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Summary. The aim of the present paper is to study problems of optimal design in mechanics,
whose variational form are inequalities expressing the principle of virtual power in its inequality
form. We consider an optimal control problem in which the state of the system (involving an
elliptic, linear symmetric operator, the coefficients of which are chosen as the design — control
variables) is defined as the (unique) solution of stationary variational inequalities. The existence
result proved in Section 1 is applied in Section 2 to the optimal design of an elastic cylindrical
shell subject to unilateral constraints. We assume that the bending of the shell is limited by a rigid
obstacle. The role of the design variable is played by the thickness of the shell.
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1. EXISTENCE AND UNIQUENESS OF SOLUTION

Let V(Q) be a real Hilbert space and V*(Q) its dual space, the pairing between
V(Q) and V*(Q) being denoted by <+, *Dyq). Next, H(Q) is a separable real Hilbert
space such that V(Q) is dense in H(Q) and the injection of V(Q) is completely conti-
nuous. Let U(Q) be a Hilbert space of controls, U,(Q) = U(Q) a set of admissible
controls (U,q(Q) is compact in U(Q)). By L(V(Q), H(Q)) we denote the family of
bounded linear operators from V(Q) to H(Q).

Let A(e): V(Q) - V*(Q) for every ee U,(Q) be a family of linear symmetric
operators {A(e)} with the following properties:

(HO) 1° For any e € U,4(Q) the operator A(e) € L(V(Q), V*(2)) ({A(e)} is uniformly
bounded, i.e.

ey < ¢(c2)) -

2° For any ee U,(Q), the operator A(e) satisfies the uniform coercivity
condition:

CA(e) v, )y = ofv][§ o) (x> 0) forall veV(Q),

lelve = civ [ollviey £ 2 = [l 4(e) 0]

e € U,4(Q) where o is independent of e.
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3° For every ve V(Q) the operator A(+) v: U,(Q) — V*(Q) is weakly—
strongly continuous: e, — e, in U(Q) (weakly) for n — oo = A(e,) v —
— A(ep) v (strongly) in V*(Q).
Suppose that (e, Q) is a closed, convex, nonempty subset of V(2).

Next, let j(+): ¥(2) - R be a proper, convex and Lipschitz continuous fuctional
on V(Q) with D(j) = {ve K(e, Q): j(v) < +oo for any ee U,4(Q)} + 0. We have
a sequence {8(e,, 2),, e,€U,(Q), of convex subsets K(e,, Q) = V(Q), which
converges to K(e, Q) in the sense of Mosco, i.e.:

(H 1) 1° any v € 8(e, Q) is the strong limit of a sequence {v,}, such that v, € K(e,, 2)
for every ne N;
2° for all v, € K(e,, Q) ({8K(e,,, 2),, being a subsequence of {K(e,, 2)},)
satisfying v, — v (weakly), it follows that v € K(e, Q) for e, — e (strongly)
in U(Q) (e, € U,o(Q)).
Let £: H(Q) » R, $: U(Q) > R and £": U,4(Q) x V(Q) - R be given functions
satisfying the following conditions — assumptions:
(E0) 1° £(u) is locally Lipschitz and non-negative on H(Q);
o {0 if eeUL(Q),
2° B(e) = {-H;o otherwise ;
3° 2*(e, u(e)) is lower semicontinuous in U,(Q) — weak x V(Q) — (i.e.,
for weak sequential topology of U(Q) and strong topology of V(Q)),
and 2*(e, +) is continuous in ¥(Q).

Let an operator B € L(U(Q), V*(Q)) be given such that

(E1) B is completely continuous from U,4(Q) to V*(Q). (Hypothesis (E 1) is satis-
fied in particular if the injection of V(Q) into H(®) is completely continuous
and B e L(U(Q), H(2)).)

SETTING THE PROBLEM (B).

Minrimize the function
L(ule)) + Ble)
(B) Jor
2%(e, u(e))

over all u(e) € K(e, Q) and e € U,4(2) subject to the state system

(1L1)  <A(e)u(e), v — u(e)yi + j(v) = j(ule)) = {f + Be,v — u(e)dya)
forall veK(e, Q).

The parameter e € U,4(®) is called a control, and the corresponding solution u(e)
is called the state of the system (1.1). For every f e V*(Q) and for every e € U,4(Q)
the variational inequality (1.1) has a unique solution (see [3]).

A pair [ey, u(eg)] € Upg(Q) x V(Q) for which the infimum in problem (B) is
attained is called the optimal pair, and the corresponding control e, is called the
optimal control.
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Theorem 1. Under assumptions (HO0), (H1) and (EO0), (E1), problem (B) has
at least one optimal pair.

Proof. Let {e,}, = U,y(2) be weakly convergent in U(Q) to eo. By assumption
(E 1) it follows that

(1.2) Be, — Be, (strongly)in V*(Q).
We set u, = u(e,) € K(e,, @), n = 1,2,... and we can write
CA(e) (uy — ), = V)yo) < j(0) — j(u,) =
— {f + Be,, v — U, Dy — {Ale,) v, u, — v)yo

for any v € K(e,, Q).
Then by (Proposition 1.7 ([3])) we have int D(j) = D(0j) and if

(1.3) N $(e, )N int D(j) += 0 (int C = interior of C)
eeUaa(22)
then there exists an element voe () K(e, Q) ) int D(j) such that
ecUaa(2)

Jj(vo) — j(w) £ <{p,vo — Wiy, Where pedj(v)), weSK(e, Q).

This means that the function 8(w) = (j(vo) — j(W))/|vo — W[v(e) is bounded (8:
S(e,, @) > R). Then by assumption ((HO0), 2) we get afu, — vo|ye, < 0(w,) +
+ ([ fvua + |Beallvnal) + [<A(en) 905 s = v0>veay |/t = vollviay-

Thus we have ||u,|lyq, < C (using the assumption ((H0), 1°)). We can extract
a subsequence {u,,},, (= {u,},) such that

(1.4) u, —u (weakly)in V(Q).

Since u,, € K(e,,, ) by assumption ((H 1), 2°), we have u € S(eo, Q) as well. For any
we V(Q) we have by assumption ((H 0), 3°)

lim (A(e,,) u(e,,), Wy = lim {A(e,,) w, t, >y, =

n— oo nE— o0

<A(eo) w, u>v(m = <A(eo) u, W>V(Q)
and therefore

(1.5) A(e,,) u(e,) —~ A(eo) u (weakly) in  V*(Q)

if u,, — u is weakly convergent in V(Q). Further, in virtue of the monotonicity
of A(e,) (by assumption ((H 0), 2°) we can write

<A(enk) Upe> Up,e — u)vm) = <A(enk) u, u,, — “>V(Q) m=12...
Hence we have (by passing to the limit)

lim 2¢A(e,,) U, ty Dy(e) < lim inf CA(e,) Un, Un Dy + lim (A(e,,) U Wy -

nE—> 0 ne= o ng—+ 0
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This yields (by (1.4) and (H 0), 3°))

(1.6) lim inf CA(e,,) Uy, Uy dviey = {A(eo) u, Uy -

Ny — 00

Let v € K(eg, Q) be an arbitrary element and {v,, !, such a sequence that
(1.7) v, — v (strongly)in V(Q),v, € R(e,.Q), n =12,..

ni ' ny

<A(enk\) unk' Unk - uuk>V(Q) + j(vnk) - j(unk) g <(f + Belm)! Unk - unk>V(Q)
forany v, €8(e,,Q), e, €U,u(Q).

(The existence of {v,,",, is ensured by ((H 1), 1°).) Next, we can write

ny

This yields
<A(enk) unk’ unk>V(.Q) - j(l)"k) g <A(euk\) uuk’ vnk>V(.Q) -

- <(f + BE"k), U,,k - ”nk>V(Q) - j(unk‘) )

and we get
lim sup <A(enk) unk’ unk>V(.Q) - “mj(vuk) é
N o0 njc— 0
é hm (<A(enk) unk’ Unk>V(Q) - <(f + Benk)’ Unk - unk>V(.Q)) - ]lm infj(unk) .
ne= o R 0

Hence by (1.4), (1.5) and in virtue of the continuity of j(v) on V(Q) one has the
following relations. (Since proper convex functional lower semicontinuity in the strong
topology is the same as sequencial lower semicontinuity in the weak topology.)
(1.8) lim sup (A(e,,) Uy, U Dviay — i(0) < (A(eo) u, VIy) —

nE— oo

— {f + Bey, v — Udyq — j(u) forany ve R(e,, Q),

and therefore (we take v = u in (1.8))

(1.9) lim sup (A(e,,) Uy, Uy viey = (Aleo) t, uDy(q) -
Ny —> 00

This means (by (1.6) and (1.9)) that

(1.10) lim (A(e,,) Uy, vy = (Aleo) t, Wy, -

From (1.4), (1.5), (1.7) and (1.10), (E 1) we obtain

<A(30) u,u — U>V(Q) + j(ll) g lim [<A(enk) unk" unk - vuk>(9) + j(unk)] é

nE— o

é hm [<f + Benk’ uuk - Unk>V(Q) + j(Unk)] = <f + BeO’ u— U>V(Q) + ](0)

e~ oo

for any v € K(eo, Q) (by continuity of j(v) on V(Q)). In other words, we have proved
that u = u(e,), u(e,) — u(ey) (weakly) in V(). Next, by virtue of ((H 0), 2°) we can
write
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olim [u(e,,) — u(eo)|[Pa) =

< lim (Alen,) (u(e,,) — uleo)), ule,,) — uleo)dye) =
= lirg {<Alen,) ulen,), ulen) vy + <Aley,) uleo), u(eo)dviay —

- <A(em<) u(e"k)’ u(e0)>V(ﬂ) - <A(e"k) u(eo)’ u(euk)>V(!2)} =0
(using (1.4), (1.5), ((H0), 3°) and (1.10)). This means that

limu(e, ) = u(e,)

Ny 0
(in the strong topology of V(Q)). Thus we have shown that the map e — u(e) is
weakly —strongly continuous from U,4(2) to V(Q). Let d = inf {€(u(e)), e € U,4(Q)}.
By the assumption (E 0, 1°) we see that 0 < d < +o0. Now let {e,} = U,(Q) be
such that 2(u(e,) — d. Since U,4(Q) is compact there exists a subsequence {e,,!,, <
< {e,}, such that e, — e, (strongly) in U(Q), and u(e,,) — u(e,) = u, (strongly)
in V(Q). Since £ is continuous on V(Q), we have (2 is locally Lipschitz and non-
negative from V(Q) into R) 2(u(e,)) = d.

On the other hand, it follows from ((E0), 3°) that £"(ey, u(ey)) <

< liminf 2*(e,,, u(e,)) = inf £"(e, u(e)), which completes the proof of Theorem 1.
nE— eeUya(R2)

In other words, e, is an optimal control of problem (B).

2. THE CYLINDRICAL SHELL

The geometry of cylindrical shell

Let R? be the usual Euclidean space with a fixed orthonormal system (0, i, i,, i_),
and let Q be a bounded open subset in a plane R? with a boundary Q. Then the
middle surface & of a cylindrical shell is the image in R* of the set Q by the mapping ®@:

®: (£, 6,)eQ = R? > @&, &,)eR.

Fig. 1.

We assume that the boundary dQ and the function @ are sufficiently smooth.
A cylindrical shell is an elastic body € defined in the space R> by

22



€ = {MeR> OM = ®(x, ¢) + z2v(p), (x,0) € 2 — e(x, 9)[2 < z < e(x, 9)[2}

where e: @ — R7 is the thickness of the shell, v is the normal vector for the middle
surface &, and we assume

Q=[-H,H] x [2, ],

®(x, ) = xi, + acos pi, + asin gi, where a = const.

[
Y
Wb I
.
"
_7___'05.., B“"’Y
“HF—A——— ]
Fig. 2.

In what follows, this geometry of the cylindrical shell € is used as a reference
configuration. Indeed, we study stationary problems falling into the following
category. Let € be the shell configuration before deformation. We assume (for
simplicity) that the shell is clamped on the boundary and loaded with a distribution
of volume and surface forces. These act on the upper and the lower faces. Under
the action of these forces the shell deforms to a new configuration €*. Then assuming
the physical characteristics of the material of the cylindrical shell, the initial con-
figuration €, the distribution of the forces applied, and the boundary conditions
are known, the problem is to determine displacement of the points of €. From
the knowledge of the displacements, we are able to determine the strains and the
stresses at any point of €*. The Kirchhoff theory is based on complementary hypo-
theses which permit us to derive an approximation of the displacement field of the
particles of the cylindrical shell € only from the knowledge of the displacement field
u of the particles of the middle surface.

The kinematic homogeneous boundary conditions on 0Q are given by u = v =
= w = dw/dn = 0 where n is the normal vector to the surface

(®(x,0) + 2 ¥(0): (5, 0, 5 € 20x[(~ef2), (¢2)]}
u= [u, v, w] is the displacement vector of the points on the shell middle surface.
(Thus the three function u, v, w: (x, @) € @ - u(x, @), v(x, ¢), w(x, ¢) are the (princi-
pal) unknowns of the state system.)

We denote by Lz(Q) the space of all measurable square integrable functions with
respect to the Lebesgue measure dQ = a dx deo.
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Let us denote: C™(Q): the space of m-times continuously differentiable real valued
functions whose all derivatives up to order m are continuous in Q;

Hy(Q) = {ve H'(Q):v = 0 on 02} ;
H3(Q) = {ve H¥(Q):v = dv/on = 0 on 0Q} ;
H(Q) = Ly(Q),

where H'(Q), H*(Q) are Sobolev spaces. The space of virtual displacements of the
middle surface of the shell is the space

V(Q) = Hy(Q) x Hy(Q) x H}(Q).
Then, V(Q)is a Hilbert space equipped with the scalar product

@1 (U V)i = (1, Puey + (0, Diray + (W, Oy
for u="[u,v,w]; v=7[pq.0],
and the norm
IVlviey = (v.viV& . veV(Q).
Next, we define
U@ =H'(Q)NnCQ),
U(Q) = {ee H}(Q); 0 < epin < e(x, )) £ €ax

forall (x,y)eQ, |eluo < ¢, [oelx,y)dQ = c,}

where the constants ey, €qay, €1, €, are such that U 4(Q) = 0.

We shall use the linear theory of shells ([11, 12]), and formulate the equilibrium
in terms of the displacement vector u(e).

Let us define the following system of strains:

(W), i=1,2,..,6
where

(2:2) N (v) = dplox, N ,(v) = (1]a) (6q|dp — 0),
N 3(v) = (1)2a dp|dg + 0q[ox), N 4(v) = 0%0)ox?,
Ho(v) = (1]a?) (220/09> + 0),
N6(v) = (1)2a) ((—1/a) dp[op + 0qox + 2 020/ox d¢) .
(Thus we have the system of six deformation operators, where A" ; € L(V(Q), L,(Q))

are linear continuous operators from V() to L,(Q).)
Further, let us define a matrix '

1'S(e) S(e) 0 0 0 0
B(e) S(e) 0 0 0 0
Key=| 0 0 2S(e)(1 —p) © 0 0
0 0 0 D(e) D(e)p 0
0 0 0 D(e)n D(e) 0
0 0 0 0 0 2D(e)(1-p) oo
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where
S(e) = (Ee)/(t — u?), D(e) = (Ee*)/(12(1 — p?),

E is the so called Young modulus of elasticity and p is Poisson’s ratio (0 < p < 1/2).

We will consider physical situations such as those in Fig. 3 in which the transverse
displacement of a thin cylindrical shell is constrained by the presence of a foundation
(rigid, frictionless shells) located at a distance b under the middle surface of the shell,
for which all admissible transverse displacements satisfy

(2.3) 0(x,9) + Ale) = 0 forany (x,¢)eQ
where

A(e) = b — (ef2), b = const.

Physically, if 6(x, ¢) > —A(e), then the cylindrical shell does not come in contact
with the rigid frictionless shells (which are parallel to the original configuration
of the middle surface of the deformable shell), and no reactive force is developed
on the surface of the rigid shell. On the other hand, if 6(x, ¢) = —A(e) at some
point (x, @) € @, then the shell is in contact with the rigid shell and a transverse
reactive force p°(e) is developed on the cylindrical shell. Thus,

(24) p(e)=0 if O(x,9)> —Ale) and p(e) =0 if O(x, )= —Ale),
or 0(x,9) + Ale) =0, pe)=0 pe)(6+ Ale))=0 in Q.

Fig. 3.

The last condition in (2.4) is a version of the complementarity condition of mathemat-
ical programming in which the reactive force p°(e) is interpreted as a Lagrange
multiplier associated with the constraint (2.3).

The governing linear, symmetric operator @(e) has the form

L11(e) le(e) Ll3(e)
.%(e) = LZI(e) Lzz(e‘) L23(e)
) Lsy(e) Lss(e) Las(e) 3,3

Lyi(e) = — of(Ee)/(1 — u?) [(1/a*) (1 + (¢?[3a%)) 0]0x]}[ox —
— o{(Ee)/(1 + ) [(1/2a%) (1 + (¢?[3a%)) 0[]} [0 .

[

/

)
Lys(e) = — o{(Ee)/(1 — n?) [(n/a®) 0/0x]} 0 —
— o{(Ee)j(1 + 1) [(1/24%) 8]2p]} jox = Ly\(e),
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Lys(e) = — of(Ee)/(1 — n?) [(1/a®) (1 + (e?/6a%)) — (¢[6a°) 0 [09* —
- (Eez()/)(6a3) 0*[ox*]} 0@ — 0{(Ee)/(1 + w) [—e?/(6a®) 8*[0x 0¢p]}[ox =
Lys(e) = —0{(Ee)/(1 + w) (1/2a%) (=8/09)} [0p — o{(Ee) (1 — n?) (0]ox)} [ox ,
Lys(e) = — 0{(Ee) (1 — n?) (w/a)}[0x = Laa(e),
Lya(e) = (Ee)/(1 — w?) [(1]a®) (1 + (¢?[12a%)) ~ (e?[12a*) 8%|09 —
— (ne?)/(12a%) 8*|0x*] + 0*{(Ee®)/(12a°(1 — p?)) x
x [—a + ad®/dp® + pa® 0*|ox*]}|op? — 0*{(Ee®)/((6a%) (1 — p)) x
x a 8%|ox dp]}|ox 0 + 0*{(Ee?)[((12a%) (1 — p?)) x
x [—pa + pa 0*[op* + a® 0*[0x>]}[ox? .
Then we can write

(2:5) R(e)u = Ly(e)u + Li,(e)v + Lis(e) w,
A,(e)u = Lis(e)u + Lyy(e) v + Lys(e) w,
R (e)u = Lys(e)u + Lys(e) v + Lis(e) w,

(at least formally).
We will concentrate on the following model of state problem:

Unilateral problem for a clamped cylindrical shell

Given [T, T\, T,"], S(e), D(e), n, A(e) and the operator B(H3(Q) — L,(Q)) (where
TF, T:, T are the applied distributed loads per unit area of the middle surface
of the cylindrical shell, see Fig. 2), define
(2.6) [0,0,p°] = [2.(e) u(e), B,(e) u(e) Z,(e) u(e)] — [T, T, (T," + Be)].

Find u(e) for any e € U,4(Q) such that

(26,) P((x.0).€) 2 0. w((x.0)¢) = —Ae).
Pw((x,9),e) + Ale)) =0 in Q,
u=v=0, w=0w/dn=0 on 0Q,

This system describes the deformation of a clamped cylindrical shell under the
load [T, T, (T, + Be)], the transverse displacement w being constrained by the
presence of a rigid frictionless surface located at a distance A(e) under the lower
surface of the shell, and p‘(e) is the contact pressure.

Further, we introduce the set of kinematically admissible displacements by

(2.7) Ke, Q) ={v=1[p,q,0]eV(Q):0+ Ale) =2 0 on Q}
where A(e) > 0 for any e € U,4(Q) (<) enax < 2b).

Lemma 1. The set K(e, Q) is non-empty, convex and closed in V(Q) for fixed
eeU,(Q).
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Proof. The condition (2.3) ensures that the set S(e, Q) is non-empty for every
e € U,y(Q) (the element [p, g,0] € K(e, Q)). The convexity of K(e, Q) can be seen
directly from definition. Let us now consider such a sequence {v,}, (v, € K(e, Q),
n=1,2,...) that v, > v (strongly) in V(Q). Then, if v = [p, q, 0], v, = [P 9u> 0,],
we have 0, — 0 (strongly) in Hg(Q).

Next, due to the imbedding theorem for the space Hg(2) ([1]) we get Iim 6,(x,¢) =
= 0(x, @) for every point (x, @) € Q. Thus, as 0,(x, ¢) + A(e) = 0 for all (x, ¢) € ,
we obtain 0(x, ) + A(e) = 0in Q and hence v € (e, Q) as claimed.

Lemma 2. The system {Q(e, Q)} defined by (2.7) fulfils the conditions ((H1),
°, 29).
Proof. Indeed, if lim e, = ¢, in U(Q) (=H'(Q) N C(Q)), e, € U,4(R), then there

n—oo

exists a subsequence {e,!,. (< {e,],) weakly convergent in H*(Q) to the element
e € Upg(Q). Let {h,. q,,0,} > {p, 4,0} ([N ds 0] € S(en Q). [, ¢, 0] € V(2)) be
weakly convergent in V(Q). Then we have 0,(x, @) + A(e,) = 0 for all (x, @) € Q,
which implies, with respect to the compact imbedding H*(Q) G C(&),

0 + Aleg) = 0 forall (x,9)eQ
and hence [p, q, 0] € K(e,, Q) ((H 1), 2°). If [p, g, 0] € K(ep, Q), then we put

[Pw Gus 0,] =[P, q.6] + [0, 0, (e, — €)/2] The elements [p,, g,, 0,] satisfy the
conditions [p,. q,, 0,] € K(e,, Q), lim [p,, g, 0,] = [P, ¢, 0] (strongly) in V(Q).

Hence the condition ((H 1, 1°) holds. The subspace R(Q) = V(Q) is the set of rigid
body motions (representing virtual displacements of a rigid shell) given by R(Q) =
={veV(Q):P,: V(Q) > R, Py = #3(v) + #3(v) + N3(v) + #i(v) + H/3(v) +
+ N e(v) = 0}.

Lemma 3. Let ve V(Q) and P, v = 0. Then we have R(Q) = {0}.

Proof (Lemma 4.1 in [12]). On the open set Q we now define a bilinear form
(2.8) a(e,u,v) = [N (u)K(e) #T(v)adxde forany u,veV(Q)
and eeUy,(Q),

and a linear functional (the work of the external loads associated with a displacement
v =[p.q,0)]):
(2.9)  <L(e), vIy) = [o [TH(p — (e[2a) 36/0x) + T,(q — (e[2a) 36/09) +
+ T,*0] adx do + (Be, 0) 20y, V€ V(Q), e € U,(Q)
(for TS, T, T,) e L,(Q)),
N (V) = [H (V). A 2(V), A 5(V). H4(v), # 5 (v), #6(v)] ,
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B: H*(Q) » L,(Q), Kij€ C([emn €mal]), Li=12,...,6,
K, =K.
(If we define (Be, 0)y2q) = (—kesin ¢, 0),,q,, k = const. > 0, the operator
B: H*(Q) — L,(Q) is continuous. It corresponds to the loading caused e.g. by the

own weight of the shell.)
Next, we define a family of linear operators {A(e)} by the equation

(2.10) a(e, u,v) = (A(e) u, Vg -

(a(e, u,v): V(Q) x V(Q) - R is the Dirichlet form associated with A(e) for any
ee Uy(Q)), Ale)ue V*(Q) and A(e)e L(V(Q), V*(Q)) is the canonical isometric
operator (by a(e, u,v)). If we define a(e, u,v) and <{L(e), ¥)yq, by the formulas
(2.8), (2.9), (2.10) and K(e, Q) by (2.7), then the state problem (1.1) corresponds
to a unilateral problem for a shell the edge of which is clamped, under a load
T[T, T, 7))

For L(e) e V*(Q) consider the following problem:

Find u(e) € K(e, Q) such that

(Ae) u(e), v — u(e)y = <L(e), v — u(e)via)

for any v e (e, 2), ee U, (Q). (This is an abstract elliptic variational inequality
associated with the symmetric bilinear form a(e, -, -,).)

Theorem 2. Let u(e) be a solution of ((2.6), (2.6,)). Then
(2.11) CA(e) u(e), v — u(e)dyg) = for any ve S(e, Q),
= {L(e), v — u(e)dpo eeUy(Q).
Conversely, let u(e)e K(e, Q) be a solution of (2.11) for L(e)e[L,y(Q)]>. Then
L) [0,0, 5] = [(A.0) u(e) — T2, (A,(0)u(e) — T2,
(Z:(e) u(e) — (T + Be))]
in the distributional sense, where #.(e)u(e) — (T, + Be) = 0 ;
2° the following weak form of the complementarity conditions holds:
CA(e) u(e) — L(e), u(e) + [0,0, A(e)]Dy) = 0.
Moreover, if u(e)e (H*(Q) x H*(Q) x HQ)) N V(Q) then p(e)e L,(Q)
and p°(e) (w(e) + Ae)) = 0.

Remark 1. According to the Sobolev imbedding theorem ([1]) we have
H?*(Q) QG C°(@) (this imbedding is compact). Therefore, if 6 € H*(), the condition
0 = A(e) can be imposed pointwise in Q.

Remark 2. The assertion “p°(e) = 0 in the distributional sense” has the following
interpretation. Let 2*(Q) = {¢€ 2(Q): ¢ > 0. Then 2%(Q) is a positive cone
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of test functions. We then define a distribution p°(e) to be non-negative, written
p(e) = 0, whenever {(p°(e), > geq) = 0 for any & e 2*(Q) (Where (-, *D g, denotes
the duality pairing on 2%(Q) x 2(Q)).

Proof of Theorem 2. We first note that the constraint condition (2.3) implies
(2.13) p(e)(6 —w) =0 forany 0= —A(e) and eeU,(Q).

Then by (2.6) and by integration by parts we get (for u(e) € (H*(Q) x H?Q x H*(Q))
N V(Q) and v e V(Q))
[a(2(e) u(e), V)gs 42 = ale, ule), v)),
A U(E) v ~ ule)yriay = Ja (0) (0 — w(e) 4 + <L(E)V — u(e)vie
Using the relation (2.13) we obtain
(A(e) ule), v — ule)yia) = <L(e), v — u(e)ya) -

Next, let u(e) be a solution of (2.11) and set 9(e) = (w(e) + &), p = (u + 1), ¢ =
= (v + %), £€ 2%(Q),n, x € 2(Q). Integration by parts yields

{(2.(e)u(e) — (T + Be)), Egiy = 0 forany e 2¥(Q), eeUy(Q),

(R (e)ule) = TF), Mg = 0 forany ne2(Q), eelU,y(Q),

(R (e) u(e) = T.)), ) gy = 0 forany xe2(Q), eeU,y(Q).
Note that this result means that the distribution p°(e) = [0,0, p°(e)] =
= [(%.(e) u(e) — T), (#,(e) u(e) — T)), (#.(e) u(e) — (T,* + Be))] is nonnegativ
on Q.

Next, we set u = p, v = ¢, 0(e) = (2w(e) + A(e)) and then u = p, v = g, O(e) =
= —A(e) in (2.11). It is obvious that in both cases 0(e) € 8(e, Q). From the pair
of inequalities resulting from these choices we conclude that ((2.12), 2°) holds. On the
other hand, if u(e) e (H*(Q) x H*(Q) x H*(Q)) N V() then [0, 0, p°(e)] € L,(Q) x
x L,(Q) x L,(Q). Then again by integration of ((2.12), 2°) we obtain

fa 7(6) () — A(€)) 42 = 0.
This means (by p°(e) = 0 and (w(e) — A(e)) = 0) p(e) (w(e) — A(e)) = 0 a.e. in Q.

Lemma 4. The family {A(e)}, e € U,4(Q) of operators defined by (2.10) satisfies
the assumptions ((H 0), 1° to 3°).

Proof. By virtue of the definition of U,4(Q) we have
(2.14) © JA(e) v

yre) = € ”"" V@) -

(We obtain the estimate |a(e, u, v)| < c|ullyq) V] after using the Schwarz
inequality.) Here the positive constant ¢ is independent of (e, v). Now ((H0), 1°)
is an immediate consequence of (2.14).
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To prove the assumption ((H 0), 2°) we first realize that K(e) is positive definite,
ie. ETK(e) & = c,&"¢ for any &e RS and e e U,y(Q), where the positive constant
¢ is independent of e.

We may write (the energy deformation of the cylindrical shell is positive definite)

A& v Vov = alesrv) 2 o § 14 0))

(the positive constant ¢ is independent of e). The system {4 (v)}$=; is coercive
on V(Q) (with respect to Lemma 3 and Lemma 11.3.2 ([12])). Thus we obtain

CA(e) v, V)Dyy = ||}y forany veV(Q), eeU,(Q)
and « > 0 independent of e.

This completes the verification of ((HO0), 2°). Let e, e U,4(Q) such that e, — e,
(weakly) in U(Q). We may write (for fixed € V()

(2.15) [<(4(e,) — Afeo)) v: @)ya)| =
= [Ja (W7(v) [K(e,) — K(eo)] A (@) @ dx do|
= Jo [(47(0) [K(e) — K(eo)] ()] a dx do

(122 ~ ey + s = eolem) L ¥ 430001 [ . A 0)a0] * =

< (flen - el + e — eolca) ”"“V(Q) lolve, -0

for every v e V(Q). This proves ((H 0), 3°), which completes the proof of Lemma 4.
Now we define the cost functional in this case.
1° The desired thickness of the shell is given by the distribution z,(x, @) of the
deflection, and we look for a control parameter e subject to constraints, i.e. e € U,4(Q),
such that the system response w(e,) has a minimum deviation of z,(x, ¢) ina certain
sense. We define the cost functional (£(v) + PB(e)) by
(2.16)  L(v) = [o[0(e) — z,]* adx de,
PBle) =0 for eeU,y(Q)
PB(e) = +o otherwise,
where z, € Hy(Q) .

IATIA

Lemma 5. The cost functional (2.16) satisfies the condition ((E0), 1°, 2°).

Proof. We have $(e) = I,_,(Q) (the indicator function of U,(Q)). Obviously
the function £(v) satisfies the assumption ((E 0)).
2° We define the cost functional £”(e, v) in the following form:

(2.17) 2%(e,v) = (1/2) <A(e) v, ¥Dy(a) — <L(e), ¥Dy()

(the total potential energy of the cylindrical shell evaluated in the equilibrium state).

Lemma 6. The cost functional (2.17) satisfies the condition ((E 0), 3°).
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Proof. Let us verify ((E0), 3°). For any fixed e € U,4(Q) the functional £"(e, *):
V(Q) > R* is weakly lower semicontinuous. Moreover, we have

2% (e va) = £7(e,vi) + (1/2) (A(en) = A(€)) Vi Vadvray +

+ <L(€) - L(e'l)’ vn>V(.Q) = 2(65 Vu) + I
where

’II = |(1/2) {(A(e,) = A(eo)) Vs Vv + ((Ley) — Lley)), "u>V(9)| s
= (1/2) K(A(eu) - A(eO)) Vs vn>V(9)| + |<(L(eo) - L(en))’ vn>V(ﬂ)l =
< (12) |A(en) = Aleo)|viay,vecan [¥allvi@ + [Lleo) = Llen)ywy [¥allvia) = ©
since all norms ||V, |}y, are bounded. By virtue of (2.15) we have
(2.18) [4(en) = Aleo)|eviay veon = Sup
veV (), llvllveay=1
[(4(e.) = Aleo)) V] yeea) = sup
veV(2),llvllvay=1
sup |<(A(en) - A("o)) v, w>V(Q)] -0

eV (Q),|lo]lv)=1

On the basis of Sobolev imbedding theorem, the functional L(e) is linear and conti-
nuous on V(Q). Indeed, we have the estimate

]<(L(en) - L(eo))’ V>V(!2)| =
< (1)24) fo|(eo — e,) (00/0x + 00/0¢)| a dx de + ](B(e,, — €0)s D] =
< cfe — el [vlve -
This means that
” L(eo) — L(e,,)”,,,(Q) = SBE})K(L(%) — L(eo))s V>V(m| = C"eo - en”cm) - 0.

Ivllveay=1
(Moreover, we can write ke, sin ¢ — ke, sin ¢ (weakly) in H*().) Thus
L(e,) - L(eo) -
Hence we obtain
lim inf 8 (e,, v,) = liminf 2" (ep, v,) + limI = £"(e,, v) .
Consequently, ((E 0), 3°) is satisfied. From Theorem 1; Lemmas 4, 5, 6, and with
regard to (E 1), (H 1) one conclude the following assertion (optimization of the

thickness of a cylindrical shell): the optimal control problem (B), where the data
are defined above has at least one solution.
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Suhrn
OPTIMALNE RIADENIE VALCOVEJ SKRUPINY S TUHOU PREKAZKOU
JAN LoviSex
Je Studovani uloha optimalneho riadenia varia¢nou nerovnicou s riadeniami v koeficientoch
operatora nerovnice v pravej strane a v konvexnej mnoZine moZnych stavov. Dokazuje sa existen-

cia optimalneho riadenia. RieSena je uloha optimalneho navrhovania pruZnej valcovej Skrupiny
s prekazkou a premennou hribkou ako kontrolnou premennou.

Pesome

OIITUMAJIBHOE VIIPABJIEHUE JJISI HWIMHAPUYECKOW OBOJIOYKUN
C IIPEITATCTBUEM

JAN LoViSEK
B paboTte u3y4aeTcs 3a/jaya ONTAMAIIBHOTO YIPABJIEHNs BAPHALMOHHEIM HEPABEHCTBOM C ynpa-

BlieHEAMHE B KodbduimenTax onepatopa HEPaBEHCTBA, B NPABOM YaCTH M B BBIIYKIIOM MHOXETCBE
JOIMyCTAMBbIX COCTOSTHMIA.
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813 68 Bratislava.

32



		webmaster@dml.cz
	2020-07-02T06:49:04+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




