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SHAPE OPTIMIZATION OF ELASTIC AXISYMMETRIC BODIES 

IVAN HLAVACEK 

(Received January 21, 1988) 

Summary. The shape of the meridian curve of an elastic body is optimized within a class of 
Lipschitz functions. Only axisymmetric mixed boundary value problems are considered. Four 
different cost functionals are used and approximate piecewise linear solutions defined on the 
basis of a finite element technique. Some convergence and existence results are derived by means 
of the theory of the appropriate weighted Sobolev spaces. 

Keywords: shape optimization, axisymmetric elliptic problems, finite elements, elasticity. 

AMS Subject classification: 65N99, 65N30, 49A22. 

INTRODUCTION 

If both the domain occupied by an elastic body and the data (prescribed forces 
and displacements) are axially symmetric, the use of cylindrical coordinates reduces 
the problem to a two-dimensional domain — meridian section. Let the meridian 
curve be optimized so that a cost functional attains its minimum. The weak solution 
of the (quasistatic) state problem is defined in a weighted Sobolev space of displace­
ment vector-functions with finite energy. 

The present paper is a continuation of the previous paper [2], where the state 
problem was defined by a single elliptic equation with mixed boundary conditions. 

In Section 1 we introduce the appropriate weighted Sobolev space and derive 
some auxiliary results. Section 2 contains the state problem formulated in displace­
ments and the proof of continuous dependence of its solution on the domain in 
a certain sense. We formulate four Shape Optimization Problems in Section 3 and 
prove the existence of a solution to each of them. Approximations by finite elements 
are introduced in Section 4. Here we prove that having a sequence of approximate 
solutions with the mesh-size tending to zero, one can choose a subsequence, which 
converges to a solution of the original problem. 

1. DEFINITIONS AND AUXILIARY LEMMAS IN THE APPROPRIATE 
WEIGHTED SOBOLEV SPACE 

Let a bounded elastic body occupy an axisymmetric domain Q a R3 with Lipschitz 
boundary (see e.g. [4] — chapter 1). The displacement vector u = (wl5 u2, w3) 
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belongs to the space W(Q) of functions with finite energy if each component ut in the 

Cartesian coordinate system x = ( x i , x 2 , x 3 ) belongs to the Sobolev space Hl(Q) 

([4] - chapter 6), W(Q) = [ H 1 ^ ) ] 3 . 

Let us denote the strain component by 

Sij(u) = (dUijdxj + dujjdxi)^ . 

Henceforth || • \0fQ denotes the norm in [L2(-3)]3 and || • ||0 the norm in L2(0,1). 

Assume that the domain Q is generated by the rotation of a two-dimensional 
domain D around the z = x3-axis. Let us pass to the cylindrical coordinate system 
r, 3, z. 

Let Z map each vector-function u e W(Q), defined in Cartesian coordinates, onto 
the ordered triple 

Zu = u = (ur, i^, uz) 

of the physical components of the same vector at the corresponding point (r, #, z). 
Then the space W(Q) is transformed into ZW(D x [0, 2n)). For brevity, let us denote 

ur = u , u& = v , uz = w . 

Let W0(D) be the following subspace of axisymmetric displacements with finite 
energy 

W0(D) = {« G ZW(D x [0, 2n)) | v = 0, Su/3S = 0, <3w/dS = 0} . 

For u e W0(D) we may write 

(1.1) (2n)-i\\u\\iw(i}) = (2n)-i\\«\\lw = 

= JD [u2 + (au/3r)2 + (dujdz)2 + u2/r2 + w2 + (dw\drf + 

+ (5w/5z)2] r dr dz = | |«j|^ (X>) . 

On the basis of (1.1) the space W0(D) can be identified with the following space 

J^r(D) = {A = (u, w) 6 (Wl^D) n L2)1/XD)) x ^^ (Z) )} . 

Here PV^X^) denotes the weighted Sobolev space with the norm 

Hi , r ,D = (ID l>2 + (Sujdr)2 + (duldz)2] r dr dz)1 / 2 , 

L21jr(D) is the space of functions with the norm 

||«||o.1/,D = aD«2/'-d''dz)1/2. 

Let L2r(D) be the space of functions with the following norm 

H o , , , D = a D " 2 r d r d z y / 2 , 

L2r(r) the space of functions defined on F c 3D with the norm 

ll"lk,r = (jr«2rdS)1'2. 
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Lemma 1.1. The embedding of the space ^f(D) into [L2 ) I.(D)]2 is compact. 

For the proof - see [1] - Lemma 1. 

R e m a r k 1.1. Let F be a part of the boundary dD — 0, where (9 denotes the 

z-axis and let F have a positive length. In ffl(D) we can define the trace operator. 

In fact, since each component u or w of u e 3tf (D) belongs to the space W^D), 

we can use the linear continuous mapping 

y: W?X») - L2,r(r) 
(see e.g. [2] - Section 1). 

We shall consider a specific class of domains D(a), where 

D(a) = {(r, z) | 0 < r < a(z), 0 < z < 1} 

and the function a belongs to the following set 

^ a d = {a e C ( 0 ) , 1 ([0,1]) (i.e., Lipschitz function) , 

am i n = a(z) ^ am a x, |da/dz| ^ Cl9 JJ a2(z) dz = C2} 9 

where am i n, am a x and Cu C2 are given positive constants. 

Let F(a) denote the graph of the function a, Fi(a) = dD(a) n {z = 0}, F2(a) = 

= dD(<x) n {z = 1} (see Fig. 1). 

t z 
Г 2 (O Í ) 

•a(z). 

D(a) 
Г(a) 

i;(a) 
Fig. 1 

Lemma 1.2. There exists a constant C independent of a and such that 

||7«||o.rfr1(«)ur(«) -S C||II|!,-.,!,(«) 

holds for any u e W(

2tl(D(<x)), a e Wad. 

For the proof — see [2] — Lemma 1. 

Lemma 1.3. Let a e ^ a d . Then the set 

M(D(a)) = {u = (u, w) e [C°°(C1 D(a))f 9 
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supp u n (0 u F2(a)) = 0, supp w n F2(a) = 0} 

is dense in the following suhspace 

V(D(a)) = {ue Jf(D(a)) | yu = 0, yw = 0 on F2(a)} . 

Proof. 1° Let us denote D(a) = D, F2(a) = F2 and let 

H 1 (D , r , r - 1 )=PV i 1 >(D )nL 2 , 1 / r (D ) 
with the norm 

l«U.c»^-»)-(I«LIU+l«IUJ))
1/a. 

Let « = (u, w) e V(D) be given. There exists a sequence of functions un e H\(D, r, r " 1 ) 
such that 

(1.2) supp un n 0 = 0 , run = 0 on F2 , 

un-+ u in H2(D, r, r - 1 ) 

(see the proof of Theorem 3.2.4/1 in the book [5]). 
Let US choose the domain 

Dk = {(r, z) e D | r > fc} , 

such that supp un c Dk. 
There exists a sequence {unj}9 j = 1 ,2 , . . . , such that 

unj e C°°(C1 Dfc) , supp unj n (F2 u Ok) = 0 , 

(where Ofe = {(r, z) | r = k}), 

unj -> un in H\Dk) for j -• oo . 

Since the norms in Hl(Dk) and H\(Dk, r, r " 1 ) are equivalent, we have also 

unj->un in H\(Dk, r, r - 1 ) . 

If we extend u„; by zero to D - Dk, we obtain unj e C°°(C1D), 

(1.3) unj ->un in H^D^r-1). 

Combining (1.2) and (1.3), we arrive at the following result 

(1.4) unj^u in Hl(D,r,r-1) 

for n -+ oo, j -* oo, 7 > j(n). 

2° There exists a sequence of w„ e C°°(C1 D) such that 

(L5) supp w,, n F2 = 0 , wn->w in W^D) 

(see [2] - Lemma 2). Now Lemma 1.3 follows from (1.4) and (1.5), since 

||«|i(D) = H-Wv,r-) + Hit,* . Q.E.D. 
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2. THE STATE PROBLEM AND THE CONTINUOUS DEPENDENCE 
OF ITS SOLUTION ON THE DESIGN VARIABLE 

For simplicity we shall restrict ourselves to isotropic elastic bodies. We shall 
formulate the state problem via the principle of virtual displacements (see e.g. [4], 
§ 10.3). For physical components of the stress tensor T and of the strain tensor e 
the following relations hold: 

(2.1) Trr = Xe + 2\ierr, TZZ = Xe + 2\iezz, 

x^ = Xe + 2fie^ , Trz = 2\ierz, 
where 

e = err + ezz + e^, 

X = X(r, z) and \i = fi(r, z) are Lame's coefficients. 
Moreover, we have the strain-displacement relations 

(2.2) err = dujdr, ezz = dwjdz , edd = ujr , erz = (dti/dz + dwjdr)J2 . 

Let us define the following bilinear form 

* 8w dw*^ 
+ I + 

dz dz 
/~ ~\ t ^\ r r^ fsu du* u u5* 
(2.3) a(a; « , « * ) = 2^ - — + 

J D ( £ ( ) L \dr dr r r 

, ídu u dw\ /du* u* dw*\ 
+ X (— + - + — ) I + — + 

\8r r dz/ \ dr r dz J 
+ 

(du dw\ (du* dw* 
+ pí— + — + 

\dz dr I \ dz dr 

r ár áz 

for all u = (u, w) and u* = (u*, w*). 
Note that 

a(<x; u, «*) = j D ( a ) [Trr(w) err(i**) + . . . + 2 Trz(w) srz(«*)] r d r d z . 

Denote by Sf(a) the disc generated by the rotation of Fi(a) around the z-axis. 
Let i3 be a cylindrical domain generated by the rotation of the rectangle 

D = (0, O) x (0,1) , d > amax . 

Assume that axisymmetric body forces F e [L2(;Q)]3 are given and the surface trac­
tions are defined by an axisymmetric function 

fO on S(a) 
(G1 on Sx((x) ' 

where G1 is determined as the restriction to Si(a) of an axisymmetric function 
G1 e [ L 2 ( ^ ) ] 3 , where 

§t = dQ n {x3 = 0} ; 

5(a) denotes the surface generated by the rotation of F(a) around the z-axis. 
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Assume that the functions X and \i are given in L°°(D) and X = 0, n ^ n0 > 0 
holds a.e. in D, where /i0 is a constant. 

Passing to the cylindrical coordinate system, we transform the work of external 
forces 

3 

Z (Jo(«) F^i dx + JSi(a) G^w, As) 

into the following integral 

L(a; w) = JD(a) (frw + fzw) r dr dz + JFl(a) (gryu + g2yw) r dr , 

where the functions fr,fz e L2r(D) and gr, gz e L2 r(f x), (f x = (3Pn{z = 0}) are 
given. 

The principle of virtual displacements yields the following variational formulation 
of the State Problem: 

find u e V(D(a)) such that 

(2.4) a(a; u, v) = L(a; v) Vv e V(D(a)) . 

(See Lemma 1.3 for the definition of V(D(a)).) 

Lemma 2.1. (Uniform Korn's inequality). There exists a positive constant Cy 

independent of ae ^a d , such that 

JD(«) [4(«) + «»(«) + 4(«) + 2e2
z(u)] r dr dz = C||u||^(D(a)) 

holds for all ue V(D(a)), a e f̂ad. 
For the Proof — see [l] — Theorem 1 and Example 1. 

Lemma 2.2. There exist positive constants C3, C4, independent of a and such 

that the inequalities 

(2.5) a(a; u, u) ^ C3||u|^(D(a)) Vu e V(I)(a)) , 

(2.6) a(a; u, v) = C4||u||^(D(a)) ||v||jr(D(a)) Vu, v e Jf(D(a)) 

hold for all a e ^ a d . 

Proof. Since X ^ 0 and lx0 ^ /i, we have 

a(a; u, u) ^ 2^0 JD(a) [e
2
r(u) + ... + 2e2

z(u)] r dr dz . 

Then (2.5) follows from Lemma 2.1. Making use of the boundedness of X and ^, 
we obtain the estimate (2.6). 

Lemma 2.3. There exists a positive constant C5, independent of a and such that 

L(a;ei)gc5 | |u|UD(0 l ) ) Vu e jf(D(a)) 

holds for all a e ^ a d . 
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Proof. Since both components u and w of u belong to W[ll(D(oc)\ we can apply 
Lemma 1.2 to them. 

Lemma 2.4. The State Problem (2.4) has a unique solution u = u(a) for any 

ael řad-

Proof - follows from the Riesz-Frechet Theorem, since the space V(D(a)) can 
be equipped with the inner product a(a; u, v) on the basis of Lemma 2.2. Moreover, 
we employ Lemma 2.3 to verify the continuity of the right-hand side in (2.4). 

Proposition 2.1. Assume that a sequence {an}, n = 1,2,..., a n e ^ a d , converges 
to a function a in C([0,1]). Let us define the domains 

Gm = {(r, z) | 0 < r < a(z) - l/m, 0 < z < 1} , m = 2, 3,... . 

Let u(an) he the solution of the State Problem (2.4) on D(an). Then 

u(an) u(a) (weakly) in Jf(Gm) Vm , 

where u(a) is the solution O/(2.4) on D(a). 

Proof. Let us denote D(a) = D, D(an) = Dn, u(an) = un. Inserting v = un in 
(2.4) and using Lemmas 2.2, 2.3, we obtain 

CAun\\^(Dn) ^ a(*n\ ",., O = L(an; un) S C5\\un\\#iDn) 

so that 

(2-7) l«-|U(iw-a Cs/C3 Vn. 

Let m be fixed for a time being. Since Gm c: Dn for n > nQ(m), we have 

(2.8) W U c w = C5jC3 = C6 Vn>n 0 (m). 

The space 3^(Gm) is a Banach reflexive space (see e.g. [5]) and therefore it is weakly 
compact. There exists u(m) e ^f (Gm) and a subsequence {uni} c {un} such that 

(2.9) u n i • u(m) (weakly) in Jf(Gm) for nx -> oo . 

Passing to Gm+i, we may argue in the same way, choosing a subsequence {unJ cz 
c {uni} such that 

"„2 ^« ( m + 1 ) (weakly) in JP(Gm+l). 

Let us consider the diagonal subsequence {u„D} of all subsequences {uni}, {un2},.... 
We can prove that a function u e «2f (D) exists such that 

(2.10) unD *u\Gm (weakly) in *(Gm) 

holds for any m, if nD —> oo. 
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First we show that 

(2.11) u(w+fc)|Gw = u ( w ) a-e- i n G<» 

holds for any positive integer fc. In fact, let us denote 

u (m+k) |Gm - u(m) = \p 

and let $ be an extension of \j/ by zero to Gm+k - Om. Consider the equation 

JGm xj/ . unDr dr dz = {Gw+k $ . u„Dr dr dz , 

(where xp . (p = \\/r(pr + ^z<pz) and pass to the limit with nD -> oo on both sides. Then 
(2.9) implies 

JGW <A • u(m)^ dr dz = JGm+k $ . u<m+k)r dr dz = JGm xj/. u (m+k) |Gmr dr dz , 

so that 

Wlr,om = k , * • (« (m+kJ |Gm - «(m) > dr dz = 0 

and (2.11) follows. 
Consequently, we may define 

(2.12) u|Gm = u(n° Vm . 

Since any closed convex set in 3f(Gm) is weakly closed, (2.8) and (2.9) imply 

| |« (m) |UGm) = C6 Vm, 
so that 

l u | ^ ( D ) = l i m | | u ( ' « ) | U G m ) g C 6 . 
m-*oo 

Hence u defined by (2.12) belongs to jf(JD) and (2.10) holds. 

2° Let us show that u = u(a), i.e., u is a solution of the State Problem (2.4) on 
D(a). Let any v e V(D) be given. By virtue of Lemma 1.3 there exists a sequence 
{ft)fc}, k -> oo, such that cok e M(D) and 

(2.13) cok-+v in tf(D). 

Let Qk e H(D) denote any extension of cok to the rectangular domain I), which 
saves the homogeneous boundary conditions on the line z = 1. For instance, we 
can define 

Qk(r, z) = cofc(2a(z) - r, z) 

for (r, z) e 15 - I)(a) (provided amax < 5 g 2amin). 

Then we have 

Qk\Dn e V(D„) 
and therefore 

fl(«WD; ««>» &) = J-{aBD; C*) v"x> • 
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Let k be fixed for the time being. We shall write n instead of nD and denote 
a(z) — 1/m by am(z). We have 

\a(ccn; un, Qk) - a(am; u, Qk)\ _; 

_; |a(am; un - u, Qk)\ + |a(an - am; un, Qk)\ =--I1+I2, 

where a(an — am; e, •) denotes the bilinear form a with the integration over the 
domain Dn — Gm only. From the weak convergence (210) It -* 0 follows for n ~> co. 
By an analogue of (2.6) and using (2.7), we obtain 

I2 = C||t2fc||<-f(D--Gm) • 

(Here we always assume that n is large enough so that n > n0(m) implies that 
Gm cz Dn.) Consequently, we may write 

K a « ; u*> Qk) - a(<*l u> Qk)\ _i |«(«„; u„, Qk) - a(ocm; u, Qk)\ + 

+ \a(ot - am; u, Ok)| <; ^ + C| |O^ ( D n_G m ) + C| |^k | |^ ( D .G m ) . 
Since 

meas (Dn - Gm) < 1/m + ||an(z) - a(z) | |C ( [ 0 1 ] ) , 

we conclude that 
lim a(an; un, Ok) = a(a; u, Ok) . 
«-*oo 

It is easy to see that 
lim L(an; Qk) = L(a; Qk) , 
n-*oo 

so that we arrive at the following result: 

a(oc; u, gk) = L(a; Qk) Vfe . 

Let us pass to the limit with fe ~> oo. On the basis of Lemma 2.2, Lemma 2.3 and 
(2.13), we may write 

\a(a; u, Qk) - a(a; u, v)| ^ C||0k - v||^ (D) -> 0 , 

|L(a; Qk) - L(a; v)| _; C||cok -- v||^ (D) - 0 . 

Consequently, u satisfies the condition (2.4) for any v e V(D). 

The subspace V(Gm) is weakly closed in J^(Gm), being convex and closed (as 
follows from Lemma 1.2 applied to Gm). We have 

un\GmeV(Gm) V n > n 0 ( m ) . 

Then u|G me V(Gm) follows from (2A0) and since m was arbitrary, u e V(D) holds. 

By means of Lemma 2.4 we conclude that (i) u = u(a) is the solution of (2.4) 
and (ii) the whole sequence {u„} is weakly convergent to the solution u(a) in $F(Gm) 
for any m. Q.E.D. 
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3. OPTIMIZATION PROBLEMS. EXISTENCE OF AN OPTIMAL DOMAIN 

It this Section we shall choose four different cost functional and present definitions 
of four corresponding shape optimization problems. Finally we shall prove the 
existence of a solution to any of these problems. 

Let us consider the following cost functional: 

1i(a; u) = JD(a) (M2 + w2) rdrdz; 

fo{*\ u) = Jo [("«*)> z) - ug)
2 + (w(a(z), z) - wg)

2] dz , 

where w(a(z), z) and w(a(z), z) denote the traces of u and w on the curve F(a), 
respectively and ug, wg are given functions from L2(0,1); 

j3(a; u) = L(a; u) ; 

U{*\ ") = JD(a) 4li2(e2
r(u) + 4>(u) + £2

z(u) + 2e2
z(u) - ie2(u)) r dr dz . 

Note that the integrand of j 4 is proportional to the squared yield function of Mises 
(see e.g. [4] — chapter 3). Another form of the latter cost functional is 

j4(a; u) = $Dia) ( 4 + T2
d 4- T2

Z + 2T2
Z - i(xrr + T M + TZZ)2) r dr dz , 

where the stress components are determined by (2.1), (2.2) as functions of the dis­
placement u = (u, w). 

We define the Shape O p t i m i z a t i o n P r o b l e m s : 

find a0 G ̂ a d such that 

(3.l)f j;(a°; u(a0)) ^ jfa; u(a)) Va e ^ a d , i e {1, 2, 3, 4} , 

where u(a) denotes the solution of the State Problem (2.4). 
For the proof of the existence of an optimal solution a0 we shall need the following 

Proposition 3.1. Let the assumptions of Proposition 2.1 be satisfied. Then 

(3.2) -imj^a,.; u(a„)) = jf(a; u(a)) , i = 1, 2, 3 , 
W-+00 

lim inf j4(a„; u(a„)) ^ j 4(a; u(a)) . 
w-*oo 

Proof. Case i = 1. Let us denote again a(z) — l/m = am(z), u(a„) = un, D(an) = 
= Dn, u(a) = u, D(a) = D. We have (for n large enough) 

(3.3) |A(a„; u„) - A(«; u)| = I ||u„||2,r)Gm - |u||2, r,Cm + 

+ klo,,z>„-0m - Ho,,^d = 
= I H | o 2 , , , G , „ - H | o , , G , „ | + l - » l o , , X , „ - G m + H o 2 , r , ^ C m . 

Using Lemma 1.1 and Proposition 2.1, we obtain 

u „ ^ u in [L2ir{Gm)]2 
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so that 

(3.4) lim ||u„||2ir,Gm = H 2 , r i G m Vm. 
II-+CO 

We can derive the estimate 

( 3 . 5 ) \\Un\\lr,D^Gm = ^ m a x K - tf"||C([0il]) 

for n > n0(m), m > m0, with some constant C independent of n, m. Indeed, (3.5) 
follows from [6] — (Appendix), if we use the equivalence of norms in W^r(D0) 
and Hl(D0), where 

D0 = {(r, z) | amin/2 < r < amax} . 

Combining (3.4) and (3.5), we deduce 

limj\((xn;un) = j1(<x;u) 
n-*co 

on the basis of (3.3). 
Case i = 2. Let us denote the graph of ccn, a by F„, F, respectively, graph of a"1 = 

= a — l/m by ym. We may write 

h(*n\ un) - 12(a; u) = Kx + K2 + K3, 

where (for un = (un, wn)) 

K, = Jo [(«.|r„ - «fl)
2 + M r „ - ygf] dz -

- Jo K«»L - «fl)
2 + K L - w

f l)
2]d z . 

K2 = JU(«„L - «fl)
2 + K L - wfl)

2] dz -
-Jo[(«L-« f l)

2 + Hm -w 9 ) 2 ]dz, 

^ = J0[(«L-«fl)
2 + (wL-^) 2 ]dz-

- Jo [(«|r - «fl)
2 + M r - w9)

2] dz . 

We have a splitting 
-Ki — ^iu + Klw, 

and the estimates 

I--I.I = Jo |««|r„ - «„U • |«„|r„ + «„L - 2«fl|
 d z = 

^ ||«.|r„ - «n|rm||o • ||«.|r„ + «»L - 2uJ0 , 

||".|r„ - «.U|o = Jo («.|r„ - un\ymf dz = J0 dz(J^ di.„/dr dr)2 g 

^ (l/m + A) Jo dz J:„ (3M„/ar)2 dr <; a ^ l / m + j8„) ||i»„||^(Dii), 
where 

Pn = [|a - a„||C([0fl]) . 

By virtue of (2.7), the latter expression is bounded by C(ljm + ftn). 
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Next we have 

(3-6) I h k + «,L - 2ug\\i ^ 

^ 3 ( H r J o + k L ! l o + 4W|o) = e, 

where C is independent of all sufficiently great n,m, n > n0(m). 
Indeed, making use of Lemma 1.2 and (2.7), we obtain 

M r J o = «mii k (yun)
2 r ds = a m m c | « J \>r,Dn = c7 . 

Second, we may write 

MLB§ = 2 lhkllo + 2||«„|ym - «.|rjs = 

^ 2c 7 + 2c"(l/m + /?„) = c8 

and thus we arrive at (3.6). Altogether, we have 

\Klu\ = c(l/m + j3„)1/2. 

The same estimate can be derived for Klw. Consequently, we obtain 

(3.7) |Ki | g C(l/m + pn)
1/2 Vn, m , n > n0(m) . 

For K2 we may obviously write 

Ki = K2u + K2w 

with a selfexplanatory splitting. We can prove that for m > m1 

(3-8) l i m | | u n | y m - u U | o = 0. 
n-»oo 

In fact, let us define Gm = Gmr\ D0. We easily realize that the weak convergence 
of un in J4?(Gm) to u implies the weak convergence of the un-components in H1(Gm) 
to w. The trace mapping of Hl(Gm) into L2(dGm) is compact (see [7] Chapt. 2, § 6.2), 
so that 

Hm \\un\ym ~ w|ym||L2(yw) = 0 . 
n-*<x> 

Consequently, we have 

J o (Un\ym - U\ymf dz S J y m (Wn|y m ~ U\yrnf <$S - > 0 , W ~> 00 , 

which proves (3.8). 
Then 

(3.9) K2u = ft [(«„|J2 - {u\yJ + 2«9(«L - «„|J] dz -> 0 

by virtue of (3.8). By an analogous argument, we arrive at the similar assertion for 
K2w, so that 

(3.10) limK2 = 0 Vm > mY. 
П-+CO 
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For K3 we have the following splitting and estimate 

^ 3 -^ &2u + ^-3w > 

\K3u\ = ||o("L - «|r)(«L + "It" - 2"9)dzl ^ 

S c||"|ym-«|r||o^O. m ^ o o , 

which follows by an argument similar to that for Klu. Consequently, we obtain 

<3.11) limK3 = 0-
« - * oo 

Combining (3.7), (3.10) and (3.11), we deduce that 

lim (£, + K2 + K3) = 0 
7J-»00 

and (3.2) follows for i = 2. 
Case i = 3. We have (denoting Fi(aw) = rln and Fi(a) = rx) 

(3.12) |;3(an; un) - j3(a; u)| = |L(a„; un) - L(a; u)| = 

= I JDn ( / X + fzwn) r dr dz + Jrin (gryun + gzywn) r dr -

- ID (/> + /,w) r dr dz - J r i (gryu + azyw) r dr| . 

In particular, we may write 

|JDM/rW„rdrdz - JD / rurdrdz| ^ |JGm/r(w„ - w)rdrdz| + 

+ |Ji)„-Gm/r"^drdz| + \\D^GJrurdrdz\. 

The first integral on the right-hand side tends to zero for any m on the basis of the 
weak convergence of un — see Proposition 2.1. Using (2.7), for the second integral 
we obtain the following estimate 

|JDn-Gm/r*V*dr dz| ^ C||/r||0|.,DnAGm -> 0 , 

i f n - » o o , m - » c o , r c > n0(m). Since meas (D - Gm) tends to zero for m growing 
to infinity, the last integral converges to zero for m --> oo. Altogether, we deduce 

(3.13) lim \Dnfrunr dr dz = \Dfrur dr dz . 
n-->oo 

Denoting Fi(a) n dGm = Fim, we may write 

\$rln9ryun
rdr - Jngr7wrdr| <: |JTlmgr(yw„ - yu)rdr| + 

+ |JTm-Tlmgr7Vdr| + |J r i- r img ryurdr| . 

The first integral tends to zero for any m on the basis of Remark 1.1 and Proposition 
2.1 - weak convergence of un. The second integral has the following upper bound 
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> 

^lkr||o,r,rln~rlm||w„|ifr,D„ 

with the constant C independent of n (cf. Lemma 1.2). Using (2.7), we conclude-
that the latter bound tends to zero with n - > o o , m - > o o , n > n0(m). Since 

meas (rx - Flm) _ 1/m , 

the third integral tends to zero with m growing. Altogether, we obtain 

(3.14) lim Jfln gryunr dr = J r i gryur dr . 
71->O0 

Since analogous results can be derived for the integrals involving wn instead of unr 

we are led to (3.2). 
Case i = 4. Obviously, we may write 

h(<*n\ O = 4 JDn fi
2(e2

r + el* + e2
zz + 2e2

2 - ie2) r dr dz ^ 

1 fdun un dwn\
2\ , , _--[-_.» + -» + —»\ j r d r d z 

3\dr r dzJJ 

for all n, m, n > n0(m), since the integrand is non-negative everywhere. The 
functional on the right-hand side is weakly lower semi-continuous in JF(Gm) (being, 
convex and Gateaux-differentiable). Making use of the weak convergence of um 

in ffl (Gm), we obtain 
lim inf j4(a„; un) ^ 
F1-+00 

^ „ r 2 ((8u\2 1 (Su " 3w\2\ s4l»-"(t)+--ifc+; + s ) ) r d r d 2 

for any m. Passing to the limit with m -> oo, we arrive at the inequality 

lim inf j4(aM; un) ^ j4(a; u) . Q.E.D. 
n->oo 

Theorem 3.1. There exists at least one solution of the Shape Optimization 
Problem (3.1)f, i e {1,2, 3,4}. 

Proof. Let {an}, n -» oo, aw e ^a d , be a minimizing sequence of j^a ; u(cc)), i.e., 

(3.15) limIt(an; u(a.,)) - inf j4(a, u(a)) . 
«-•oo ae^ad 

By means of the Arzela-Ascoli Theorem we can show that the set ^ a d is compact 
in C([0,1]). Hence there exist a subsequence {afc} and a0 e ^ a d such that 

ak-»a° in C([0,1]) . 
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Proposition 31 and (3.15) imply 

inf jj(a, 11(a)) = limj,(at, u(afc)) ^ jf(a°, u(a0)) . 
ae^ad /Woo 

Consequently, a minimum is attained at a0. 

4. APPROXIMATIONS BY FINITE ELEMENTS 

In the present Section we propose an approximate solution of the Shape Optimiza­
tion Problems, making use of piecewise linear design variables and linear triangular 
finite elements for solving the State Problem. 

Let N be a positive integer and h = l/N. We denote by Aj, j = 1, 2, ...,N, the 
subintervals [(j — i)h, jti] and introduce the set 

^ d = { a / 1 e ^ a d | a ^ G P 1 ( A i ) V ; } , 

where PX(Aj) is the set of linear functions defined on A;. Let Dh denote the domain 
D(cch) bounded by the graph Th = F(cch) of the function cch e <%h

ad. The polygonal 
domain Dh will be partitioned into triangles by the following way. We choose 
a0 G (0, amin) and introduce a uniform triangulation of the rectangle 01 = [0, a0] x 
x [0,1], independent of cch, if h is fixed. 

In the remaining part Dh — ffl let the nodal points divide the segments [a0, cch(jhj], 
j = 0,1, 2,. . . , N, into M equal segments, where M = 1 + [(ama* — ao) -W] and the 
square brackets denote the integer part of the number inside. 

One can verify that the segments parallel with the r-axis are not longer than h and 
shorter than h(amin — a0)/(amax — a0). One also deduces the following estimate for 
the interior angles co of the triangulation 

tg co £ amin ~ *° (1 + d + C2)"1 . 
«max - a 0 

Consequently, one obtains a strongly regular family {^(aft)}, h -> 0, a h e ^ d , 
of triangulations. Note that for any cch e %\d we construct a unique triangulation 
^h(xh). 

Let us consider the standard space Vh of linear finite elements 

Vh(Dh) = {vh e [C(C1 D,)]2 n V(Dh) \vh\T e [PX(T)]2 VTe <Th(ah)} . 

Note that uft = 0 for r = 0 follows from uh = (uh, vvft) e V^D/,). 
We define the Approximate State Problem: 
find uh s= u ^ ) e Vft(D/,) such that 

(4.1) a(a,; uh, vh) = L,(aft; v,) Vv, e V,(D,) . 

Here Lh(cch, vh) denotes a suitable approximation of the functional L(cch; vh), which 
satisfies the following conditions: there exist positive constants C7, C8 and X, in-
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dependent of aft and such that 

(4-2) |Lft(a„; vft) - L(aft; vft)| S c7l»*NUi>h). 

(4-3) \Lh(ah; vh)\ ^ Cs\\vh\\^Dh) 

holds for any ah e %\^ and any vh e Vh(Dh). 

For example, let us define 

(4.4) Lh(ah; uh) = £ [fruhr + fzrwh]Gm meas (T) + 
Te3rh(ah) 

+ Z [ar™h + gzrwJG(J) meas (I) , 
j 6 r h ( a h ) n T 1 ( a h ) 

where G(T) denotes the centre of gravity of the triangle T and G(I) is the midpoint 
of the interval I = Tn Fi(aft). 

Lemma 4.1. Let Lh(ah; uh) be defined by the formula (4.4). Assume that fr,fze 
e H\D) n C(Cl D), r2D%, r2DJzeL2(D) for \a\ =2 and gr,gz are piecewise 
from C2. 

Then (4.2) and (4.3) hold, with X = 1. 

The proof follows immediately from Lemma 8 in [2], since both components uh 

and wh belong to the space W(
2

l)
r(Dh). 

Remark 4.1. One can weaken the assumptions somewhat, employing the fact 
that uh vanishes on the z-axis. 

Lemma 4.1. The Approximate State Problem (4.1) has a unique solution uh(ah) 
for any ah e °U\A and any h = l/N. 

Proof. Lemma 2.2 and Lemma 4A enable us to apply to Riesz-Theorem in the 
Hilbert space Vh(Dh) with the inner product (u, v) == a(ah; u, v). 

Proposition 4.1. Let the assumptions (4.2), (4.3) be satisfied. Let {ah}9 h -> 0, 
be a sequence of ah e °ll\^ converging to a in C([0,1]). 

Then 

(4.5) "/K)|Gm "u(a)IGm (weakly) in tf(Gm) Vm , 

where u(a) is the solution of the State Problem (2.4) on the domain D(a). 

Proof. Denote D(ah) = Dh, D(a) = D. 

1° Let us define uh e Vh(Dh) to be the solution of the problem 

(4.6) a(ah; u*, vh) = L(ah; vh) Vvh e V(Dh) . 
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Subtracting (4.1), we obtain 

«(«/.; ut - uh, *h) = L(ah; vh) - Lh(ah, vh) 

and inserting vh := u* — uft, we arrive at the inequalities 

(4.7) C3|ju* - uh\\
2^(Dh) S a(ah; u* - u„, u* - u„) = 

- L(a„; u* - u„) - Lh(ah; u* - u„) g C7/i
A||u* - u j ^ ^ , 

using Lemma 2.2 and (4.2). From (4.6) we derive that 

C s K I I ^ ) S L(ah; ut) g C8||u*||^(1>h) 

holds by virtue of Lemma 2.2 and (4.3). Consequently, for h < h0(m) we have 
Gm c: Dh and 

(4-8) K I U G . ) -S \\ut\\*(Dh) £ C8/C3 Vm . 

There exist a subsequence (we shall denote it by the same symbol) and u(m> e J^(Gm) 
such that 

(4.9) u* -u ( m ) (weakly) in Jf(Gm) . 

Arguing as in the proof of Proposition 2.1, we are led to a function u e jf(D) such 
that 

(4.10) u*. ^u|Gm (weakly) in jf(Gm) 

holds for any m and a subsequence of {u*}. In what follows, we shall consider this 
subsequence. 

2° Let us show that u = u(a), i.e. u is a solution of the State Problem (2.4). Let 
any v e V(D) be given. By virtue of Lemma 1.3 there exists a sequence {cok}, k -> oo, 
a)k e M(D) such that 

(4.11) o>k-+v in Jf(D). 

Let Qk e $f(D) be any extension of cok to the rectangular domain D, which fulfills 
the zero boundary condition on the line z = 1. 

Consider the Lagrange linear interpolate nhQk of Qk\Dh over the triangulation &~h(ah). 
Obviously, nhQk belongs to Vh(Dh). Let k be fixed, for the time being. We can insert 
nhQk into (4.6) to obtain 

(4.12) a(ah; u*, n ^ = L(aft; nhQk) . 

We shall pass to the limit h -> 0. Let us denote am = a — l/m. We may write 

(4.13) |a(a„; u*, nhQk) - a(am; u, Qk)\ = 

= |a(am ; u*, <>fc) + a(am ; u*, w r f k - Qk) + 

+ a(aft - am; u*, 7ift0fe) - a(am ; u, Dfc)| g 

^ |a(am ; u* - u, fo)| + |a (am ; u*, Trrf* - <?*)! + \a(ah - am; u*, nhQk)\ , 
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where 
a(ah - am; •, •) = a(ah; •, •) - a(aw; % •) . 

Let any positive e be given. From (4.10) we conclude that the first term on the right-
hand side of (4.13) is less than e/6 if h < h^s, m). 

To estimate the second term, we first employ for Qk = (wk, yk) and nhQk = 
= (nhwk> /̂lyjt) the well-known inequalities 

IK** - W/c|li,r,Dh ^ «J£ ||7chwk - wk||1>Dh g Ch|wk|2fi>, 

( k ( w - wk)2/rdr dz)1'2 ^ (ro,1 fDh(7ihwk - wk)
2 dr dz)1'2 S Ckh\\wk\\2,D 

where r0k = dist (<9, supp wk). 

Consequently, combining these estimates for wk and yk, we obtain (cf. (l.l)) 

(4.1.4) \\nhQk - Ok|UDh) S Ckh(i|wk||
2
2,6 + \\yk\\lf>)U2 . 

Using Lemma 2.2, (4.8) and (4.14), we arrive at 

(4.15) ja(aw; u*, nhQk - Qk)\ ^ C4j|u*||^(Gm) \\nhQk - Qk\\^{Gm) S 

^ C(k) h|fal2,D < e/6 for h < h2(e) . 

It remains to estimate the third term. To this end, we realize that 

|Kvvk|j1>T £ C |w k | 2 f T Vh 

holds for all triangles Te ^h(ah). 
Let Gm be the smallest union U of triangles Te <Th(ah) such that D,, - Gm c U. 

Obviously, we have 
(416) meas (Gm) ^ l/m + 2h + |jah - a||C([0>1]) . 

Consequently, the following estimate holds 

IKvv k | 2 ^ G m S ||̂ Wfc||ifGm» = I Kw k | | ? t T ^ C|jwk|i
2
}GmH . 

[TeGm
h 

Similar estimates are true for 7iftyk. Using also (4.8), we may therefore write 

(4.17) \a(ah-a
m;ut,nhQk)\ S 

-g C4||u*|j^(I>h) ||^k|U(Dh-Gm) -S C\\Qk\\2tGmH , 

since the norms in [ H 1 ^ - Cm)]2 and ^ ( D h -*- Gm) are equivalent (for m great 
enough). 

Combining (4.13), (4.15) and (4.17), we derive the following inequality 

|a(<xk; "*> nhQk) - a(a; u, Ck)| g 

£ |a(ak; u*, 7ih0k) - a(aw; u, 8 k) | + |a(a - aw; u, Ck) ^ 

g 8/3 + C||0k||2,GmH + C\\u\\*iD + Gm) \\Qk\\^iD^Gm) 
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for h < h3(e, m). Making use of (4.16), we conclude that 

(4.18) lim a(cth; u*, nhQk) = a(ot; u, Qk) . 
h-+0 

Next we may write, using Lemma 2.3 and (4.14) 

\L(cch; nhQk) - L(cc; Qk)\ S 

g \L(och; nhQk - Qk)\ + \L(cch; Qk) - L(a; Qk)\ = S£^ + &2 , 

| ^ i | -S C5\\nhQk - Ofc||^h) S Cfc||fo||2fl>, 

\&i\ ^ h(Dh,D) |/rWfc + fsyk\ rdrdz + Jd ( r i h , r i ) |grwk + gzyk\ r dr, 

where A(A, B) = (A — B) u (B — A) denotes the symmetric difference, 

lim meas A(Dh, D) = 0 , lim meas zl(Fi/„ Fi) = 0 . 
h-+0 h-+0 

Thus we conclude that 

(419) lim L(ah; nhQk) = L(cc; Qk) . 
h->0 

Passing to the limit with h -* 0 in (4.12) and using (4.18), (4.19), we obtain 

a(cc; u, cok) = L(cc; wk) 

Passing to the limit with k -* co and making use of Lemma 2.2, Lemma 2.3 and (4.11), 
we arrive at 

a(ot; u, v) = L(a, v) . 

The space V(Gm) is weakly closed in J^(Gm). In fact, V(Gm) is convex and closed by 
virtue of the continuity of the trace mapping — see Remark 1.1. Since u*|Gm e V(Gm), 
the weak limit u|Gm e V(Gm), as well. Passing to the limit with m -> oo, we obtain 
u e V(D). Consequently, u is the solution of the State Problem (2.4), u = u(cc). 
Since u(oc) is unique (see Lemma 2.4), the whole sequence {u*} tends weakly to u|Gm 

in jT(Gm). 
The estimate 

(4-20) ||ii* - u,| |^ (Gm) ^ ||u* - uh\\*(Dh) g Chx 

follows from (4.7). Combining the weak convergence of u* with (4.20), we arrive 
at the assertion (4.5). Q.E.D. 

For any fixed parameter h = l/N, we define the Approximate Shape Optimiza­
tion Problem: 

find ahe%h
ad such that 

(4.21), jfal u , K ) ) S JtK <«H)) Va, e **ad , 

where i e {1, 2, 3, 4} and uH(<xh) is the solution of the Approximate State Problem 

(4-1). 
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Proposition 4.2. The Approximate Shape Optimization Problems have at least 
one solution for any i e {1, 2, 3, 4} and any h = 1/N, N = 2, 3, ... . 

Proof. It is readily seen that 
a,, e %ld oae s4 

if a e RN+1 denotes the vector of cch(jh), j = 0 , 1 , . . . , N and s4 is a compact subset 
of RN+1. One can show that the nodal values of u^a,,) depend continuously on a. 
The same assertion can be then verified for ji(cch; uh(cch)) = Jt(a). Consequently, 
the function J/(a) attains its minimum on the set s4. 

Proposition 4.3. Let the assumptions (4.2), (4.3) be satisfied. Let {a,.}, h -> 0, 
be a sequence of ah e °U\^ converging to a in C([0, 1]). Then 

lim Ji(oc}v uh(och)) = Ji(oc, u(a)) 
h->0 

holds for ie{l,2, 3}, where uh(cch) and u(a) is the solution of the problem (4.1) 
and (2-4), respectively. 

Proof is parallel to that of Proposition 3.1. We replace an by cch, un by u/t, Dn by I)ft, 
F„ by F,„ instead of Proposition 2.1 and Lemma 2.3 we make use of Proposition 4.1 
and (4.3), respectively. The boundedness of all uh in ^(Dh) is a consequence of (4.8) 
and (4.20). 

Remark 4.2. The functional j 3 can be replaced by the approximation Lh(ah; uh(ah)). 
Then we employ also the estimate (4.2) and the boundedness of uh in J^(Dh) to verify 
the assertion of Proposition 4.3. 

Theorem 4.1. Let the assumptions (4.2), (4.3) be satisfied. Let {och}, h -> 0, be 
a sequence of solutions of the Approximate Shape Optimization Problem (4.21),, 
i e (1 , 2, 3}. Then a subsequence {ah} exists such that 

(4.22) a^->a° in C([0, 1] ) , 

(4.23) uh(an) -u(a°) (weakly) in J?(Gm) 

for any m sufficiently great, 
where a0 is a solution of the Shape Optimization Problem (3.1)£, u^(a^) are solutions 
of the Approximation State Problem (4.1) and u(a°) is the solution of the State 
Problem (2.4). 

The limit of any uniformly convergent subsequence of {ah} represents a solution 
0/(3.1)1 and an analogue of (4.23) holds. 

Proof. Since ^ a d is compact in C([0, 1]), a subsequence {a/j} exists such that 
(4.22) holds, with a0 e <^ad. 

Let any a e ^ a d be given. There exists a sequence {A}, h -> 0, fih e ^rad, such that jiH 

tends to a in C([0,1]). (This follows from Appendix in [2]). We have 
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Ji{^un{*n))^k{h,<fo)) Vfi, 

by definition. Passing to the limit with h -> 0 and using Proposition 4.3 on both 
sides, we obtain 

jt(a°, u(a0)) ^ }{*, u(a)). 

Consequently, a 0 is a solution of the problem (3.1);. The convergence (4.23) follows 
from Proposition 4A. The rest of the theorem is obvious. 
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Souhrn 

OPTIMALIZACE TVARU OSOVĚ SYMETRICKÝCH PRUŽNÝCH TĚLES 

IVAN HLAVÁČEK 

Uvažuje se osově symetrická úloha teorie pružnosti s kombinovanými okrajovými podmínka­
mi. Je třeba nalézt část hranice osového řezu tělesa tak, aby minimalizovala jeden ze čtyř typů 
účelového funkcionálu. Dokazuje se existence optimální hranice a konvergence přibližných, 
po částech lineárních řešení. 

Pe3K)Me 

OnTHMH3ALi;HH <DOPMí>I y n P y T H X OCECHMMETPHHECKHX TEJI 

IVAN HLAVÁČEK 

PaccMaTpHBaeTCH ocecHMMeTpHHecKaa 3aflana TeopHH ynpyrocTH co CMemamiBíMH KpaeBbíMH 
ycjíOBHHMH. TpeSyeTCH HaňTH nacTb rpamnibi MepHAHOHanbHoro ceHeHHa oÓJiacTH TaK, HTO6BI 
MHHHMH3HpOBaTb O^HH H3 HeTbipeX THnOB HeJIeBOrO <}>yHKu;HOHaJia. flOKa3bIBaeTCH CymeCTBOBaHHe 

OnTHMaJIbHOH TpaHHHbl H CXO^HMOCTb npH6jIH»CeHHbIX, KyCOHHO-JIHHeHHbIX peHIeHHň. 
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