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OPTIMAL DESIGN OF CYLINDRICAL SHELL 
WITH A RIGID OBSTACLE 

JAN LOVISEK 

(Received July 22, 1987) 

Summary. The aim of the present paper is to study problems of optimal design in mechanics, 
whose variational form are inequalities expressing the principle of virtual power in its inequality 
form. We consider an optimal control problem in which the state of the system (involving an 
elliptic, linear symmetric operator, the coefficients of which are chosen as the design — control 
variables) is defined as the (unique) solution of stationary variational inequalities. The existence 
result proved in Section 1 is applied in Section 2 to the optimal design of an elastic cylindrical 
shell subject to unilateral constraints. We assume that the bending of the shell is limited by a rigid 
obstacle. The role of the design variable is played by the thickness of the shell. 

Keywords: Optimal control, variational inequality, convex set, cylindrical shell, thickness-
function, obstacle. 
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1. EXISTENCE AND UNIQUENESS OF SOLUTION 

Let V(Q) be a real Hilbert space and V*(Q) its dual space, the pairing between 
V(Q) and V*(Q) being denoted by <•, '>v(fl)- Next, H(Q) is a separable real Hilbert 
space such that V(Q) is dense in H(Q) and the injection of V(Q) is completely conti­
nuous. Let U(Q) be a Hilbert space of controls, Uad(Q) c U(Q) a set of admissible 
controls (Uad(Q) is compact in U(Q)). By L(V(Q), H(Q)) we denote the family of 
bounded linear operators from V(Q) to H(Q). 

Let A(e): V(Q) -> V*(Q) for every eeUad(Q) be a family of linear symmetric 
operators {-4(e)} with the following properties: 
(HO) 1° For any e e Uad(Q) the operator A(e) e L(V(Q), V*(Q)) ({A(e}} is uniformly 

bounded, i.e. 

Iklkfl) ^ Cl > H|v<i» = C2 => \\A(e) V\\v*&) = C(C2)) ' 

2° For any e e Uad(Q), the operator A(e) satisfies the uniform coercivity 
condition: 

<A(e) v, v}Y(Q) ;> a|HIV(fl) (a > 0) for all v e V(Q), 

e e Uad(Q) where oe is independent of e. 
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3° For every v e V(Q) the operator A(-) v: Uad(Q) -> V*(Q) is weakly -
strongly continuous: en -> <?0 in U(.(2) (weakly) for n -> oo => A(en) v -> 
~> A(e0) v (strongly) in V*(Q). 

Suppose that &(e, Q) is a closed, convex, nonempty subset of V(Q). 
Next, let j ( - ) : V(Q) -> R be a proper, convex and Lipschitz continuous fuctional 

on V(Q) with D(j) = {v e &(e, Q): j(v) < +00 for any eeUad(Q)} 4= 0. We have 
a sequence {&(en, Q)n, en e U.dd(Q)9 of convex subsets &(en, Q) <= V(Q)9 which 
converges to 5fc(e, f2) in the sense of Mosco, i.e.: 
(H 1) 1° any v e &(e, Q) is the strong limit of a sequence {vn}n such that vn e $i(en, Q) 

for every ne N; 
2° for all vnke$i(enk9Q)({&(enk9Q))nk being a subsequence of {&(en9 Q)}n) 

satisfying v„fc -^ v (weakly), it follows that v e H(<?, .(2) for e„ -> e (strongly) 
in U(Q)(eneUad(Q)). 

Let £ : H(Q) -> R, ^ : U(.Q) -> R and £ A: Uad(^) x V(.(2) -> R be given functions 
satisfying the following conditions — assumptions: 
(E 0) 1° 2(u) is locally Lipschitz and non-negative on H(Q); 

r v(e) = 1° lf eeU^Q)> 
l + o o otherwise ; 

3° 2A(e, 11(e)) is lower semicontinuous in Uad(.C2) — weak x V(Q) — (i.e., 
for weak sequential topology of U(Q) and strong topology of V(Q)), 
and 2A(e, •) is continuous in V(Q). 

Let an operator B e L(U(Q), V*(Q)) be given such that 
(E 1) B is completely continuous from Uad(£2) to V*(Q). (Hypothesis (E 1) is satis­

fied in particular if the injection of V(Q) into H(Q) is completely continuous 
and B e L(U(Q), H(Q))) 

SETTING THE PROBLEM (SB). 

Minimize the function 
\2(u(e)) + $(e) 

(8 ) or 
\2A(e,u(e)) 
over all u(e) e St(e, Q) and e e U.dd(Q) subject to the state system 

(1.1) (A(e) u(e), v - u(e)\m + j(v) - j(u(e)) ^ < / + Be, v - u(e)}w(Q) 

for all v e »(e, Q) . 

The parameter e e U.dd(Q) is called a control, and the corresponding solution u(e) 
is called the state of the system (1.1). For every fe V*(Q) and for every e e Uad(£2) 
the variational inequality (1.1) has a unique solution (see [3]). 

A pair [e0, u(e0)} e Uad(Q) x V(Q) for which the infimum in problem (!.B) is 
attained is called the optimal pair, and the corresponding control e0 is called the 
optimal control. 
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Theorem 1. Under assumptions (H 0), (H 1) and (E 0), (E l), problem (®) has 
at least one optimal pair. 

Proof. Let {en}n a Uad(Q) be weakly convergent in U(Q) to e0. By assumption 
(E 1) it follows that 

(1.2) Ben -> Be0 (strongly) in V*(Q) . 

We set un = u(en) e ft(e„, -2), n = 1,2,. . . and we can write 

<A(e„) (u„ - v), u„ - v>V(0) ;= I(*>) ~ 1(w») -

- < / + -9e„, v ~ un>v{Q) - <A(en) v, un - vyy(Q) 

for any v e &(en, Q). 
Then by (Proposition 1.7 ([3])) we have int D(j) cz D(dj) and if 

(1.3) H *(e, Q) (1 i n t D(j) * 0 (int C = interior of C) 
ee [ / a d (« ) 

then there exists an element v0 e f) $k(e, Q) f) int D(j) such that 
eeUad(Q) 

j(»o) ~ j(w) = <P> v0 - wyv(Q) where p e dj(v0) , w e St(en9 Q). 

This means that the function 0(w) = (j(v0) — I(w))/||yo — w||V(o) is bounded (0: 
§t(en, Q) -> R). Then by assumption ((HO), 2) we get a|u„ — t>0||V(fl) = ®(un) + 

+ (1/ | |K*(0) + ll^i»lk*(fl|) + \<A(en)VolUn - V0yy(Q)\l\\un - V0\\y(Q). 
Thus we have ||wM||V(o) = C (using the assumption ((HO), 1°)). We can extract 

a subsequence {u„k}nk(<=- {un}n) such that 

(1.4) u„k — u (weakly) in V(Q). 

Since unk e &(e„k, Q) by assumption ((H 1), 2°), we have u e Si(e0, Q) as well. For any 
w e V(Q) we have by assumption ((H 0), 3°) 

lim <A(enk) u(enk), wyy(Q) = Urn <A(e„k) w, unkyy(Q) = 
nk-+co nk-+co 

<A(e0) w, uyy(Q) = <A(e0) u, w>v(0) 
and therefore 

(1.5) A(enk)u(enk)-A(e0)u (weakly) in V*(Q) 

if unk -- u is weakly convergent in V(Q). Further, in virtue of the monotonicity 
of A(e„) (by assumption ((H 0), 2°) we can write 

<A(enk) unk, unk - uyy(Q) = <A(enk) u, u„k - uyy(Q) nk « 1, 2 , . . . . 

Hence we have (by passing to the limit) 

lim 2<A(e„k) u, unkyy(Q) = lim inf <A(enk) unk, uWk>v(0) + lim <A(enk) u, i*>V(fl). 
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This yields (by (1.4) and (H 0), 3°)) 

(1.6) lim inf <A(e„k) unk, u,lkyY(Q) = <A(e0) u, u>V(f2). 
nk-+oo 

Let v e 5l(c0, Q) be an arbitrary element and {vnk)nk such a sequence that 

(1.7) vBfc -» v (strongly) in V(Q), v„k e §i(enk, Q), nk = 1, 2 , . . . 

(The existence of {v„k)nk is ensured by ((H 1), 1°).) Next, we can write 

<A(enk) unk, vnk - unkyY(Q) + j(vnk) - j(uBfc) = <(/ + BeJ, vBfc - unkyY(Q) 

for any vBfc e &(e„k, Q), eUk e Uad(0). 
This yields 

<A(eJ unk, unkyY(Q) - j(vj = <A(eJ unk, vnkyY(Q) -

- <(/ + BeJ, vnk - unkyY(Q) - j(uBfc), 
and we get 

lim sup <A(enk) unk, unk)Y(Q) - limj(vttk) = 
nk-+co nk-> oo 

= lim «A(enk) unk, vnuyY(Q) - <(/ + BeBfc), vBfc - urlkyY(Q)) - lim inf j(unk). 
nfc-*oo /ijc-*co 

Hence by (1.4), (1.5) and in virtue of the continuity of j(v) on V(Q) one has the 
following relations. (Since proper convex functional lower semicontinuity in the strong 
topology is the same as sequencial lower semicontinuity in the weak topology.) 

(1.8) lim sup <A(etlk) unk, unj}Y(Q) - j(v) = <A(e0) u, vyY(Q) -
«fc->00 

- < / + Be0, v - uyY(Q) - j(u) for any v e 5l(e0, Q) , 

and therefore (we take v — u in (1.8)) 

(1-9) lim sup <A(enk) u„k, unk}Y(Q) S' (A(e0) u, u>v(0) • 

/ I fc-> OO 

This means (by (1.6) and (1.9)) that 

(1-10) Hm <A(enk) uBk, uni)Y(Q) = <A(e0) u, uyY(Q) . 
nk->ao 

From (1.4), (1.5), (1.7) and (1.10), (E 1) we obtain 
<A(e0) u, u - vyV(Q) + j(u) S Hm [<A(enk) u1lk, uBfc - vllky(Q) + j(unk)] = 

nk-+ oo 

= lim [< / + BeBfc, uBk - vBk>v(^) + j(vnk)~\ = < / + Be0,u ~ vyY(Q) + j(v) 
/ Ik->00 

for any v e &(e0, Q) (by continuity of j(v) on V(Q)). In other words, we have proved 
that u = u(e0)>

 u(en) -^ u(c0) (weakly) in V(Q). Next, by virtue of ((H 0), 2°) we can 
write 
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alim \\u(enk) - u(e0)\l{Q) ^ 

= lim (A(enk) (u(ej - u(e0)), u(ej - u(e0)yy(Q) = 
nk-*oo 

= lim {(A(enk) u(enk), u(e„k)ynQ) + (A(enk) u(e0), u(e0)yY(Q) -
nk-+oo 

- <A(enk) u(e„k), u(e0)yY(Q) - (A(ellk) u(e0), u(enk)ywm} = 0 

(using (1.4), (1.5), ((HO), 3°) and (1.10)). This means that 

lim u(e,J = u(e0) 
nk-*co 

(in the strong topology of V(Q)). Thus we have shown that the map e -» u(e) is 
weakly —strongly continuous from Uad(Q) to V(Q). Let d = inf {2(u(e)), ee Uad(Q)}. 
By the assumption (E 0, 1°) we see that 0 ^ d < +oo. Now let {en} c Uad(-0) be 
such that 2(u(en) -> d. Since Uad(Q) is compact there exists a subsequence {e„k)„k <= 
c {en}„ such that enk -> e0 (strongly) in U(Q), and u(etlk) -» u(e0) = u0 (strongly) 
in V(:Q). Since £ is continuous on V(Q), we have (2 is locally Lipschitz and non-
negative from V(Q) into R) 2(u(e0)) = d. 

On the other hand, it follows from ((E 0), 3°) that 2A(e0, u(e0)) S 
:g lim inf 2 A (enk, u(enk)) = inf 2 A (e, u(e)), which completes the proof of Theorem 1. 

nk-+<x) eeUad(Q) 

In other words, e0 is an optimal control of problem (93). 

2. THE CYLINDRICAL SHELL 

The geometry of cylindrical shell 

Let R3 be the usual Euclidean space with a fixed orthonormal system (0, ix, i^, iz), 
and let Q be a bounded open subset in a plane K2 with a boundary dQ. Then the 
middle surface"© of a cylindrical shell is the image in K3 of the set Q by the mapping <1>: 

( D : f e , g e O c ] ? 2 - , ^ , g e i ? 3 . 

Fig. 1. 

We assume that the boundary dQ and the function *X> are sufficiently smooth. 
A cylindrical shell is an elastic body (£ defined in the space K3 by 
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€ = {MeR3:OM = <5>(x, <p) + zv(<p), (x, <p) e Q - e(x, <p)/2 = z = e(x, c/>)/2} 

where e: .Q -> R+ is the thickness of the shell, v is the normal vector for the middle 
surface @, and we assume 

£>= [ - H , H ] x [a,jS], 

<I>(x, 9) = xix + a cos <p/p + a sin <p/z where a — const. 

Fig. 2. 

In what follows, this geometry of the cylindrical shell (£ is used as a reference 
configuration. Indeed, we study stationary problems falling into the following 
category. Let CT be the shell configuration before deformation. We assume (for 
simplicity) that the shell is clamped on the boundary and loaded with a distribution 
of volume and surface forces. These act on the upper and the lower faces. Under 
the action of these forces the shell deforms to a new configuration C*. Then assuming 
the physical characteristics of the material of the cylindrical shell, the initial con­
figuration <£, the distribution of the forces applied, and the boundary conditions 
are known, the problem is to determine displacement of the points of (£. From 
the knowledge of the displacements, we are able to determine the strains and the 
stresses at any point of (£*. The KirchhofT theory is based on complementary hypo­
theses which permit us to derive an approximation of the displacement field of the 
particles of the cylindrical shell (£ only from the knowledge of the displacement field 
u of the particles of the middle surface. 

The kinematic homogeneous boundary conditions on dQ are given by u = v = 
= w = dwjdn = 0 where n is the normal vector to the surface 

{d>(x, <p) + z v(<p): (x, <p, z) e dQx[(~el2), (ej2)]} , 

u = [u, v, w] is the displacement vector of the points on the shell middle surface. 
(Thus the three function u, v, w: (x,<p)e Q -> u(x,<p), v(x, cp), w(x, <p) are the (princi­
pal) unknowns of the state system.) 

We denote by L2(Q) the space of all measurable square integrable functions with 
respect to the Lebesgue measure dQ = a dxdcp. 
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Let us denote: Cm(Q): the space of m-times continuously different!able real valued 
functions whose all derivatives up to order m are continuous in Q; 

HX
0(Q) = {ve Hl(Q): v = 0 on dQ] ; 

H2
0(Q) = {ve H2(Q): v = dvjdn = 0 on dQ} ; 

H°(Q) = L2(Q), 

where Hi(Q), H2(Q) are Sobolev spaces. The space of virtual displacements of the 
middle surface of the shell is the space 

V(Q) = H0(Q) x H0(Q) x H2
0(Q). 

Then, V(Q) is a Hilbert space equipped with the scalar product 

(2.1) (u, v)vm = (u, p)HHa) + (v, q)HHQ) + (w, 0)H2(r2) 

for u = [u, v, w] ; v = [p, g, #] , 
and the norm 

Next, we define 
JV(Í2) = ( , v)112 

V(Q) V Є V(ß) 

U(Q) = H1(Q)f)C°(Q), 

U.dd(Q) = {e e H2(Q) ; 0 < emln ^ e(x, y) S emax 

for all (x,y)eQ, \\e\\HHQ) = Cj , f0 c(x, y) d.(2 = c2} 

where the constants c, m m ' v max , <Л are such that Uad(&) 4- 0. 
We shall use the linear theory of shells ([11, 12]), and formulate the equilibrium 

in terms of the displacement vector u(e). 

Let us define the following system of strains: 

{.*»* j i ' i = 1,2, 
where 

(2.2) ^ x ( v ) = dp/3x , ^ 2 ( » ) = (\\a) (dqjd<p - 0), 
Jf3(v) = (\\2a dpjd(p + dqjdx), Jf^v) = d2djdx2 , 
jr5(v) = (\la2)(d2ejd<p2 + &), 
jr6(v) = (l/2a) ((—1/a) dp\d<p + dqjdx + 2 d29jdx d<p) . 

(Thus we have the system of six deformation operators, where Jf {e L(V(£2), L2(Q)) 
are linear continuous operators from V(Q) to L2(£2).) 

Further, let us define a matrix 

K(e) = 

S(e) S(e) 0 0 0 0 
B(e) S(e) 0 0 0 0 

0 0 2 S(e) (1 - џ) 0 0 0 

0 0 0 D(e) D(e)џ 0 
0 0 0 D(e)џ D(e) 0 

0 0 0 0 0 2 D(e) (1 - џ) (6,6) 
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where 
S(e) = (Ee)j(l - u 2 ) , D(e) = (£e

3)/(12(l - u 2)) , 

E is the so called Young modulus of elasticity and p is Poisson's ratio (0 — p < 1/2). 
We will consider physical situations such as those in Fig. 3 in which the transverse 

displacement of a thin cylindrical shell is constrained by the presence of a foundation 
(rigid, frictionless shells) located at a distance b under the middle surface of the shell, 
for which all admissible transverse displacements satisfy 

(2.3) 0(x, <p) + A(e) ^ 0 for any (x, <p) e Q 

where 
A(e) = b — (el2) , b = const. 

Physically, if 9(x, <p) > — A(e), then the cylindrical shell does not come in contact 
with the rigid frictionless shells (which are parallel to the original configuration 
of the middle surface of the deformable shell), and no reactive force is developed 
on the surface of the rigid shell. On the other hand, if 6(x, <p) = — A(e) at some 
point (x, (p) G Q, then the shell is in contact with the rigid shell and a transverse 
reactive force pc(e) is developed on the cylindrical shell. Thus, 

(2.4) pc(e) = 0 if 9(x,<p) > -A(e) and pc(e) ^ 0 if 6(x,<p) = -A(e), 

or 9(x, <p) + A(e) ^ 0 , pc(e) ^ 0 pc(e) (0 + A(e)) = 0 in Q . 

Fig. 3. 

The last condition in (2.4) is a version of the complementarity condition of mathemat­
ical programming in which the reactive force pc(e) is interpreted as a Lagrange 
multiplier associated with the constraint (2.3). 

The governing linear, symmetric operator 01(e) has the form 

áž(e) = 

where 

Ln(e) Lí2(e) Llъ(e) 
L2l(e) L22(e) L2Ъ(e) 
LЪÍ(e) LЪ2(e) Lъъ(e)_ (3,3) 

LXÍ(é) = - d{(Ee)l(l - u 2 ) [ ( l / a 4 ) ( l + (e
2/3a2)) djdx^dx -

- d{(Ee)l(l + u) [(l/2a2)(l + (e
2/3a2)) d\d<p\}\d(p , 

Ll2(e) = - d{(Ee)l(í - u2) [(u/a2) dj8x])j8<p -
- d{(Ee)l(l + u) [(l/2a2) d\d<p\}\dx = L2i(e) , 
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L13(e) = - 8{(Ee)l(\ - n2) [( i /a3) (l + (e2/6a2)) - (e2\6as) d2\d<j>2 -
- (ye2)\(6a3) d2\dx2]}\S<p - d{(Ee)\(\ + y) [ -e 2 /(6a 3) 32\dx d<p]}\dx = 
= L3 1(e), 

L22(e) = -3{(Ee)/(l + y) (l/2a2) (-d\d<p)}\d<p - 3{(Ee) (1 - y2) (d\8x)}\dx , 

L23(e) = - d{(Ee) (1 - ^2) (>i/a)}/dx = L32(e) , 

L33(e) - (Ee)/(1 - ^ ) [ ( l / a 2 ) ( l + (e2/l2a2)) - (e2/12a4) d2\d<p2 -
- (ye2)\(\2a2) d2\dx2] + 32{(£e2)/(12a5(l - y2)) x 
x[-a + a d2\8<p2 + ya3 d2\dx2]}\8<p2 - 52{(Ee3)/((6a3) (1 - y)) x 
x a d2\3xd<p]}\dxd<p + d2{(Ee2)l((\2a3)(\ - y2)) x 
x [-ya + ya d2\d<p2 + a3 d2\dx2]}\dx2 . 

Then we can write 

(2.5) 0tx(e) u = L n (e) u + L12(e) v + L13(e) w , 
®Xe) u = L i2( e) u + L22.(e) v + L23(e) w , 
^ z(e) u = L13(e) u + L23(e) v + L33(e) w , 

(at least formally). 
We will concentrate on the following model of state problem: 

Unilateral problem for a clamped cylindrical shell 
Given [T*, T*, T*], S(e), D(e), y, A(e) and the operator B(H2

0(Q) -* L2(Q)) (where 
T*, T*, T* are the applied distributed loads per unit area of the middle surface 
of the cylindrical shell, see Fig. 2), define 

(2.6) [0, 0, f] = [0tx(e) u(e), 0t„(e) u(e) Mz(e) u(ej] - [Tx*, T*, (Tz* + Be)] . 

Find u(e) for any e e Uad(Q) such that 

(2.6X) Pe((x> <Pl *) = 0 , w((x, <p), e) ^ -A(e) , 

pc(w((x, <p), e) + A(e)) = 0 in Q , 

u = v = 0 , w = dwjdn = 0 on 3Q , 

This system describes the deformation of a clamped cylindrical shell under the 
load [T*, T*, (T* + Be)~\, the transverse displacement w being constrained by the 
presence of a rigid frictionless surface located at a distance A(e) under the lower 
surface of the shell, and pc(e) is the contact pressure. 

Further, we introduce the set of kinematically admissible displacements by 

(2.7) St(e, Q) = {v = [p, q, 9] e V(Q): 6 + A(e) ^ 0 on Q} 

where A(e) > 0 for any e e Uad(Q) (o) emax ^ 2b). 

Lemma 1. The set &(e, Q) is non-empty, convex and closed in V(Q) for fixed 
eeUjQ). 
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Proof. The condition (2.3) ensures that the set §i(e, Q) is non-empty for every 
e e Uad(Q) (the element [p, q, 0] e 5l(e, Q)). The convexity of $t(e, Q) can be seen 
directly from definition. Let us now consider such a sequence {vn}n (vn e &(e, Q), 
n = 1,2,...) that vn -» v (strongly) in V(Q). Then, if v = [p, q, 0], vn = [pn, qn, 6n], 
we have 6n -+ 6 (strongly) in H2

0(Q). 
Next, due to the imbedding theorem for the space H^(Q) ([1]) we get lim 9n(x, <p) = 

fl-frOO 

= 6(x, cp) for every point (x, <p) e Q. Thus, as 0n(x, <p) + A(e) ^ 0 for all (x, <p) e Q, 
we obtain 0(x, <p) + A(e) ^ 0 in Q and hence v e &(e, Q) as claimed. 

Lemma 2. The system {H(e, Q)} defined by (2.7) fulfils the conditions ((Hi), 
1°, 2°). 

Proof. Indeed, if lim en = e0 in U(Q) ( = Hl(Q) f) C(Q)), en e Uad(Q), then there 
n-»oo 

exists a subsequence {enk)nk(c: {en}n) weakly convergent in H2(Q) to the element 
e0 G Uad(Q). Let {h„, $„, 0,,} -> (p, 4, 0} ([hM, qn, 9n] e ft(en, G), [p, g, 0] e V(0)) be 
weakly convergent in V(:Q). Then we have 0„(x, <p) + A(en) ^ 0 for all (x, <p) e .Q, 
which implies, with respect to the compact imbedding H2(Q) Q C(Q), 

0 + A(e0) ^ 0 for all (x, <p)eQ 

and hence [p, q, 0] e St(e0, Q) ((H 1), 2°). If [p, q, 0] e 5t(e0, (2), then we put 
[Pn, Qn> Qn] = [P, g, ^] + [0, 0, (en - e0)/2]. The elements [pn, qn, 0n] satisfy the 
conditions [pn, qn, 0n] e 5^(en, D), lim [pn, qn, 6n] = [p, q, 0] (strongly) in V(;Q). 

n-» oo 

Hence the condition ((H 1, 1°) holds. The subspace R(Q) <= V(Q) is the set of rigid 
body motions (representing virtual displacements of a rigid shell) given by R(Q) = 
= {ve V(Q): Pv: V(Q) -+ R, PYv = Jf2(v) + J/2

2(v) + JV2
3(v) + J/\(v) + Jf2

5(v) + 
+ Jfl(v) = Q}. 

Lemma 3. Let v e V(Q) and PY v = 0. Then we have R(Q) = {0}. 

Proof (Lemma 4.1 in [12]). On the open set Q we now define a bilinear form 

(2.8) a(e, u, v) = Jfi Jf(u) K(e) J/~7(v) a dx d<p for any u, v e V(Q) 

and eeU a d ( f l ) , 

and a linear functional (the work of the external loads associated with a displacement 

y = [P, q, &]): 

(2.9) <L(e), v}vm = Jfl [Tx*(p - (ejla) 86jdx) + T*(q - (ejla) de\d<p) + 

+ T*ff] a dx d<p + {Be, B}Hlm, v e V(Q), e e Uad(Q) 

(for T*. T*, Tz* e L2(Q)) , 

J/(v) = \Jri(v),J/2(v),J/3(v),J/A(v),jr5(v),J/6(v)\, 
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B: H2(Q) - L2(Q) , Ktje C([emin, emax]), i,j = 1, 2 , . . . , 6 , 

Ku = Ky.. 

(If we define (Be,QyHl(Q) = ( — ke $in<p, 9)Ll(Q), k = const. > 0, the operator 
B: H2(Q) -> L2(.Q) is continuous. It corresponds to the loading caused e.g. by the 
own weight of the shell.) 

Next, we define a family of linear operators {^4(e)} by the equation 

(2.10) a(e,u,v) = <A(e) u, v > m ) . 

(O(e, u, v): V(£2) x V(Q) -> R is the Dirichlet form associated with A(c) for any 
e e Uad(Q)), A(e) u e V*(Q) and A(e) e L(V(Q), V*(Q)) is the canonical isometric 
operator (by a(e, u, v)). If we define a(e, u, v) and <L(e), vyV(Q) by the formulas 
(2.8), (2.9), (2.10) and &(e, Q) by (2.7), then the state problem (1.1) corresponds 
to a unilateral problem for a shell the edge of which is clamped, under a load 
T^([TX\ T*, TZ*]). 

For L(e)e V*(Q) consider the following problem: 
Find u(e) e &(e, Q) such that 

(A(e) u(e), v - u(e)yV(Q) ^ <L(e), v - u(e)yV(Q) 

for any v e 5l(e, .Q), e e Uad(Q). (This is an abstract elliptic variational inequality 
associated with the symmetric bilinear form a(e, •, •,).) 

Theorem 2. Let u(e) be a solution of ((2.6), (2.6!)). Then 

(2.11) (A{e) u(e), v - u(e)yV(Q) = for any v e 5l(e, £>) , 

^ <L(e), v - u(e)yV(Q) e e Uad(Q). 

Conversely, let u(e) e &(e, Q) be a solution of (2.11) for L(e) e [L2(&)]3. Then 

(2.12)1° [0, 0, f(e)] = [(«,(«) u(e) - Tf), («,(«) ci(e) - T,*), 

(0tz(e) u(e) - (T* + Be))] 

in the distributional sense, where &z(e) u(e) — (Tz* + Be) ^ 0 ; 
2° the following weak form of the complementarity conditions holds: 

(A(e) u(e) - L(e), u(e) + [0, 0, A(e)]yV(Q) = 0 . 

Moreover, if u(e) e (H2(«Q) x H2(0) x H4(0)) f| K(fi) '-ten pc(e)eL2(;Q) 
a « ( i / ( e ) ( ^ ) + A(e)) = 0. 

R e m a r k 1. According to the Sobolev imbedding theorem. ([1]) we have 
H2(Q) G G C°(Q) (this imbedding is compact). Therefore, if 9 e H2(Q), the condition 
9 ^ A(e) can be imposed pointwise in Q. 

R e m a r k 2. The assertion "pc(e) ^ 0 in the distributional sense" has the following 
interpretation. Let @ + (Q) = {^eQ)(Q):^ > 0}. Then 9 + (Q) is a positive cone 
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of test functions. We then define a distribution pc(e) to be non-negative, written 
pc(e) = 0, whenever <Pc(e), 0@(Q) = 0 f ° r anY f e Q>+(Q) (where <•, '}g(Q) denotes 
the duality pairing on @*(Q) x @(Q)). 

Proof of Theorem 2. We first note that the constraint condition (2.3) implies 

(2.13) pc(e) (0 - w) = 0 for any 0 = -A(e) and e e UjQ). 

Then by (2.6) and by integration by parts we get (for u(e) e (H2(Q) x H2Q X H4(Q)) 
f| V(Q) and v e V(Q)) 

fQ (M(e) u(e), v)R3 dQ = a(e, u(e), v)) , 

(A(e) u(e), v - u(e)>V(Q) = $Q pc(e) (0 - w(e)) dQ + <L(e), v - u(e)>V(Q) . 
Using the relation (2A3) we obtain 

<A(<?) u(e), v - u(e)>V{Q) = (L(e), v - u(e)}V(Q). 

Next, let u(e) be a solution of (2.11) and set 0(e) = (w(e) + £), p = (u + n)9 q = 
= (v + x), £ e ^ + (.Q), w, x G ̂ (.Q). Integration by parts yields 

<(#r(e) u(e) - (Tz* + Be)), Omm = 0 for any £ e ^ + (£>), e e Uad(0) , 

< ( « ^ ) u(e) - Ff), ^>^(^} = 0 for any rj e ®(Q) , e e Uad(Q), 

<(&J(e) u(e) - T*)9 x>g(Q) = 0 for any x e ®((2), e e Uad(Q) . 

Note that this result means that the distribution pc(e) = [0,0, pc(e)~\ = 
= \(0tx(e) u(e) - T*), (Mip(e) u(e) - T*), (0tz(e) u(e) - (T* + Be))] is nonnegativ 
on Q. 

Next, we set u = p, v = q9 6(e) = (2w(e) + A(e)) and then u = p, v = q, 0(e) = 
= — A(e) in (2.11). It is obvious that in both cases 0(e) e &(e, Q). From the pair 
of inequalities resulting from these choices we conclude that ((2A2), 2°) holds. On the 
other hand,ifu(e)e(H2(;Q) x H2(Q) x H\Q)) f] V(Q) then [0, 0, pc(e)] e L2(Q) x 
x L2(Q) x L2(Q). Then again by integration of ((2A2), 2°) we obtain 

Ja Pc(e) He) - A(e)) dQ = 0 . 

This means (by pc(e) = 0 and (w(e) - A(e)) = 0) pc(e) (w(e) - A(e)) = 0 a.e. in Q. 

Lemma 4. The family {A(e)}9 ee Uad(Q) of operators defined by (2.10) satisfies 
the assumptions ((H 0), 1° to 3°). 

Proof. By virtue of the definition of Uad(Q) we have 

(2-14) ' lA(e)vlv.m^4v\\vw. 

(We obtain the estimate \a(e, u, v)\ = c|u|K(j{2) ||v||K(fl) after using the Schwarz 
inequality.) Here the positive constant c is independent of (e, v). Now ((H 0), 1°) 
is an immediate consequence of (2.14). 
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To prove the assumption ((H 0), 2°) we first realize that K(e) is positive definite, 
i.e. £T K(e) £ ^ c0%

T£ for any % e R6 and e e Uad(Q), where the positive constant 
c0 is independent of e. 

We may write (the energy deformation of the cylindrical shell is positive definite) 

<A(e) v, v}vm = a(e, v, v) ^ c{ £ [ ^ ( v ) ^ , ) 

(the positive constant c is independent of e). The system {Jf i(y)}6
i=1 is coercive 

on V(Q) (with respect to Lemma 3 and Lemma 11.3.2 ([12])). Thus we obtain 

<A(c) v, v)}V(Q) ^ a||v||£(fl) for any v e V(Q), e e Uad(Q) 

and a > 0 independent of e . 

This completes the verification of ((H 0), 2°). Let en e Uad(Q) such that en -* e0 

(weakly) in U(Q). We may write (for fixed co e V(Q)) 

(2.15) \<(A(en)-A(e0))v,coyV(Q)\ = 

= |Jo ( ^ T W [*(«.) " % o ) ] JT{m)) a dx d<p\ g 

-S Jfl | ( ^ T W [*(*„) " K(e0)] ^ H | a d x d ^ 

c ( K - el\\C(U) + \\en - e 0 f l c c n ) ) [ J < > E ^ ^ ^ S 
i = l i = l 

-S c ( K - Eileen) + K " ^ollc(n)) MvW Mno) ~+ ° 

for every v e V(.Q). This proves ((H 0), 3°), which completes the proof of Lemma 4. 
Now we define the cost functional in this case. 
1° The desired thickness of the shell is given by the distribution zd(x, <p) of the 

deflection, and we look for a control parameter e subject to constraints, i.e. e e Uad(Q)y 

such that the system response w(e0) has a minimum deviation of zd(x, <p) in a certain 
sense. We define the cost functional (&(v) + ty(e)) by 

(2.16) 2(v) = Jfl [6(e) - zdf a dx dcp , 
y{e) = 0 for e e Uad(Q) 
ty(e) = + co otherwise , 
where zd e H^(Q) . 

Lemma 5. The cost functional (2A6) satisfies the condition ((E 0), 1°, 2°). 

Proof. We have S$(e) = IUad(Q) (the indicator function of Uad(.Q)). Obviously 
the function 2(v) satisfies the assumption ((E 0)). 

2° We define the cost functional 2A(e, v) in the following form: 

(2.17) £A(e, v) = (1/2) <A(e) v, v}V(Q) - <L(e), v}vm 

(the total potential energy of the cylindrical shell evaluated in the equilibrium state). 

Lemma 6. The cost functional (2.17) satisfies the condition ((E 0), 3°). 
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Proof. Let us verify ((E 0), 3°). For any fixed e e Uad(Q) the functional QA(e9 • ) : 
V(Q) -> R+ is weakly lower semicontinuous. Moreover, we have 

&A(en, vn) = Q*(e9 vn) + (1/2) <(A(en) - A(e)) vn9 vn)V(Q) + 

+ <L(e) - L(en)9 vn)V(Q) = 2(e9 vn) + I 

where 

|I| = |(l/2) <(A(en) - A(e0))vn9vn)V(Q) + <(L(c0) - L(en))9vn)V(Q)\ ^ 

^ (1/2) \<(A(en) - A(e0)) vn9 vn)V(Q)\ + |<(L(e0) - L(en))9 vn)V(Q)\ ^ 

^ (1/2) \\A(en) - -4(e0)||L(KWfK*(»)) WV(fl) + l|M>o) - L(en)\\v.(Q) \\vn\\V(Q) ~+ 0 

since all norms |Kw[|F(r2) are bounded. By virtue of (2A5) we have 

(2.18) \\A(en) - A(e0)\\L(V(Q)yV*(Q)) = sup 
v e V ( f l ) , | | v | | F ( J f 2 ) = l 

\\(A(en) - A(e0)) v\\v*(Q) = sup 
v e V ( f l ) , | l v | | ^ ( n > = l 

sup \<(A(e„) - A(e0)) v9 co)V(Q)\ -> 0 
06V(fl),l|tf>||K(.Q)=l 

On the basis of Sobolev imbedding theorem, the functional L(e) is linear and conti­
nuous on V(Q). Indeed, we have the estimate 

K(L(ew) - L(e0))9 v)V(Q)\ ^ 
^ (l/2a) J0 \(e0 - en) (dOjdx + dBld<p)\ a dx dcp + \<B(en - e0)9 Q)Ho(Q)\ g 

-S c||e0 - ^||c(Q) H V w 
This means that 

||L(e0) - L(en)\\v*(Q) = sup |<(L(eB) ~ L(eo)),v>nn)\ S c\\e0 - en\\C(U) -> 0. 
veV(fl) 

IMIr<n>.g-

(Moreover, we can write ken sin <p -> ke0 sin <p (weakly) in H2(Q).) Thus 

L(e„) - L(e0) . 
Hence we obtain 

lim inf &A(en, vn) ^ lim inf 2A(e09 vn) + lim I ^ £A(e09 v) . 
n-> oo /.-> oo n—>• oo 

Consequently, ((E 0), 3°) is satisfied. From Theorem 1; Lemmas 4, 5, 6, and with 
regard to ( E l ) , (FI 1) one conclude the following assertion (optimization of the 
thickness of a cylindrical shell): the optimal control problem (23), where the data 
are defined above has at least one solution. 
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S ú h r n 

OPTIMÁLNĚ RIADENIE VALCOVEJ ŠKRUPÍNY S TUHOU PŘEKÁŽKOU 

JÁN LOVÍŠEK 

Je študovaná úloha optimálneho riadenia variačnou nerovnicou s riadeniami v koeficientoch 
operátora nerovnice v právej straně a v konvexnej množině možných stavov. Dokazuje sa existen-
cia optimálneho riadenia. Riešená je úloha optimálneho navrhovania pružnej valcovej škrupiny 
s překážkou a premennou hrubkou ako kontrolnou premennou. 

Pe3K>Me 

OnTHMAJIBHOE ynPABJIEHHE /pIH IliHJIHHAPHMECKOM OBOJIOHKH 
C nPEnilTCTBHEM 

JÁN LOVÍŠEK 

B pa6oTe H3yHaeTc« 3a#aHa onTHMajibHoro ynpaBjíeHHH BapHanHOHHtiM nepaBeHCTBOM c ynpa-
BJieHHHMH B KOa^HLTHeHTaX OHepaTOpa HepaBeHCTBa, B npaBOH HaCTH H B BLinyFJIOM MH03KCTCBe 

florrycTHMbix COCTOÍIHHH. 
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