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ON NUMERICAL SOLUTION OF ORDINARY DIFFERENTIAL
EQUATIONS WITH DISCONTINUITIES

TADEUSZ JANKOWSKI

(Received July 22, 1987)

Summary. The author defines the numerical solution of a first order ordinary differential
equation on a bounded interval in the way covering the general form of the so called one-step
methods, proves convergence of the method (without the assumption of continuity of the right-
hand side) and gives a sufficient condition for the order of convergence to be O(k").

Keywords: numerical solution of differential equations, one-step method, order of con-
vergence.

i. INTRODUCTION

Let an ordinary differential equation

1) V(1) = 1t y(1)), tel = [a,b],

together with an initial condition

2 y(a) =1

be given, where f:I x R™ — R™. A function ¢:I — R™ is a solution of (1—2) if it
is absolutely continuous on I and satisfies the condition (2) and the equation (1)
almost everywhere on I, i.e., except on a set of Lebesgue measure zero. We assume
that the function f satisfies the Perron condition

17t y1) = f( y2)| = 21, |ys = 2l)
where f and Q are of Cartheodory’s type. It is known that (1—2) has a solution ¢
(see for example [3], [9]).

We assume that the problem (1—2) has a bounded solution ¢. In numerical
calculations this solution is approximated by a numerical solution only for points
i =a+ ih with h = hy = (b — a)/N. Here N is a natural number. Now let
{v!} = R™ be an arbitrary sequence such that

h
Vo =1,

"U?+1 — @17, 1)” S hey(h), efh)-0,

487



where @; denotes the solution of (1) passing through (%, v}). Then v" = {0}, ..., vk}
is a numerical solution of (1—2). Using the above assumptions we can prove con-
vergence of v" to the solution ¢ of (1—2). We also give a sufficient condition of its
convergence provided Q(t,u) = Lu, L2 0 and

[0} — @(¢})] = 0(h*), where v is a positive constant .

A similar problem was considered in [6] but only when the function f was conti-
nuous with a linear comparison function Q(f, u) = Lu. The sequence {v}} may be
generated by a one-step method so that the results of the paper are a slight generaliza-
tion of the known ones. Numerical solutions of (1—2) were also considered for
example in [2, 4, 7].

2. CONVERGENCE
We are now able to prove

Theorem 1. Suppose that

1° the function f:1 x R™ — R™ is bounded, measurable with respect to the first
variable for any fixed value of the second, and continuous with respect to the
second variable for any fixed value of the first;

2° there exists a function :1 x R, - Ry = [0, ) such that for tel, y,, y, €
€ R™ we have

It y0) = f(2. )] < (. |

3° Q is bounded and nondecreasing with respect to the second variable and
Q(t,0) = 0;

4° Q is measurable with respect to the first variable for any fixed value of the

second, and continuous with respect to the second variable uniformly with respect
to the first;

y1—y2|)s

5° the function u(t) = 0 is the only absolutely continuous solution of the problem
w'(t) = Qt,u(t)), tel,
u(a) =0;
6° the sequence {v}} = R™ is arbitrary and such that
[vhe1— ®thss)| < hey(h), ieRy_y ={0,1,...N—1}, vs =1,

where &,(h) — 0 and ®; denotes the solution of (1) passing through (t:, o%).
Then the numerical solution v" converges to a solution ¢ of (1-2),i.e.

lim max |[v} — o(#})] =0,
N—-ow ieRyn
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and
lim max sup o) — o(t)]| =0,

N-w ieRy [a,ti®

Proof. It is known that our assumptions guarantee that there exists a unique
solution ¢ of (1—2) (see [3]). Let

T= ] = o), ieRy,
z =0, 2, = sup |2) — (®)] , ieRy-y.

[ths,thie 1]

S
|

|

Then

a;"
IIA

Zy + hey(h), ieRy.

Further, we have

Zien = sup |of = o(t) + fin, [/(z, 2(c)) — £(z7, 0(x))] de <

[thithisq]

< af + fit Qs - fggdlldﬁ(r)—co(f)ll)dn

and hence
2 S 2+ [ Qr, 2l ) de + hey(h), ieRy_,.
Put
=[sup]“<15i(t) — o)), ieRy.
a,l"(
Evidently

“;+1 = ui , T€Ry_;.
Now we have

uiyy = max (sup |@(t) — o(t)] , sup llq’ (1) — o)) =
[a, 1] [th,th41]
< max (u}, zf,1), i€Ry_;.
Because z¢ < u® we have
uly S ulb 4 [ Qr,uly)de + hey(h), i€Ry-,.
In view of the boundedness of Q there exists a constant D > 0 such that
0w, —u<hD, ieRy_;.
Moreover, by the continuity of Q we get

uly, S ul + [0 O, ul) de + hley(h) + ey(R)]
where
ex(h) = sup {|Q(t, p) — Q(t,7)|: tel, r,peR,, |r — p| £ hD} - 0.

Now we consider the initial-value problem
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M0 = 00, 50) + o), o{A) = ea(h) + &),
® {l(a) =0.

This problem has a solution A* which is a nondecreasing and absolutely continuous
function (see [9]).
We can prove that

(4) M)z i, ieRy.
This inequality is true for i = 0. We assume that (4) is true for a fixed i. Integrating
(3) from 7} to ¢, ; we get
M) = A + [Sr Q(c, AM(x)) do + he(h) 2
= () + [ (v, A(¢D) dr + he(h) =
2 ul + [ Qv ul)dt + he(h) = uly .
Now the inequality (4) follows by induction.

By the theorem on continuous dependence of the solution of the problem (3) on
parameters and initial conditions we have

lim max A'(t) = 0,
B0 tel
and

max zi < max u} < max A(t}) < max A(f),
ieRN ieRN ieRN tel

max a} < h ¢ (h) + max z},
ieRn ieRN

which yields the assertion of our theorem.

3. REMARKS

(i) Itis clear that Theorem 1 will remain true if we assume in 6° that the function @,
is a solution of the problem

(1) = Ft, o(1)),
(pl(t':) = U’; s
where

| £(t, w) — Fi(t, w)| < es(h) > 0.

(if) Theorem 1 is also valid if Q(t,u) = Lu, where Lis a nonnegative constant.
In this case  is not bounded but the sequence {u}} satisfies the condition

0 Sufyy Suf+ Lhul,, + hsl(h)y ieRy_y,

up=0.
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Taking N so large that 1 — Lh > 0 and using Lemma 1.2 [5] we get

[exp (b — a) LJ(1 — Lh)) — 1] &y(h), ieRy,

0zl

0<sul <

i

From the above inequality we obtain the assertion of Theorem 1.

(iii) If Q(t, u) = Lu, L = 0 and if there exists a constant v > 0 such that &(h) =
= O(h") then the order of convergence of the numerical solution v" is v, i.e.

I = ()] = o(r),
sup |247) = ()] = ().
(iv) If -

h
{"o =,
h h _h .
Viv1 = Gi(ti’vi’h)’ leRN——l s

then we have the general form of one-step methods considered by many authors
(see for example [1, 5, 8]).
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Souhrn

O NUMERICKEM RESEN{ OBYCEINYCH DIFERENCIALNICH ROVNIC
S NESPOJITOSTMI

TADEUSZ JANKOWSKI
Autor definuje numerické FeSeni obylejné diferencidlni rovnice prvniho f4du na omezeném

intervalu zptsobem, ktery zahrouje obecny tvar tzv. jednokrokovych metod, dokazuje kon-
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vergenci metody (bez predpokladu spojitosti pravé strany) a udava postacujici podminku pro
rychlost konvergence fadu O(h").

Pezome

O YMCJIEHHOM PEIEHWY OBBIKHOBEHHBIX JU®PEPEHIIVIAJIBHBIX
VPABHEHHI C PA3PLIBAMU

TADEUSZ JANKOWSKI

ABTOp ONpelensieT YWUCIIEHHOE pemieHue OOBIKHOBEHHOro mupdepeHIranbHOro ypaBHEHHAS
IEpBOro MOpajKa Cnoco0OM, KOTODHIA BKIIIOYAET OOINWA BHA TaKk HA3LIBAEMBIX OJHOMIATOBBIX
METOIOB, JOKa3bIBAaeT CXOOUMOCT MeTona (6e3 DPeAnosIOKeHUs] HeNpPEPHIBHOCTU NPAaBOH YacTH)
| NIPHBOJMT AOCTATOYHOE YCIOBHE IJIA CKOPOCTH CXOoauMocTH nopsaka O(hY).,
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