l)a we have K n R0 = L. 

Proof. If we denote by 

K ' : = { x e E „ | ( x , y ) ^ 0 , ye K} 

the polar cone belonging to the polyhedral cone K at its vertex o, then 

(2.5) rel.int Kp = {x e E„| (x, y) = 0 for y e L, (x, y) < 0 for y e K\ L} 3) . 

l) See [1], Theorem 4.1. 
3) See [1], Theorem 4.13. 

150 



For any vector o0 e rel.int Kp we have, by the theorem of Farkas4), K c= cl H0 

(cl HQ defined as in (2.4)) and, moreover K n R0 = L, by (2.5). 

C o r o l l a r y 3. If dim L = 0, then M c HQ for any vector o0 e rel.int Kn. 

Lemma 3. Let Ln_2 he the set from (1.2), let K be the polyhedral cone defined 
by (2.1) and o0,ax arbitrary orthonormal vectors in En with o0 e rel.int Kp. Let 
us define 

R, := { x e E / l | ( o 1 , x ) = 0 } . 
Then 

M n Ln-2 = 0 <=> L = {o} or dim L = 1 and L cj= Rx . 

Proof. Since o e K n Ln_2, then K n Ln„2 4= 0 and (by Lemma 2) 

K n L n _ 2 = {xe K\ (o0 ,x) = 0 , (o1 ?x) = 0} = K n R0 n Rx = L n Rt . 

Taking into account that L and Rt are linear subspaces in E,, (dim Rt = w — 1, 
0 ^ dim L ^ n — 1), we see that the set L n Rt is also a linear subspace where 
o e L n R , and 0 ^ dim K n Ln_2 = dim L n Rx g w — 1. For the hyperspehere Q 
it follows from (2.3) that LnRxnQ = Mn Ln_2 = 0 if and only if L n Rt = {o}. 
But the last equation holds if and only if L = {o} or dim L = 1 and L c£ Rt« 

Theorem 1. Let K be the polyhedral cone as in (2.1) and o0, ai arbitrary ortho-
normal vectors in En with o0 e rel.int Kp. If the condition 

(2.6) L = {o} or dim L = 1 and L <^z R1 

is fulfilled, then the function f(x) defined in (1.3) is continuous on the set M in (2.2), 

Proof. The function f(x) from (1.3) is evidently continuous in En\Ln_2. The 
assertion of our theorem follows from (2.6) by Lemma 3. 

A SPECIAL NONCONVEX OPTIMIZATION PROBLEM 

Let us consider the problems 

(3A)a min{ f(x) |xeA^I}! , 

(3.l)b m a x { f ( x ) | x E M } ! , 

where M is as in (2.2) andf(x) as in (1.3). 

Theorem 2. If the assumptions of Theorem 1 hold, then solutions of the problems 

(3.1)a,b exist. 

Proof. The functionf(x) from (1.3) is, by Theorem \, continuous on the set M, 
which is nonempty, closed and bounded. 
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Theorem 3. Under the assumptions of Theorem 1 let x0 be an optimal solution 
of the problem (3.l)a or (3A)b. Let us define a := f(x0). Then the hyperplane 

Ra = {xe En\ (a1 sin a + a0 cos a, x) = 0} 

from (1.5)a is the supporting hyperplane of the set M at its point x0 . 

Proof. By Lemma 2 and (2.2), M c cl H~ = H0 u R0 (cl H0 is defined as in 
(2.4), R0, H - as in (l.l). fb). 

If x0e M n R0, then (o0, x0) = 0, x0e L (by Lemma 2) and, by Lemma 3, 
(au x0) + 0. In this case,f(x0) is equal to 0 or n (by (1.3)). Therefore (by (l.l)a) 

Ra = { X G E W | ( O 0 , X ) = 0} = R 0 , 

and since M c cl H0 , Ra is the supporting hyperplane of the set M at its point xQ. 
If x0 G M n H^, then x0 G Ra (by Lemma 1) and thus x0 e M n Ra. For the open 

halfspaces H + , H~ from (l.5)b belonging to the hyperplane Ra the statement M c 
c cl H~ or M _ cl H + holds by Lemma 1. 

C o n s e q u e n c e . An optimal solution x0 of the problem (3.1)a or (3.1)b is a bound­
ary point of the set M. 

Theorem 4. Under the assumptions of Theorem 1 let x0 be an optimal solution 
of the problem (3.1)a or (3.1)b belonging to a k-dimensional face Sk of the spherical 
polyhedron M (k ^ 1). Then any point of the closure c\Sk is an optimal solution 
of the problem (3.l)a or (3.1)b. 

Proof. If x0 E M n R0 then dim Sk = 0, and therefore such a case is not possible. 
Thus we have x0 e M n H0 . By Definition 2, x0 e Z k + 1 , where Z fc+1 is a (fc + 1)-
dimensional face of the polyhedral cone K with Sk _ Zk+U Let us consider the 
linear envelope Lk+1 of the face Zk+U Evidently Lk + 1 c Ra, Ra having the sense 
from (l.5)a. Since by Lemma 1 the equality f(x) = f(x0) holds for any point x e 
e H0 n Ra, this equality holds also for any point x e cl Sk. 

Consequence . If the assumptions of Theorem 1 are fulfilled, then the optimal 
solution set of the problem (3.1)a or (3.i)b is equal to the closure of a certain face 
of the spherical polyhedron M. Among all vertices of the spherical polyhedron M 
there exists at least one vertex corresponding to the optimal solutions of the problems 

(3.1)0. 

C o r o l l a r y 4. The book [2]5) contains a rather advantageous method for cal­
culating all vertices and all edges of a polyhedral cone K, and we can use it when 
solving problems like (3.1)a b. The algorithm consists in the determination of all 
vertices and all edges of the polyhedral cone Ky := [xe E„| (bi9 x) ^ 0 (i = 1, . . . , /)} 

5) Page 252. 
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if we know all vertices and all edges of the polyhedral cone Kj_ l : = {x e E„| (bi9 x) g 
<_0(i=l9...J-_)}9(j_tl). 

Example . Let 

K = {x e E4| xt — x2 = 0, x3 + x4 = 0, x2 + x4 = 0 , 

x! — x3 — X4 ^ 0} , 

then L = {o} and h t = (0, 1, 1, - 1 ) , h2 = ( - 1 , - 1 , - 2 , 1), h3 = (0,0, 1, - 1 ) , 
h4 = ( — 1, —1, — 1, 1) are vectors in the directions of all its edges. In the case 
o = l, the points X! = (0, 1/V3, 1/73, -1/V3)> x2 = (~l/V7> - l / V 7 > ~ 2 / V 7 ' 
1/^/7), x 3 = (0,0, 1/V2, - 1 / V 2 ) ' x 4 = ( ~ l / 2

? ~ l / 2
? ~l/2> I/2) a<*e all vertices 

of the corresponding spherical polyhedron M. Let us choose o0 = (2/V5, 0, 0, 1/V5)-

a i = (0, - 1 / V 5 , 2/V5, 0). For the function f(x) from (1.3) we have f(xx) = 
= arccos 1/V2 = 45°, f(x2) = arccos -3 /VlO = 161,5°, f(x3) = arccos 2/V5 = 
= 26,5°,f(x4) = arccos — 1/V2 = 135°. Thus the vertex x 3 gives the minimum and 
the vertex x2 the maximum of the function f(x) over the set M. 

OPTIMALITY CRITERION 

Let H0 be the halfspace from (l . l ) b and Q the hypersphere from (2.3). For any 
point x0e HQ n Q and any unit vector v with the property (x0, v) = 0, the set 

(4.1) C(x0; v) : = {x e E„| x = x0 cos t + QV sin t, t e (0, 2TT>} 

is a main circle of the hypersphere Q with a parametrical description. The inter­
section C(x0; v) n R0, where R0 is as in (l . l) a , defines the unique value of the para­
meter t0 e (0, 2rc), so that 

(4.2) B ( x 0 ; v ) : = C(x0; v) n H0 = 

= {x e E„| x = x0 cos t + QV sin t, t e (0, t0)} . 

Definition 3. The set B(x0; v) Of (4.2) is called the arc of the main circle C(x0; v) 
originating at the given point x0 in the direction v and belonging to the 
halfspace H 0 . 

Lemma 4. The function f(x) from (1.3) is along the set B(x0; v)from (4.2) strictly 
increasing, strictly decreasing or constant according to whether the determinant 

(auv) (a0,v) 
( f l j ,x 0 ) (o0, x0) 

(4.3) D:-

is positive, negative or equal to zero, respectively. 
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Proof . From (1.3) we have for any point xe H0 

M- = - [ 1 - ( 0 l , x)2/((o1; x)2 + (o0, x ) 2 ) ] - 1 ' 2 . ±(au x ) . 
dxa dxa 

. [(o., x)2 + (o0, x ) 2 ] - 1 ' 2 = l/(o0, x) [(«., x)2 + (o0, x ) 2 ] 1 ' 2 . 

• («o» *) [ai«(«o» *) - aoJ(au x)] . [(a. , x) 2 + (o0, x ) 2 ] " 3 ' 2 = 

= [a lc,(o0, x) - a0a(o1( x)] . [(au x)2 + (o0, x ) 2 ] " 1 , 

(a = 1, . . . , n). Thus 

Vj(x) = [0.(00, x) - a0(au x)] . [(o l s x)2 + (o0, x ) 2 ] " 1 , x 6 H" 

For the function 

/(f) : = j(x(t)) = / ( x 0 cos t + Q v sin t) , f e (0, f0) , 

we have 

ål = (vдx(0), ̂ ) = ([».(«„ x(0) - 00(0,, x(ř))] 

. [(«j, x(())2 + (o 0 , x(r)) 2] 1, - x 0 sin J + ov cos <) = 

= e [ ( o 1 , x ( 0 ) 2 + ( o o , x ( 0 ) 2 ] - 1 , 

and the assertion of our theorem follows by (4.2). 

(al9v) (o 0 ,v) 
( o l 5 x 0 ) (o 0 , x 0 ) 

Theorem 5. Let K he the polyhedral cone from (2.1), L the set of all its vertices 
and o 0 , a± arbitrary orthonormal vectors in En with o 0 e rel.int Kp. Then 

a) the spherical polyhedron M from (2.2) has at least one vertex if and only if 
dimL ^ 1; 

b) if dim L ^ 1 and dim K > 2, then the spherical polyhedron M has always 
edges, and the function f(x) is strictly increasing or strictly decreasing or constant 
along any edge. 

Proof. By Corollary 1, dim K ^ 1 and assertion a) follows from Definition 2. 
If dim L g 1, then, by assertion a) and by the assumption dim K > 2, the spherical 

polyhedron M possesses edges. By Definition 2, any of its edges is the intersection 
of a 2-dimensional face of the polyhedral cone K with the hypersphere Q, and 
therefore an arc of a main circle of Q. The inclusion M c cl H^ shows that any 
edge of M is contained either in HQ or in R0 (cl H^ having the sense of (2.4), 
R0, H 0 from (lA) a b ) . In the former case, assertion b) is proved by Lemma 4. The 
latter case implies that the corresponding edge is a subset of R0, which contradicts 
our assumption and Lemma 2. 
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Theorem 6. Let the assumptions of Theorem 5 hold, L c}: Rt and let vt (i = 1, ..., N) 
be arbitrary vectors in the directions of all edges ht of the spherical polyhedron M 
originating at its vertex x0 . The vertex x0 is an optimal solution of the problem 
(3A)a or (3A)b if and only if 

(o1?vt.) (o0 ,v.) 
(4.4) 

respectively 

(auVi) (o0,vt.) 
(o 1 ?x 0) (o0, x0) > 0 or 

(o l 5 x 0 ) (o 0 ,x 0 ) 
^ 0 (i = 1, . . . , N ) , 

Proof. If x0 is an optimal solution of the problem (3A)a, then, by Theorem 5> 
the function f(x) is either constant or strictly increasing along any edge ht (i = 
= 1, ..., N) of M. If x0 is an optimal solution of the problem (3A)b, then, by Theorem 
5, the function f(x) is either constant or strictly decreasing along any edge ht of M. 
But any edge ht is an arc of a main circle of Q originating at x0 in the direction v. 
belonging to the halfspace H0 , which implies, by Lemma 4, the assertion (4.4). 

Let (4.4) hold for any vector V; (i = 1, ...,N) and let us consider an arbitrary 
point xteM, xt #= x0 . The points x0,xt define a unique main circle C(x0 ;v), 
where v is its tangential vector originating at the point x0 (it is oriented to the 
point xx) . We have (x0, v) = 0, likewise (x0, vt) = 0 (i = 1, ..., N). The intersection 
of the hyperplane 

T(x0) : = {x e E„| (x0 , x - x0) = 0} 

(the tangential hyperplane of the hypersphere Q at its point x0) with the polyhedral 
cone K is a convex polyhedron M(x0). Obviously, the point x0 is a vertex of M(x0) 
and Vt (i = 1, ...,N) lie in the directions of all edges of M(x0) originating at x0 . 
Thus, for the vector v we have 

v e T ( x 0 ) and v = £ Xtvt, Xt = 0 ( i = l , . . . , N ) . 

This implies, by (4.4), 

(o1? v) (o0, v) 

(an xo) (ao> *o) = 1^ 
(ai>Vi) (a0,vt) 

(au xo) (ao> xo) 
> 0 

or 
(o1?v) (o0 ,v) 

(au xo) (ao> xo) 

7V 

< 0. 
(ai>vt) (a0,Vi) 

(ai> xo) (°o, xo) 

and further, by Lemma 4, f(xt) ^ f(x0) or f(xt) = f(x0), respectively6). Since 
x t e M was an arbitrary point, the last inequality shows that x0 is an optimal solution 
of the problem (3A)a or (3A)b, respectively. 

C o r o l l a r y 5. Theorem 6 further gives an idea about how to solve the problems 
(3.1)ab. If we know an arbitrary vertex x0 of the spherical polyhedron M, then we 
can define a convex polyhedron M(x0) := Kn T(x0), and by the simplex method 

3) The assumption L cj: R. guarantees that the functionf(x) is defined on the set M. 
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we look for x0 as for a vertex of M(x0). From the corresponding simplex table, we 
read the vectors vt (i = 1, ...,N) in the directions of all edges of M originating 
at x0 , and the inequality (4.4) shows whether x0 is an optimal solution of either 
(3.1)a or (3.1)b. If it is not the case, then we shall find, by one step of the simplex 
method, the vertex x t e M adjacent to the vertex x0 (after its normalization with 
respect to the value Q), with which we repeat the above mentioned process. 

C o r o l l a r y 6. The problems (3.1)a b in question have, in E3, a simple geometrical 
interpretation. Under our assumptions, the vectors a0, ai define a plane R2 in E3. 
If x* denotes the projection of a vector x e M i n the plane R2 and ax := x*/||x*||, 
then the function f(x) represents the angle between the unit vectors ai and ax, and 
the nonconvex programming problem (3A)a or (3.1)b means to find respectively the 
smallest or the largest angle between the vectors a t and ax with respect to all x e M. 

Fig. 1 

C o r o l l a r y 7. We can create even other functions for which Theorems 1 — 6 also 
hold. They are e.g. continuous strictly monotone functions of the argument 
(a1? x)/(a0, x), as artan (al9 x)/(a0, x). Further, we can carry out an extension with 
regard to the feasible set M. It is possible to take into consideration e.g. the set 
M := K n £, where 

E : = { x e E „ | E(x,./Ci)
2 = 1} , c ; > 0 (/=1, 

or a co-called strictly convex smooth manifold. 
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Souh rn 

O SPECIÁLNÍM TYPU NEKONVEXNÍCH OPTIMALIZAČNÍCH ÚLOH 

LIBUŠE GRYGAROVÁ 

Článek pojednává o speciálním typu nekonvexních optimalizačních úloh, které mají vlastnosti 
obdobné vlastnostem optimalizačních úloh lineárních. U nekonvexní optimalizační úlohy tohoto 
typu umíme najít její absolutní extrém a množina všech jejich optimálních řešení představuje 
uzávěr stěny sférického polyedru, který je její množinou přípustných řešení. 

Р е з ю м е 

ОБ СПЕЦИАЛЬНОМ ТИПЕ ЗАДАЧ НЕВЫПУКЛОГО ПРОГРАММИРОВАНИЯ 

LIBUŠE GRYGAROVÁ 

Статья занимается специальным типом задач невыпуклого программирования, свойства 
которых подобны свойствам задач линейного программирования. У задачи невыпуклого 
программирования этого типа мы умеем найти её абсолютный экстремум и множество 
всех её оптимальных решений представляет собой замкнутую стену сферического много-
граника, который являестя множеством её допустимых решений. 
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