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SHAPE OPTIMIZATION OF ELASTIC AXISYMMETRIC BODIES
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Summary. The shape of the meridian curve of an elastic body is optimized within a class of
Lipschitz functions. Only axisymmetric mixed boundary value problems are considered. Four
different cost functionals are used and approximate piecewise linear solutions defined on the
basis of a finite element technique. Some convergence and existence results are derived by means
of the theory of the appropriate weighted Sobolev spaces.
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INTRODUCTION

If both the domain occupied by an elastic body and the data (prescribed forces
and displacements) are axially symmetric, the use of cylindrical coordinates reduces
the problem to a two-dimensional domain — meridian section. Let the meridian
curve be optimized so that a cost functional attains its minimum. The weak solution
of the (quasistatic) state problem is defined in a weighted Sobolev space of displace-
ment vector-functions with finite energy.

The present paper is a continuation of the previous paper [2], where the state
problem was defined by a single elliptic equation with mixed boundary conditions.

In Section 1 we introduce the appropriate weighted Sobolev space and derive
some auxiliary results. Section 2 contains the state problem formulated in displace-
ments and the proof of continuous dependence of its solution on the domain in
a certain sense. We formulate four Shape Optimization Problems in Section 3 and
prove the existence of a solution to each of them. Approximations by finite elements
are introduced in Section 4. Here we prove that having a sequence of approximate
solutions with the mesh-size tending to zero, one can choose a subsequence, which
converges to a solution of the original problem.

1. DEFINITIONS AND AUXILIARY LEMMAS IN THE APPROPRIATE
WEIGHTED SOBOLEV SPACE

Let a bounded elastic body occupy an axisymmetric domain Q < R® with Lipschitz
boundary (see e.g. [4] — chapter 1). The displacement vector u = (uy, u,, u3)
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belongs to the space W(R) of functions with finite energy if each component u; in the
Cartesian coordinate system x = (x, X,, x3) belongs to the Sobolev space H'(Q)
([4] — chapter 6), W(Q) = [H'(Q)]*.

Let us denote the strain component by

g;(u) = (Qu;[0x; + du;[ox;)[2 .

Henceforth ||+ |o,o denotes the norm in [I*(2)]* and ||+ |, the norm in I*(0, 1).

Assume that the domain Q is generated by the rotation of a two-dimensional
domain D around the z = xj3-axis. Let us pass to the cylindrical coordinate system
r,9,z.

Let Z map each vector-function u e W(Q), defined in Cartesian coordinates, onto
the ordered triple

Zu =i = (u,, ug, u,)

of the physical components of the same vector at the corresponding point (r, 9, z).
Then the space W(Q)is transformed into ZW(D x [0, 2x)). For brevity, let us denote

=uU, Ug=0, U, =W.

Let W,(D) be the following subspace of axisymmetric displacements with finite
energy

Wo(D) = (e ZW(D x [0,27)) | v = 0, 6u/a9 = 0, dw|d9 = 0} .
For i € Wy(D) we may write
(1.1) (@m) Jullfe = @m)7* ]2y =
= [p[u? + (ufor)* + (0u[oz)* + u?[r* + w? + (ow|or)* +
+ (ow[oz)*] rdrdz = ||i| 3w, -
On the basis of (1.1) the space W,(D) can be identified with the following space.
H#(D) = {& = (u, w) e (WE)(D) 0 Ls,1,(D)) x WEXD)} .
Here W$')(D) denotes the weighted Sobolev space with the norm
lulsrp = (Jo [w* + (ufor)* + (oufoz)*] r dr dz)'2,

L, 1,(D) is the space of functions with the norm

lullo,1/r,0 = (fou?[r dr dz)!/2.
Let L, (D) be the space of functions with the following norm

lulo.r.o = (o u?rdrdz)’2,

L, (T) the space of functions defined on I' = D with the norm

lullo.r.r = (Jrur ds)'2.
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Lemma 1.1. The embedding of the space #/(D) into [L, (D)]}? is compact.
For the proof — see [1] — Lemma 1.

Remark 1.1. Let I be a part of the boundary dD = @, where O denotes the
z-axis and let I' have a positive length. In #(D) we can define the trace operator.
In fact, since each component u or w of #e #(D) belongs to the space W$)(D),
we can use the linear continuous mapping

Y- Wﬁll(D) - L2,r(r)
(see e.g. [2] — Section 1).
We shall consider a specific class of domains D(a), where
' D(@)={(r.2)|0<r<afz), 0 <z <1}
. and the function o belongs to the following set
Upa = {0e C'([0,1]) (i.e., Lipschitz function),
Umin = 0(2) £ gy, [defdz| £ Cy, [§0?(z)dz = Cp},

where o, %max and Cy, C, are given positive constants.

Let I'(x) denote the graph of the function a, I'y(«) = dD(«) N {z = 0}, I'y(x) =
= 0D(x) N {z = 1} (see Fig. 1).

2
, [lo) \
a(z) =
D) MMa)
r
[, (a)
Fig. 1

Lemma 1.2. There exists a constant C independent of o and such that

lvello.r.ri@ore = Clul1.r.0@
holds for any u e W§')(D(a)), & € Uq.
For the proof — see [2] — Lemma 1.

Lemma 1.3. Let o€ %,q. Then the set
M(D() = (i = (u,w) € [C=(CI DE)T*»
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supp u.n (0 U I'y(a)) = 0, supp w N T'y(a) = 0}
is dense in the following subspace

V(D(a)) = {ie #(D(x)) | yu = 0, yw = 0 on I'y(2)}.

Proof. 1° Let us denote D(a) = D, I'y(«) = I'; and let

Hy(D,r,r™ ') = WS )(D) N L, 4,(D)
with the norm

Il sty = (1300 + [4]5,1/00)"% -

Let & = (u, w) € V(D) be given. There exists a sequence of functions u, € H3(D, r, r~1)
such that
(1.2) suppu,n 0 =0, yu,=0 on TI,,

u,—u in HyD,r,r™1)

(see the proof of Theorem 3.2.4/1 in the book [5]).
Let us choose the domain

D, ={(r,z)eD|r >k},

such that supp u, < D,.
There exists a sequence {u,;},j = 1,2, ..., such that

u,;€ C*(C1D,), suppu,;n(I,00) =9,

(where 0, = {(r,2)| r = K}),

u,; > u, in HY(D,) for j—o0.
Since the norms in H'(D,) and H}(Dy, r, v~ ") are equivalent, we have also

U,; =, in Hy(Dy,r,r7).

If we extend u,; by zero to D = D,, we obtain u,; € Cc*(CID),
(1.3) U,; —> U, in Hy(D,r,r71).
Combining (1.2) and (1.3), we arrive at the following result
(1.4) u,;—u in Hy(D,r,r™")

for n — o0, j > o0, j > j(n).
2° There exists a sequence of w, € C®(Cl D) such that

(1.5) suppw,n I, =0, w,>w in WD)
(see [2] — Lemma 2). Now Lemma 1.3 follows from (1.4) and (1.5), since
1] %) = [l Zas s + [W]irm- QE.D.
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2. THE STATE PROBLEM AND THE CONTINUOUS DEPENDENCE
OF ITS SOLUTION ON THE DESIGN VARIABLE

For simplicity we shall restrict ourselves to isotropic elastic bodies. We shall
formulate the state problem via the principle of virtual displacements (see e.g. [4],
§ 10.3). For physical components of the stress tensor t and of the strain tensor &
the following relations hold:

(2.1) 1, = Ae + 2ue,,, T, = Ae + 2ue,.,

Tes = le + 2“883 s T = 2“8” >
where
€ = &, + &2z + €39 »

= A(r, z) and y = u(r, ) are Lamé’s coefficients.

Moreover, we have the strain-displacement relations
(22) &, =0ulor, e, =0w0z, &y =ulr, &.=(0uldz+ dw[or)2.
Let us define the following bilinear form

* * *
(2.3) a(a; i, @) =J [2u<6_ua_u_+zu_+@gw_>+
D(a)

or or rr 0z 0z

ou u ow\ [fou* u* oOw*
+il—+—+ =) —+—+—)+
ar r 0z or r 0z

ou  ow\ [ou*  Ow*
+ul—+—=|)[{— +—)|rdrdz
0z 0r)\ 0z or
for all & = (u, w) and @* = (u*, w*).
Note that
a(o; @, @) =[p [t (#) &, (@) + ... + 271,(d) 5,.(4%)] rdrdz.

Denote by Sy(«) the disc generated by the rotation of I'() around the z-axis.
Let Q be a cylindrical domain generated by the rotation of the rectangle

D=(0,6) x (0,1), 6>«

max °

Assume that axisymmetric body forces F e [I*(Q)]* are given and the surface trac-
tions are defined by an axisymmetric function

o {o on  S(o)

G' on Sy()’

where G' is determined as the restriction to S;(x) of an axisymmetric function
G' e [I2(S,)]?, where
S, =000 {x;=0};

S() denotes the surface generated by the rotation of I'(«) around the z-axis.
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Assume that the functions A and p are given in L“(ﬁ) and A 20, u=p,>0
holds a.e. in D, where g, is a constant.
. Passing to the cylindrical coordinate system, we transform the work of external
forces

3
z_:l(jﬂ(a) Fu;dx + 5, Giyu; ds)
into the following integral

L(ot; u) = [pey (fu + fw)rdrdz + [r,q (.74 + gyw) rdr,

where the functions f,, f, € L, (D) and g,,9.€ L, (I';), (F; = 3D n {z = 0}) are
given.

The principle of virtual displacements yields the following variational formulation
of the State Problem:

find u e V(D(«)) such that

(2.4) a(o; u,v) = La; v) Vve V(D(w).
(See Lemma 1.3 for the definition of V(D()).)

Lemma 2.1. (Uniform Korn’s inequality). There exists a positive constant C,
independent of o € U,4, such that

§oe [en(u) + eGo(u) + &2.(u) + 2e7(w)] r drdz 2 Cllul e
holds for all ue V(D(x)), & € Uya.
For the Proof — see [1] — Theorem 1 and Example 1.

Lemma 2.2. There exist positive constants Cj, Cy4, independent of o and such
that the inequalities

23) a(% u, u) 2 CslulZpe, VueV(D(),
(2:6) a(a; u,v) = Colul ey [Y]roan Yu,ve#(D(@)
hold for all a € %,4.
Proof. Since A = 0 and p, < u, we have
a(e; u, u) = 246 [p [e2(u) + ... + 2e5(u)] rdrdz.

Then (2.5) follows from Lemma 2.1. Making use of the boundedness of 4 and p,
we obtain the estimate (2.6).

Lemma 2.3. There exists a positive constant Cs, independent of o and such that

L(o; u) £ Cs|u| oy Vu € #(D(w))
holds for all o € U 4.
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Proof. Since both components u and w of u belong to Wg‘}(D(a)), we can apply
Lemma 1.2 to them.

Lemma 2.4. The State Problem (2.4) has a unique solution u = u(«) for any
AEUypq.

Proof — follows from the Riesz-Frechet Theorem, since the space V(D(a)) can
be equipped with the inner product a(«; u, v) on the basis of Lemma 2.2. Moreover,
we employ Lemma 2.3 to verify the continuity of the right-hand side in (2.4).

Proposition 2.1. Assume that a sequence {a,}, n = 1,2, ..., a, € U4, converges
to a function o in C([0, 1]). Let us define the domains

Go={(rn2)|0<r<afz)—1m 0<z<1}, m=23,...
Let u(a,) be the solution of the State Problem (2.4) on D(a,). Then
u(a,) —> u(x) (weakly) in H#(G,) Vm,
where u(a) is the solution of (2.4) on D(a).

Proof. Let us denote D(«x) = D, D(a,) = D,, u(x,) = u,. Inserting v = u, in
(2.4) and using Lemmas 2.2, 2.3, we obtain

Cslu| %, = alos Uy u,) = Llety; u,) < Cs|u,] o,
so that
(2.7) N"n”:e’(b,.) < Cs[C3 V.

Let m be fixed for a time being. Since G,, = D, for n > no(m), we have

(2.8) [u,]26m < Cs[C3 = Cs Vn > ny(m).

The space #(G,,) is a Banach reflexive space (see e.g. [5]) and therefore it is weakly
compact. There exists u™ e #(G,,) and a subsequence {u,,} = {u,} such that

(2.9) u, — u™ (weakly) in 2#(G,) for ny— .

ny

Passing to G,+;, We may argue in the same way, choosing a subsequence {u,,z} c
< {u,,} such that

u, 2

u™* D (weakly) in H(Gn4y)-

Let us consider the diagonal subsequence {u,,} of all subsequences {u,,}, {u,},....
We can prove that a function u € #(D) exists such that

(2.10) u,, ~ulg,, (weakly) in #(G,)

holds for any m, if n, — co.
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First we show that

(2.11) um R~ u™ ae. in G,
holds for any positive integer k. In fact, let us denote

u(m+k)|6m —u™ =y
and let { be an extension of Y by zero to Gm+x — G,. Conside; the equation

fen ¥ uprdrdz = [ . u,,rdrdz,
(where § . ¢ = ¥,¢, + ¥,0,) and pass to the limit with np — oo on both sides. Then
(2.9) implies
fo ¥ u™rdrdz = [g . ¢ . u™Prdrdz = fg ¢ .u"™*P|g rdrdz,
so that
[¥)2.6. = fa,. ¥ . (™6, — u™ )rdrdz =0

and (2.11) follows.
Consequently, we may define

(2.12) ulg, = u™ Vm.
Since any closed convex set in #(G,,) is weakly closed, (2.8) and (2.9) imply

[u™ |G,y £ Cs Vm,
so that
“"H??(D) = lim [|u®™ |#@.) < Cs .

Hence u defined by (2.12) belongs to (D) and (2.10) holds.

2° Let us show that u = u(), i.e., u is a solution of the State Problem (2.4) on
D(a). Let any ve V(D) be given. By virtue of Lemma 1.3 there exists a sequence
{@}, k = o0, such that w, € M(D) and

(2.13) w,—»v in #(D).

Let g, € H(D) denote any extension of ®, to the rectangular domain D, which
saves the homogeneous boundary conditions on the line z = 1. For instance, we
can define

or, 2) = o2(z) — 1, 2)
for (r, z) € D — D(«) (provided tpmex < 6 S 20tpy)-
Then we have
' Qk\D,, € V(D,,)
and therefore
(s Unps @) = L(0y3 04) Vnp .
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Let k be fixed for the time being. We shall write n instead of np and denote

«(z) — 1/m by a™(z). We have
1‘1(“"; u,, Qk) - a(aM; u, Qk)l é
< la(a™; u, — u, @)| + |a(e, — @™ w0 =1, + 1,
where é‘(oc,, — o™ ., ) dendtes the bilinear form a with the integration over the
domain D, + G,, only. From the weak convergence (2.10) I, — 0 follows for n — co.
By an analogue of (2.6) and using (2.7), we obtain
I, = C"lel#’(b-’—Gm)'
(Here we always assume that n is large enough so that n > no(m) implies that
G, = D,.) Consequently, we may write
|a(ots; U, 01) — a(as u, @) < |a(ey; U, 00) — ala™; u, gp)| +

+ [a(e = @™ u,0)| 1y + Cler,—6m + Clodww=cm -
Since
meas (D, — G,) < 1[m + [o,(z) — «(2)[ c o1y »
we conclude that
lim a(et,; u,, ) = a(o; u, ) -

It is easy to see that
lim L(a,; 0¢) = L(% 04) ,
n—+o

so that we arrive at the following result:
a(e; u, 0) = L(w; 0,) k.
Let us pass to the limit with k — c0. On the basis of Lemma 2.2, Lemma 2.3 and
(2.13), we may write
|a(e; u, @) — a(w; u, v)| = Cllex = V]ww) ~ 0
(o5 00) = Lo V)| < Clog = v]opmy = 0
Consequently, u satisfies the condition (2.4) for any v e V(D).

The subspace V(G,,) is weakly closed in #/(G,,), being convex and closed (as
follows from Lemma 1.2 applied to G,,). We have

u

n

6 €V(G,) Vn > ny(m).

Then u|g,, € V(G,,) follows from (2.10) and since m was arbitrary, u e V(D) holds.

By means of Lemma 2.4 we conclude that (i) u = u() is the solution of (2.4)
and (ii) the whole sequence {u,} is weakly convergent to the solution u() in #(G,,)
for any m. Q.E.D.
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3. OPTIMIZATION PROBLEMS. EXISTENCE OF AN OPTIMAL DOMAIN

It this Section we shall choose four different cost functionals and present definitions
of four corresponding shape optimization problems. Finally we shall prove the
existence of a solution to any of these problems.

Let us consider the following cost functionals:

jl(“; ") = jp(a) (uz + wz) rdrdz;
Jales w) = Jo [(w((2), 2) — ug)* + (w(a(2), z) — w,)*] dz,

where u(«(z), z) and w(x(z), z) denote the traces of u and w on the curve I'(a),
respectively and u,, w, are given functions from I*(0, 1);

Ja(o; u) = L(a; u) ;
Ja(os u) = [, 402(e2(u) + e35(u) + e2(u) + 26%(u) — te*(u)) rdrdz.

Note that the integrand of j, is proportional to the squared yield function of Mises
(see e.g. [4] — chapter 3). Another form of the latter cost functional is

j4(d; u) = ID(a) (Trzr + Tg.‘) + sz + 2132 - %(Trr + Tgs + Tzz)z) rdr dZ B

where the stress components are determined by (2.1), (2.2) as functions of the dis-
placement u = (u, w).

We define the Shape Optimization Problems:

find o® € U, such that

(3.1); Jil0% u(a®)) < jlo; u(e)) Vee,y, ie{l,2,3,4},

where u(«) denotes the solution of the State Problem (2.4).
For the proof of the existence of an optimal solution «® we shall need the following

Proposition 3.1. Let the assumptions of Proposition 2.1 be satisfied. Then
(3.2) lim jy(a,; u(et,)) = jio u(@), i=1,2,3,
n—>o

li"m_, i’nf a0t u(0t,)) = ja(or; u(a)) .

Proof. Case i = 1. Let us denote again «(z) — 1/m = «™(z), u(x,) = u,, D(,) =
= D, u(x) = u, D(«) = D. We have (for n large enough)

(3:3) | 1(otns ws) = ja(es W) = | |w,[3 1 6., = 45,06, +
+ [ul5.r.0,6, = [4l3.r.p-6.] =
< w5 r6 = N4l3 6l + 16505, 6 + [4]5.r0-6,0 -

Using Lemma 1.1 and Proposition 2.1, we obtain

u,»u in [L,,(Gn)]?
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0 that

(34) lim |u,3,,.6,, = [u]C .6, V.
n— o
‘We can derive the estimate

(3.5) [4all3 s G = Ctimax |t — “mucuo,n)

for n > no(m), m > m,, with some constant C independent of n, m. Indeed, (3.5)
follows from [6] — (Appendix), if we use the equivalence of norms in W$')(D,)
and H'(D,), where

Dy = {(r, 2) | otpyin/2 < T < Gy} -
‘Combining (3.4) and (3.5), we deduce
lim j,(ot,; u,) = jy(o; u)
on the basis of (3.3).

Case i = 2. Let us denote the graph of «,, « by I',, I', respectively, graph of o =
= a — 1/m by y,. We may write

Ja(etn; u,) — joa; u) = Ky + K, + K5,
where (for u, = (u,, w,)) .
K, = .‘.(1) [(u"lrn - ug)2 + (W'tll‘n - wy)z] dz —
- o [(u"l')'m — u)* + (W"l)'m - w,)’]dz,
K, =[5 [(“n|ym —ug)® + (W 1 — W) ]dz —
= Jo [(uly, = u)* + (W, — wg)*] dz,
K; = I(IJ [(u|1m - "9)2 + (W‘)'m - wa)z] dz —
= Jo [(ulr — ug)* + (wlr — wg)*] dz..

We have a splitting
Kl = Klu + Klw s
and the estimates

Kul = Jo lwlr, = ]| - un
= ““nII’n - “n‘YmHO' ““nll‘n + “n‘vm - Z“auo ’
"u"!rn - u"IYm”g = j(l’ (u"lrn - u"l)’m)z dZ = Ié dz(j::' au"/ar dr)z é

< (1fm + B,) 6 dz i (ou,for)? dr < oagm(1/m + B,) [ua] %, »

o+ Uy, — 2u,dz <

‘where
By = o — “n”cao,m .

By virtue of (2.7), the latter expression is bounded by C(1/m + B,).
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Next we have
(3'6) ““nlr.. + “"lrm - 2“!1“2 =
= ([l )18 + Jualsn 3 + 4lul3) = €

where C is independent of all sufficiently great n, m, n > no(m).
Indeed, making use of Lemma 1.2 and (2.7), we obtain

N5 < dmim Jir (ri10)? 7 ds S tnCllitall31,0, < €5
Second, we may write
ltalslls = 20l |5 + 2[4l = walra[l5 =
<2C; +2C(1fm + B,) £ Cg
and thus we arrive at (3.6). Altogether, we have
|Ky| £ C(1fm + B,)*.

The same estimate can be derived for K,,,. Consequently, we obtain
(3.7) |Ky| = c(1/m + B.)'* Vn,m, n > no(m).

For K, we may obviously write

K2‘= K,, + K;,,

with a selfexplanatory splitting. We can prove that for m > my
(33) tim [u,,,, — ul,,,[6 = 0.

In fact, let us define G2 = G,, n D,. We easily realize that the weak convergence
of u, in #(G,,) to u implies the weak convergence of the u,-components in H*(G)
to u. The trace mapping of H'(Gy,) into I*(0G,) is compact (see [7] Chapt. 2, § 6.2),
so that

lim Hu”‘}’m - ul"m”LZ(}’m) =0.
n— o
Consequently, we have
j(l) (u”‘Ym - uiYm)Z dZ é J‘Ym (u"|7m - u‘YM)z ds - 0 > n— o,

which proves (3.8).
Then

(3'9) Kz = fo [(unlvm)z - (“lvm)z + 2”3(“1% - ”nlv»-)] dz—0

by virtue of (3.8). By an analogous argument, we arrive at the similar assertion for
K,,, so that
(3.10) limK, =0 Vm > m,.

n—* o
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For K3 we have the following splitting and estimate
K3 = K3u + K3w ’
IKSuI = U(I) (ul')’m - u[r) (u|)'m + ulr - 2“9) dzt é
= Cnulvm - ull"HO_’O’ m— o,
which follows by an argument similar to that for K;,. Consequently, we obtain

(3.11) limK; = 0.

n— o0

Combining (3.7), (3.10) and (3.11), we deduce that
lim (K, + K, + K3) =0

n—o

and (3.2) follows for i = 2.

Case i = 3. We have (denoting I'y(@,) = I'y, and I'y(2) = I'y)
(3.12) 17a(ats w) = a5 w)] = [Llotws wn) — La; )] =

= |fp, (fittn + fown) 7 drdz + [r,, (9,74, + gyw,) rdr —
— Jo(fu + fow)rdrdz = [r, (9,74 + g.yw) rdr|.
In particular, we may write
o, frtar dr dz — [, four drdz| £ |, fi(u, — u) rdrdz| +
+|Ipp= g rttar dr dz| + |[pog,, frur drdz| .

The first integral on the right-hand side tends to zero for any m on the basis of the
weak convergence of u, — sec Proposition 2.1. Using (2.7), for the second integral
we obtain the following estimate

”D,,éGmfrunr dr dzl = C“fl‘"O,r,D,.*G,,, -0,

if n > 00, m —> 0, n > ny(m). Since meas (D = G,,) tends to zero for m growing
to infinity, the last integral converges to zero for m — oo. Altogether, we deduce

(3.13) lim [p, fu,rdrdz = [, furdrdz.

n— oo

Denoting I'y(«) n 0G,, = I'y,,, we may write
|Srin gy, 7 dr = [r, ggyur dr| < |fr,,, g.(vu, — yu) v dr| +
+ “nn—rlmngn" drl + ”r,-r,mg,?ur dr| .

The first integral tends to zero for any m on the basis of Remark 1.1 and Proposition
2.1 — weak convergence of u,. The second integral has the following upper bound
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with the constant C independent of n (cf. Lemma 1.2). Using (2.7), we conclude
that the latter bound tends to zero with n — oo, m — 00, n > ny(m). Since

meas (I'; =~ I'y,) = 1/m,
the third integral tends to zero with m growing. Altogether, we obtain
(3.14) lim ([, gyurdr = gyurdr.

Since analogous results can be derived for the integrals involving w, instead of u,,
we are led to (3.2).

Case i = 4. Obviously, we may write
Ja(otn; u,) = 4 [, p?(eh + 35 + &2, + 265, — Ye*)rdrdz 2
2 2 2 2
24-"6'"#2 %)4_ Un + ?.Xv_ﬂ +1 61‘_"4.% -
or r 0z 2\ 0z or
1 2
_ L (o + 0y Iy rdrdz
3\ or r 0z
for all n, m, n > ny(m), since the integrand is non-negative everywhere. The
functional on the right-hand side is weakly lower semi-continuous in #(G,,) (being
convex and Gateaux-differentiable). Making use of the weak convergence of u,

in #(G,,), we obtain
lim inf j(ct,; u,) =

n—aow

2 2
2456,,.11'2(‘6‘1{ +-~—1 6_u+g+£3_vg rdrdz
or 3\or r Oz

for any m. Passing to the limit with m — oo, we arrive at the inequality

lim inf j(e,; u,) = ja(o; ). Q.E.D.

n—>o

Theorem 3.1. There exists at least one solution of the Shape Optimization
Problem (3.1);, ie{1,2,3,4}.

Proof. Let {a,}, n > 0, a, € %,q4, be a minimizing sequence of j(«; u(a)), i.e.,
(3.15) lim j (o, u(et,)) = inf j(a, u(a)).
n—o ae¥aa

By means of the Arzela-Ascoli Theorem we can show that the set %,4 is compact.
in C([0, 1]). Hence there exist a subsequence {o;} and o € %,4 such that

w—a® in C([0,1]).
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Proposition 3.1 and (3.15) imply

inf Ji(o,u(e)) = im i, () 2 (", (o)

ae¥Uaa

Consequently, a minimum is attained at o°.

4. APPROXIMATIONS BY FINITE ELEMENTS

In the present Section we propose an approximate solution of the Shape Optimiza-
tion Problems, making use of piecewise linear design variables and linear triangular
finite elements for solving the State Problem.

Let N be a positive integer and h = 1/N. We denote by 4;,j = 1,2,...,N, the
subintervals [(j — 1)h, jh] and introduce the set

%:d = {“h €Uy l “hla,i € Pl(Aj) Vj} ’

where Py(4;) is the set of linear functions defined on 4;. Let D, denote the domain
D(a;) bounded by the graph I', = I'(,) of the function o, € %",. The polygonal
domain D, will be partitioned into triangles by the following way. We choose
o € (0, o) and introduce a uniform triangulation of the rectangle £ = [0, a] X
x [0, 1], independent of a, if h is fixed.

In the remaining part D, = £ let the nodal points divide the segments [0, o,(jh)],
j=0,1,2,...,N,into M equal segments, where M = 1 + [(¢nox — %) N] and the
square brackets denote the integer part of the number inside.

One can verify that the segments parallel with the r-axis are not longer than h and
shorter than h(tty, — %)/(%max — %). One also deduces the following estimate for
the interior angles w of the triangulation

tg o > Zmin °(1+C1+C2)“

Xmax —

Consequently, one obtains a strongly regular family {7 (o)}, h = 0, o€ axt,,
of triangulations. Note that for any «, € %", we construct a unique triangulation

T (o).
Let us consider the standard space V}, of linear finite elements
Vi(D;) = {v, e [C(C1 D,)]*> 0 V(D)) |v)|r € [P4(T)]* VTeT\()}-

Note that u, = 0 for r = 0 follows from u,, = (u,, w,) € Vy(Dy).
We define the Approximate State Problem:

find u, = uyw,) € Vy(D,) such that
(4.1) a(oy; Uy, v,)) = Ly(; vy) Vv, e V(D).
Here L,(«,; v;) denotes a suitable approximation of the functional L{ay; v;), Which

satisfies the following conditions: there exist positive constants C,, Cg and 4, in-
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dependent of &, and such that
(4.2) ‘Lh(“h§ vi) — L{os Vh)l = C7h"n"h"#(vh) ’
(4.3) ILI-(% vi)| < Csuvh“x’w»)

holds for any a, € %4, and any v, € V,(D,).
For example, let us define

(4.4) Ly uy) = Y [founr + forwy]eer, meas (T) +

TeT n(an)

+ S Lg.ruy + g.rw,) 6y meas (1),
IeT n(an)nly(an)

where G(T) denotes the centre of gravity of the triangle T and G(I) is the midpoint
of the interval I = T~ I'y(a,).

Lemma 4.1. Let Ly(«,; u,) be defined by the formula (4.4). Assume that f,,f, €
e H (D) n C(C1 D), r*D%,, r*D%, e I¥(D) for || =2 and g,,9. are piecewise
from C2,

Then (4.2) and (4.3) hold, with A = 1.

The proof follows immediately from Lemma 8 in [2], since both components u,
and w, belong to the space W§'(D,).

Remark 4.1. One can weaken the assumptions somewhat, employing the fact
that u, vanishes on the z-axis.

Lemma 4.1. The Approximate State Problem (4.1) has a unique solution u,(o,)
for any o, € Uty and any h = 1/N.

Proof. Lemma 2.2 and Lemma 4.1 enable us to apply to Riesz-Theorem in the
Hilbert space V,(D,) with the inner product (¢, v) = a(w,; u, v).

Proposition 4.1. Let the assumptions (4.2), (4.3) be satisfied. Let {a,}, h — 0,
be a sequence of o, € Uy, converging to « in C([0, 1]).

Then
(4.5) uy(@)|g,, — u(@)|g, (weakly) in #(G,) Vm,

where u(a) is the solution of the State Problem (2.4) on the domain D(w).

Proof. Denote D(a,) = Dy, D() = D.
1° Let us define u} € V(D) to be the solution of the problem

(4.6) a(o; uy, vi) = L(a; v,) Vv, e V(Dy).
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Subtracting (4.1), we obtain
a(o; uy — Uy, Vi) = Ll vi) — Lifa, vi)
and inserting v, := u; — u,, we arrive at the inequalities
(4.7) Cslluy — uyllsemn = alows Uy — uy Uy — uy) =
= L(O% ": - uh) - Lh(ah; ”: - "h) < C7hlu": - uh"ar(n,,) s
using Lemma 2.2 and (4.2). From (4.6) we derive that

Cs |3 [3eom = Llews ui) = Col Uy eon)

holds by virtue of Lemma 2.2 and (4.3). Consequently, for h < ho(m) we have
G, < D, and

(4.8) lui e = [uillmn < Cs/Cs V.

There exist a subsequence (we shall denote it by the same symbol) and u®™ e #’ (G,,,)
such that

(4.9 uy —— u™ (weakly) in #(G,).

Arguing as in the proof of Proposition 2.1, we are led to a function u e s#(D) such
that

(4.10) uy ——ulg,, (weakly) in #(G,)

holds for any m and a subsequence of {u}}. In what follows, we shall consider this
subsequence.

2° Let us show that u = u(a), i.e. u is a solution of the State Problem (2.4). Let
any v € V(D) be given. By virtue of Lemma 1.3 there exists a sequence {w,}, k = o0,
o, € M(D) such that

(4.11) w,—>v in H(D).

Let g, € #(D) be any extension of wj to the rectangular domain D, which fulfills
the zero boundary condition on the line z = 1.

Consider the Lagrange linear interpolate 7,0, of g,,[ py, OVer the triangulation ().
Obviously, m,0, belongs to V,(D,). Let k be fixed, for the time being. We can insert
7,0 into (4.6) to obtain

(4.12) a(“h; U;T s ”th) = L(°‘h§ ﬂth) .
We shall pass to the limit & — 0. Let us denote a™ = a — 1/m. We may write
(4~13) |a(°‘h; ":, ﬂlek) - a(“m§ u, Qk)l =

= la(oms ui, @) + a(a™; i, mo, — o) +
+ oy, — am; uy, mey) — a(e”; u, )| <

< a(o™; ui — u, 0| + |a(o™; vy, mee — )| + |a(e, — o™ uf, moy)|
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where
Aoy, — o™y 0, 0) = a(oys +, 0) — a(a™; -, ¢) .

Let any positive ¢ be given. From (4.10) we conclude that the first term on the right-
hand side of (4.13) is less than ¢/6 if b < hy(e, m).

To estimate the second term, we first employ for ¢, = (w, y) and w0, =
= (m,wy, m,y,) the well-known inequalities

lmawi = will1r,pn < i miwc = Wil 1, = Chlwil2 5 -
(Ip, (rawi — wi)2[r dr dz)172 < (rg) o, (mawe — wi)? dr dz)'? < Ceh|will2,0
where rq, = dist (0, supp wy).
Consequently, combining these estimates for w, and y,, we obtain (cf. (1.1))
(4.14) Imex — exllemn = Cib([well2,0 + [9:]3.0)'7 -
Using Lemma 2.2, (4.8) and (4.14), we arrive at
(4.15) la(a™; ui, mex — @] £ Callui e [mex = el =
< C(k) hllek]2.p < &6 for h < hy(e).
It remains to estimate the third term. To this end, we realize that
“Tfhwkh1,r = CuwkHZ,T Vh

holds for all triangles Te 7 (ay)-

Let G" be the smallest union U of triangles Te 7 (o) such that D, =~ G, = U.
Obviously, we have

(4.16) meas (Gh) < 1/m + 2h + oy, — allco,1y) -
Consequently, the following estimate holds
ol ov-an = el o= 3 Jraml 5 ol
Similar estimates are true for 7,y Using also (4.8), we may therefore write
(4.17) |t — o5 uil, mey)| <
< Caluf|eom Imneil #n 6. = Clled 2,6, »

since the norms in [H!(D, = Gn)]* and #(D, ~ G,,) are equivalent (for m great
enough).

Combining (4.13), (4.15) and (4.17), we derive the following inequality
|a(ens uy, mek) — a(a; u, )| £
< |a(o; uf, mi) — a(e™ us @) + |d(x — o™ u,0) <
< ¢f3 + Claddz.enn + Clulew=c, el 2w+ 6.
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for h < hy(e, m). Making use of (4.16), we conclude that

(4.18) lim a(oy; uy, moy) = a(e; u, gy) .

h—=0

Next we may write, using Lemma 2.3 and (4.14)

‘|L(°‘h; “th) - L(OC; Qk)l <
=< !L(f’% Tl — Qk)l + |L(°‘h§ Qk) - L(Of; Qk)' =%+ %,

|21 = Cs|mex — el wwn = Chlled] 205
|%2| £ [any [fow + fo2i] 7470z + facrry [90W6 + gl 7 dr
where 4(A, B) = (4 =~ B) U (B = A) denotes the symmetric difference,
lim meas 4(D,, D) = 0, }irr; meas A(I'y,, I';) = 0.

h—=0

Thus we conclude that
(4.19) lim L{o,; m,0,) = L(o; ) -
0

h-
Passing to the limit with 7 — 0 in (4.12) and using (4.18), (4.19), we obtain
a(o; u, ) = L(o; @)

Passing to the limit with k — oo and making use of Lemma 2.2, Lemma 2.3 and (4.11),
we arrive at
a(o; u, v) = L(a, v).

The space V(G,,) is weakly closed in #(G,,). In fact, V(G,,) is convex and closed by
virtue of the continuity of the trace mapping — see Remark 1.1. Since u,’flgm € V(G,,,),
the weak limit ulg, € V(G,,), as well. Passing to the limit with m — oo, we obtain
u e V(D). Consequently, u is the solution of the State Problem (2.4), u = u(«).
Since u(«) is unique (see Lemma 2.4), the whole sequence {u}} tends weakly to u|g,,
in #(G,,).
The estimate

(4.20) Jui = il e, = lui = il ey < CH

follows from (4.7). Combining the weak convergence of u; with (4.20), we arrive
at the assertion (4.5). Q.E.D.

For any fixed parameter /i = 1/N, we define the Approximate Shape Optimiza-
tion Problem:

find o € Uty such that
(4‘21)i J i(“l? > ”h(“g)) =J i(d;., (o)) Vo, e Uiy,
where i e {1, 2,3, 4} and u,,(ot,,) is the solution of the Approximate State Problem

(4.1).
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Proposition 4.2. The Approximate Shape Optimization Problems have at least
one solution for any i€{1,2,3,4} and any h = 1[N, N = 2,3, ...

Proof. It is readily seen that
wGeU, < acod

if ae RN*! denotes the vector of a,(jh), j = 0, 1,..., N and o/ is a compact subset
of R¥*!. One can show that the nodal values of u,(«,) depend continuously on a.
The same assertion can be then verified for j(a,; u,(x,)) = J{a). Consequently,
the function J(a) attains its minimum on the set /.

Proposition 4.3. Let the assumptions (4.2), (4.3) be satisfied. Let {a,}, h =0,
be a sequence of o, € U",, converging to o in C([O, 1]) Then

lim (o uifan)) = Ji(o (&)

holds for ie{1,2,3}, where u(x,) and u(x) is the solution of the problem (4.1)
and (2.4), respectively.

Proofis parallel to that of Proposition 3.1. We replace a, by «,. u, by u,, D, by D,,
I, by I';, instead of Proposition 2.1 and Lemma 2.3 we make use of Proposition 4.1
and (4.3), respectively. The boundedness of all u, in 5#(D,) is a consequence of (4.8)
and (4.20).

Remark 4.2. The functional j; can be replaced by the approximation Ly{ay; uy(a)).
Then we employ also the estimate (4.2) and the boundedness of u,, in #(D,) to verify
the assertion of Proposition 4.3.

Theorem 4.1. Let the assumptions (4.2), (4.3) be satisfied. Let {a,}, h — 0, be
a sequence of solutions of the Approximate Shape Optimization Problem (4.21);,
ie{1,2,3}. Then a subsequence {0z} exists such that

(4.22) a; - a® in C([0,1]),

(4.23) ug(og) — u(a®) (weakly) in #(G,)

for any m sufficiently great,

where o is a solution of the Shape Optimization Problem (3.1);, uy(«s) are solutions
of the Approximation State Problem (4.1) and u(«®) is the solution of the State
Problem (2.4).

The limit of any uniformly convergent subsequence of {w,} represents a solution
of (3.1); and an analogue of (4.23) holds.

Proof. Since %,4 is compact in C([0, 1]), a subsequence {«;} exists such that
(4.22) holds, with &® € %,q.

Let any o € %,4 be given. There exists a sequence {B,}, h — 0, B, € %%, such that p
tends to o in C([0, 1]). (This follows from Appendix in [2]). We have
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Jiog, ug(o)) < (B us(Br) VR,

by definition. Passing to the limit with 1 — 0 and using Proposition 4.3 on both
sides, we obtain

Je, u(a®) = (e u()) -

Consequently, «° is a solution of the problem (3.1),. The convergence (4.23) follows
from Proposition 4.1. The rest of the theorem is obvious.
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Souhrn
OPTIMALIZACE TVARU OSOVE SYMETRICKYCH PRUZNYCH TELES
IvAN HLAVACEK

UvaZuje se osové symetricka tloha teorie pruZnosti s kombinovanymi okrajovymi podminka-
mi. Je tfeba nalézt ¢ast hranice osového fezu t&lesa tak, aby minimalizovala jeden ze &tyf typu
ulelového funkciondlu. Dokazuje se existence optimalni hranice a konvergence pribliZnych,

po &astech linedrnich YeSeni.
N\

Pesrome
OIITUMU3ALIA ®OPMBI VIIPYIUX OCECUMMETPUYECKUX TEJI

IVAN HLAVACEK

PaccMaTpeBaeTCsi OCECHMMETPUYECKAsT 3a/iaya TEOPHH YIPYTOCTH CO CMENIAHHBIMM KPaeBBIMH
ycnoBusMu. TpeOyeTcst HATH YacTh TPAHUILI MEPHAMOHAILHOTO CeYeHHsl OOJaCTH Tak, YTOOBI
MHHAMU3MPOBATE OIMH M3 YETHIPEX THIIOB LEIeBOro GyHKuuonana. JJoka3siBaeTCsi CyIeCTBOBaHUE
ONTHMAJILHOM TPAHHMUBI ¥ CXOJUMOCTH NPUGIIMKEHHBIX, KYCOYHO-TMHEHHBIX PEILCHHIA.
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