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Summary. Energy functionals for the Preisach hysteresis operator are used for proving the
existence of weak periodic solutions of the one-dimensional systems of Maxwell equations with
hysteresis for not too large right-hand sides. The upper bound for the speed of propagation of
waves is independent of the hysteresis operator.
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This research was motivated by Visintin's paper [7], where the author investigated
systematically the possibilities of introducing hysteresis operators into partial
differential equations. His results include existence theorems for parabolic equations
with the Preisach hysteresis operator in a very general setting.

We try here to unify the approach of Preisach-Visintin with the Ishlinskii model
of hysterasis ([2], [3]. [4]). In particular, we extend the notion of hysteresis energy
functionals to the Preisach operator and derive the energy inequalities. For this
purpose w2 must reduce the class of Preisach opzrators (thc measure in the half-
plane P generating the Preisach operator is assumed to be positive and absolutely
continuous with a continuously differentiable density with respect to the Lebesgue
measure). We preserve the notation from [3]—[6] in order to emphasize the cor-
respondence between the two models for hysteresis.

The energy estimates are used in the second part for proving the existence of
periodic solutions to the one-dimensional Maxwell equations in a ferromagnetic
material with hysteresis of Preisach type. Let us note that the wave-propagation
speed does not exceed the velocity of light. This property confirms the hyperbolicity
of the system.

The local character of the existence theorem (the solutions are constructed only
for small right-hand sides) is due to the fact that one of the energy inequalities is
closely related to the convexity of hysteresis loops. The proof is based on the idea
that the approximate solutions do not leave the region of convexity of the Preisach
operator.
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1. HYSTERESIS OPERATORS

Let u: [0, T] - R' be a continuous function and let ¢ € R', i > 0 be given. We
introduce the relay operator z,, in the following way: for te [0.T] set 4, =
={te[0.1]: u(r) = ¢ + h} and 1), = max 4, if 4, + 0. We put

(1.1) Zot) (1) = z,4(u) (0), if A, =0,
(12 ) () = T Z et
(13 o) @) = TGO 020

where J(r) = 1 for r 2 0, J(r) = —1 for r < 0. In Visintin’s terminology [7], [8]
we have z,,(u) (1) = fo=no+m(u, &) (1), Where the initial condition ¢ corresponds
to the “‘virginal state™.

Following Krasnoselskil and Pokrovskii [2] (cf. also [3], [4]) we define the
operator I,. Let u:[0,T] - R' be a continuous piecewise monotone function.
We put

0, if |u(0) <h,
(1.4) 1(u) (0) = { u(0) — h, u(0)>h,
u(0) + h, u(0) < —h,

max { I,(u) (1o), u(t) — h} . te(toty]. "

if u is nondecreasing in |t,, t
o () - L

min {1,(u) (to), u(t) + h}, te(to, t1].
if u is nonincreasing in [0, t,] -

(1.5)

We see that I,,(u) is again a continuous piecewise monotone function. Moreover,
for arbitrary continuous piecewise monotone functions u, v we have (cf. [2]) -

(1.6) ll;.(u) (1) = () (1)] = lu = vl
where

|Wla,py = max {|w(s)|, s € [a, b} .

The inequality (1.6) shows that I, can be extended to a Lipschitz continuous operator
in the space C([0, T']) of continuous functions with the norm ||*|o,1;-

This operator can be materialised by a simple device. Let us consider a cylinder
of length 2h which is moved along its axis with help of a piston placed inside. If u(t)
denotes the position of the piston at the instant ¢, then I,(u) (1) corresponds to the
position of the center of the cylinder at the same instant.

The following lemma establishes the relation between z, , and I,

(1.7) Lemma. Let h > 0, ue C([0, T]), 1€ [0, T] be given. Then we have
Zou(u) (1) = —1 for o > I(u) (1) and z,,(u) (1) = +1 for ¢ < L(u)(1).
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We postpone the proof of (1.7) and we recall the particular character of the
hysteresis memory.

Let u e C([0, T]), t€ [0, T] be given. Put 7 = max {te [0, r]; u(r)| = |ul|t0,a}-
We denote t, = 7if u(f) < 0 and t, = 7if u(f) > 0. Further, we put

(1.8) tye =max{te[ty_1,t]; u(r) = min {u(o); o€ty 1]}},
tury = max {t€[ty,1];  u(t) = max {u(c); oe[tn t]}},
until ¢, = t.
The sequence {t,,} is either finite or infinite. In the latter case we have

lim [u(t,+,) — u(t,)| = 0.
n—»oo
The following lemma is proved in [3], [4].

(1.9) Lemma. Let ue C([0,T]), te[0, T] be given. Then we have I,(u) (i) =
= max {0, u(?) — h} if i = t;, L(u) (f) = min {0, u(?) + h} if T = t,, and

L(u) (t) = I(u) (tax—1) — max {0, u(ty—;) — u(ty) — 2k},
I(w) (take1) = L(u) (t26) + max {0, u(tyss) — u(ty) — 2h},

where {1,} is the sequence (1.8).

This lemma shows that the hysteresis memory contains only the values of u at the
points of the sequence (1.8). In particular, the hysteresis system *’forgets* everything
before 1.

Proof of (1.7). In the case |ulo.q < h we have [,(u)(f) = 0 and the assertion
follows immediately from (1.1)—(1.3). For |ug,; > h we construct the sequence
(1.8) and prove (1.7) by induction over k. Let for instance i = t, (the other case is
analogous). Then [,(u) (7) = u(f) — h. For ¢ > u(?) — h we have ¢ > 0 and ¢ >
> u(0) — h, hence z,,(u)(f) = —1 by (1.2) or (1.1), (1.3). For ¢ < u(t) — h we
distinguish two cases: if 4; + 0, then z,,(u) (i) = +1 by (1.2), if 4; = 0, then
0 — h <o+ h<u(0) and we use (1.1), (1.3). Let us now assume that (1.7) is
proved for t = t,, (the argument is the same for t = t5;, ). If u(t51q) — u(ty) <
< 2h, then I(u) (1) = L(u) (t) and u(t) — h < I(u) (1) S u(t) + b for te
€ [ta6 tax+1], and (1.7) follows from (1.2). Let us assume u(fz5r1) — w(t2x) > 2h.
Then we have [(u)(tu) = u(tz2e) + b, 1 (u) (t2x41) = u(tyes1) — h. For g >
> u(ty41) — h or @ < u(ty) — h the assertion is obvious. In the remaining case
we have u(ty) < ¢ + h < u(tys,), hence z,,(u) (t2x+,) = +1 by (1.2). Lemma
(1.7) is proved.

(1.10) Definition. Let p be a real function of two variables ¢ € R', h = 0 such
that
(i) p, 0uldo, 3*p|de® are continuous in R* x [0, ),
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(i) u(e. h) = —n(—o, h) for every g, he R* x [0, ),
(iii) (p/de) (e, h) > 0 for every ¢, he R' x [0, c0).
For ue C([0, T]) the value of the Preisach operator Z is defined by the formula

2= im [ [ 200 (0 % (0. 1) a0 ah.

2Jo) _
Remarks.

(1.11) Correctness. The definition is meaningful, since by (1.7), (1.9) and (1.10) (ii)

we have
20 (1) = 15 1) (). 1)
where pu(1,(u) (1), h) = 0 for h = |ul|;o..-

(1.12) Ishlinskii operator. For u(o. h) = o(¢~"')" (h), where ¢ is a given twice
continuously differentiable concave function, ¢(0) =0, +o0 > ¢'(0+) > 0, we
derive from (1.11) and from (2.16) of [3] that (¢'(0+))"'I + Z = F~', where I
is the identity operator in C([0, T]) and F is the Ishlinskil operator generated by ¢.

From (1.11) we obtain further properties of the operator Z.

(1.13) Lemma. (i) There exists a positive increasing continuous function y such
that for u,ve C([0, T]) we have

|2() (1) = Z(v) (1)] = w(max {[lufro,m [o]o.0}) | = v]r0,01-
In particular, Z is a locally Lipschitz continuous operator in C([0, T]).
(ii) The operator Z is odd.

Proof. Putting y(V) = (o max {(du/de) (o, h), || < V} dh and V =
= max {||u] 0. [v](0,n} we obtain (1.13)(i) immediately from (1.11) and (1.6).
The operators [, are odd and p is odd with respect to g, hence Z is odd and Lemma
(1.13) is proved.

(1.14) Lemma. Let u e C{[0, T]) be absolutely continuous. Then Z(u) is also
absolutely continuous and the inequality

0 < (Z(w)) (1) u'(t) = ¥([[ufro,0) (w(©))?

holds almost everywhere.

Proof. Let us choose t, > t; = 0 and put v(r) = u(t) for t€ [0, t,], v(t) = u(t,)
for 1€ (ty, ;). Lemma (1.13) (i) yields |Z(u) (1,) — Z(u) (1,)] < ¥(|u]go,r9) Ju(*) —
— u(ty)| ¢, .o7» hence Z(u) is absolutely continuous.

Further, let t € (0, T) be arbitrarily chosen. If u'(t) = 0, then (Z(u)y (1) = 0 and
(1.14) holds. Since the operator Z is odd, the cases u/(t) > 0 and u'(f) < 0 are sym-
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metric. Let us suppose for instance u'(f) > 0. Then the sequence (1.8
t =ty for some k = 0. There are two possibilities:

a) t = 1, = 1. Then we have I,(u) (1) = u(t) — h, (I,(u))’ (1) = u'(t) for h < 1)
and I(u) (1) = (I(w)) (1) = 0 for h > u(1).

Therefore,

(1.15) @y (0 =

0

) is finite,

u(r)

u'(1) fft (u(t) — h, hydh.
do

b) ¢t > 7. Then we have by (L.9) I(u)(t) = u(t) — h, (I,(w) (1) = w'(t) for
h < 3(u(t) — u(ty)) and Iu) () = () (t2), (L(w)' (1) = 0 for h > Hu(r) -
— u(t,)). We obtain

1/2(u(t) —u(ta)) 0#
(1.16) (Z(u)) (1) = [ w'(t) = (u(t) — h, h)dh
Jo deo
and (1.14) follows from (1.15), (1.16). oo n
We now express the energies of a system with hysteresis. Put ,um(h) = lim i(e. h).

o + )
Let #(v, h) for —p,(h) <v < pg(h) and h 2 0 be the partial inverse of , i.e.
u(r(v, h), h) = v, r(u(o, h), h) = o. Let us denote

R(E, h) = [§r(v.h)ydv for [&] < p,(h).
We define the potential energies associated to the Preisach operator Z as
(1.17) Py(u) (t) = {3 R(u(ly(u) (1), h), h)ydh for wueC([0,T]),
(1.18) P,(u) (1) = H(Z(u)) (1) u'(t) for ueW"'(0,T),

where W"*”(O, T) denotes the usual Sobolev space.
We have the following energy inequalities.

(1.19) Lemma. Let u e C([0, T]) be absolutely continuous. Then the inequality

(L) (0= (Z(u)) () u(t) = 0

holds almost everywhere.

Proof. A straightforward computation yields
(Py(w)) (1) = (Z(u)) (1) u(r) = & (L))" (1) (1h(u) (1) = u(1)).
. %‘-Q‘(z,,(u) (1) hydh, and (L,(u)) (1) (4sw) (1) = (1)) < O
almost everywhere, thus (1.19) follows easily. n
The hypotheses (i)—(iii) of (1.10) imply that there exist y > 0 and U > 0 such

that
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& f\

A
(1.20) LG - +f
d0®

2 de 0

for || < U,0 < ¢ £ U. This enables us to prove

( — h,h)ydh = 2y

- (1.21) Lemma. Let u e W*'(0, T) be given such that ||u|rg,ry < U. Then for arbi-
trary t,s,0 < s <t < T we have
§:(Z(w)) (o) u'(c) do = Py(u) (1) = Py(u) (s) — v [3 [u'(0)] do.

Proof. Repeating the proof of of (1.17) of [4] we see from (1.8), (1.9) that it
suffices to assume that u is increasing and that there is at most one change of memory

level in [s, 1], i.e. four cases are possible:
(a) Iy(u) (o) = l,,(u) (t2¢) + max {0, u(o) — 14(12k) —2h}, oels t],
() 1(u)(o) = max {0,u(s) — h}, oel[s 1],

. Do / l,,(u) (taes2) + max {0, u(o) — u(ty4,) — 20}, oels, 1],
(c) 1w} (o) = N (u) (1) + max {0, u(o) — u(ty) — 2h}, oe(r 1],

u(’u) < “(tzk+2)

L(u) (1) + max {0, u(a) — u(ty) — 2h}, oels 7],
() 1) (o) = / “\ max g0 u(o) — b}, o e)(r 1], k=0or1. ]

Let us prove the lemma in the case (c) (the others are analogous). By (1.16) we have

[y @ wiorae = Jwer [ L e - o -
=i () = 5 [ ol [1 2 (3 6te) + st ~(u(a>—u<zm»)

1/2(ule) —u(t2k+2)) A2
+ f o /;(u(a') — h h) dh]da'

o
0 o0

and similarly for [%. Since we have

1/2(u(t) = u(tar +2)) f;t
(u (T))Z [j ( (1) — h, h) dh —
0o

K

1/2(u(r) —u(t2i)) A
- j "‘ (u(f) — b, h)dh] <0

0

we use (1.20) and Lemma is proved. [ ]
Let us pass to periodic functions. We denote by C, the space of continuous

w-periodic functions with the norm |ju]| = max {|u(1)|, 1€ R'}.
Lemma (1.9) implies that I,(u) is w-periodic fox t = wif ue C,. Therefore, Z can

be considered as a continuous operator in C,,.
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In the sequel, we deal with functions u(x,t), x € [0, /2], t € R', such that
u(x,t + ) = u(x, t). For the corresponding IP-spaces, 1 < p < o0, we use an
obvious notation L2(0, ©/2), with the norm

lull, = (557 J& |ux, 1)|7 dt dx)*’.
The space of continuous w-periodic functions is denoted by C,([0,n/2]), with
the norm |u],, = max {|u(x, )|, x € [0, n/2], re R'}.
For u € C,([0, n/2]) we can define the value of the Preisach operator

(1.22) Z(u) (x. 1) = Z(u(x, ) (1), xe[0, /2], t=0.

Lemma (1.13) (i) shows that Z is again a locally Lipschitz continuous operator
in C,([0, n/2]).

2. MAXWELL EQUATIONS

The one-dimensional Maxwell equations in a ferromagnetic material can be
written in the form ([1])

(2.1) etE, + H, + o(E) =g
po(H + J), + E, =0,

where E, H are the intensities of the electric and magnetic field, respectively, J is the
magnetization, ¢ is a given function representing the conductivity, ¢, > 0, o > 0,
¢ > 1 are given constants, gy = ¢~ 2, ¢ is the velocity of light and g is the given
density of the imposed electric current. The Preisach model for the ferromagnetism
consists in putting

(2.2) J = Z(H),
where Z is the operator (1.10), (1.22).

(2.3) Proposition. Let us suppose o(E). E 2 0 for every E € R'. Then the speed
of propagation of electromagnetic waves governed by (2.1), (2.2) does not exceed

c/e.

Proof. The argument is the same as in [6]. We assume that E, H are solutions
of (2.1),(2.2) with g = 0 such that E(x, 0) = H(x, 0) = 0 for x € [a, b]. We integrate
the function

[uo(%Hz + Py(H)) + i"zf‘ EZ] + (EH),

t

over a trapezoidal domain bounded by the straight lines t =0, t =1, x = a + At,
x =b — A, where A =c|Je, 0 <7< (b— a)/2. Lemma (1.19) and the Green
theorem yield H(x,?) = E(x,7) = 0 for xe(a + Af, b — Af), i.e. A is an upper
bound for the wave-propagation speed. u
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The values of the constants in (2.1) are irrelevant for the existence theorem. For
this reason we now consider the system in the form

(2.4) E,+H,+0E)=g
H, + (Z(H)),+ E, = 0.
(2.5) Theorem. Let o be a continuously differentiable function, ¢’ = 0, ¢(0) = 0,
and let Z be the Preisach operator (1.10), (1.22). Then there exists 6 > 0 such
that every geLl(0,n)2), g,e Li(0,n)2), |g]. + |g.]. <O there exist E,He

€ C,([0,m[2]), E,, H, e L2(0, m|2), E,, H,e L(0, n|2), E(0, t) = H(n/2, t) = 0, such
that the system (2.4) is satisfied almost everywhere in (0, 1/2) x (w, + ).

Remarks

(2.6) Uniqueness. If the operator Z is not of the form (1.12), where it is possible
to use the monotonicity of the Ishlinskii operator (cf. [5]), the answer is not known.

(2.7) Boundary conditions. The situation is more complicated here than in the
»Ishlinskil* case. For instance, with the boundary conditions E(0. t) = E(n[2,1) = 0,
even the problem of existence of solutions seems to be open.

Proof of (2.5). The idea of the proof is the same as in [3]. We apply the Galerkin
method. Let us denote w;(t) = sin (2njt/w) for j > 0, wj(t) = cos (2njt/w) for j < 0.
For a fixed integer n > 0 we look for functions

E™(x, 1) = Z I.ZoEjk wi(t)sin 2k + 1) x,
j=-nk=

H®(x, 1) = i kionk w(t) cos (2k + 1) x,
j=-nk=
where Ej, H ; are real numbers satisfying the system
- (2.8) ISP (B + HY + o(E™) — g)wyt)sin (2k + 1) xdxdt =0,
DN [(H™ + EP)wit) — Z(H™) wi(t)] cos 2k + 1) xdxdt =0,
j=—-n,...n, k=0,...,n.
We see immediately that every solution of (2.8) fulfils
§67% [22(2(H™), HY — o'(E™) (E{)* + g,E")dxdt = 0.
Let us suppose

(29) (1. U, ol + los <.

By Lemma (1.21) we obtain
|H15 = oy E2 -
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Moreover, (2.8) implies
B = §5* 027 (1) + 2H) HE 4 gE) drd.
Hence (1.14) yields
B 5 [0+ wO) o7 JECR + o],

In particular we have

(2.10) [H"|3 + [E"|3 < const. §2.

Let ¢ € L (0, /2) be an arbitrary function and let us denote by ¢, the projection
of @ onto the subspace generated by {wt)cos(2k + 1)x, j = —n,...,n k=
=0,...,n}.

Using (2.8), (2.10), (1.14) we obtain
|15 1o EP didx| = [[572 [2° (H® + Z(H™),) ¢, dt dx| =
< const. 5°|@,] 32 -

Since le — @], >0 as n—> o, we have also [¢ — ¢,[3,—> 0 as n— oo,
hence the inequality
HS’Z 2o EMe dt dx| < const. 62/3|l¢|13/2

holds for every ¢ € L,(0, /2), and consequently for every ¢ € L}/*(0, /2). In other

words, we have

(2.11) [ES|3 < const. 8%, [[E™|3 < const. 67 »
The space {u € L}(0, n/2); u, e L0, [2), u, € L}(0, n/2)} is (compactly) embedded

into C,([0, ©/2]). More precisely, we have |u(x, t) — u(y, s)| < const. (|x — y|'"* +
+ |t = s]*7) for x, ye [0,n)2], 1, s e R".

This gives
Q1) B S const. 8 [o(E)]. = ofeonst. 5.
and from (2.8), (2.10), (2.12) we get ’
(2.13) [H]2 = «(6),

where « is a continuous function, oz(O) = 0. An analogous embedding as above
yields

(2.14) |H™[ ., < const. o(5) .
The system (2.8) is a (nonlinear) vector equation of the form
(2.15) o(V)=G,

where V ={E;.H;, j= —n,...,n, k=0,...,n} and G is the right-hand side
vector. We equip the space R*™* D"+ D of vectors V with the norm

V] = [E”]. + [H].
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and denote by By the ball {V'e R2* D@+ Doyl < U} Let us consider the system
(2.16) (V) =1¢G, ¢€[0,1]

analogous to (2.8), where o(E™), g are replaced by ¢ o(E™), ¢g, respectively. Indeed,
the estimates (2.10)—(1.14) remain valid for the solutions of (2.16) independently
of ¢, provided that (2.9) holds. Consequently, for 6 > 0 sufficiently small the system
(2.16) has no solution on the boundary of B’ for € [0, 1] and the topological
degree d(®,(+) — ¢G, By, 0) is independent of &. The mapping &, is odd, hence
d(@(+) — G, By, 0) = d(®,, B{,0) + 0. Thus we have proved that for every
n =1 the system (2.8) has at least one solution in the interior of B such that
(2.10)—(2.14) hold. Notice that § may be chosen indepedently of n.

Using once more the embedding theorems quoted above we conclude that there
exists a subsequence {E™, H™} of {E™, H™} and functions E, H € C,([0, n/2]),
E, H, e L(0,n/2), E,, H, e L},(0, ©/2) such that E{™ — E,, H™ — H_ in L, (0, /2)
weak, E” —» E,, H™ — H, in L0, n/2) weak, E® — E, H™ — H uniformly.
A standard limit procedure in (2.8) completes the proof.
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Souhrn
O MAXWELLOVYCH ROVNICICH
S PREISACHOVYM HYSTEREZNIM OPERATOREM:
JEDNOROZMERNY CASOVE PERIODICKY PRIPAD
PAVEL KREJCE
Pomoci funkcionalu energie pro Preisachiiv hysterezni operator je dokazana existence slabych

periodickych feSeni jednorozmérné soustavy Maxwellovych rovnic s hysterezi pro nepftili§ velké
pravé strany. Horni odhad pro rychlost Siteni vin nezavisi na hystereznim operatoru.
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Pe3ome

OB YPABHEHMUSIX MAKCBEJUIA C TMCTEPE3MICHBIM OITEPATOPOM
TIPEVICAXA: OOHOMEPHBIM IMEPUOJUYECKUN ITO BPEMEHU CJIVYAN

PAVEL KREJCE

C nomMompro QYyHKLHOHAIOB 3HEPIUH ISl THCTEPE3UCHOro oneparopa Ilpeficaxa mokaspiBaeTcs
CYIIECTBOBAHKE CiabBIX NEPHOAMYECKHX PEmEHWil ONHOMEPHON CHCTEMBI ypaBHeHHIt Makcpeiuia
C THCTEPE3HCOM IUTst HE CIIMIKOM OONBIIMX IPaBbIX yacTeil. OeHKa CBEPXY ISt CKOPOCTH Pacmpo-
CTpaHEHHsl BOJH He 3aBHCHT OT THCTEPE3HCHOTO omeparTopa.
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