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A SUFFICIENT CONDITION FOR ADMISSIBILITY
IN LINEAR ESTIMATION
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Summary. It was recently shown that all estimators which are locally best in the relative
interior of the parameter set, together with their limits constitute a complete class in linear estima-
tion, both unbiased and biased. However, not all these limits are admissible. A sufficient condition
for admissibility of a limit was given by the author (1986) for the case of unbiased estimation
in a linear model with the natural parameter space. This paper extends this result to the general
linear model and to biased estimation.
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1. INTRODUCTION

Necessary and sufficient conditions for admissibility of a linear estimator in the
Gauss-Markov model were given by Cohen (1966), Shinozaki (1975) and Rao (1976);
see also Stgpniak (1984). This paper concerns the general linear model with unknown
variance components.

Olsen, Seely and Birkes (1976) have shown that the set of all locally best estimators
constitutes a complete class, while the set of all admissible locally best estimators
constitutes a minimal complete class in linear unbiased estimation. A more efficient
characterization of the minimal complete class in linear estimation, both unbiased
and biased, was given by LaMotte (1982). He presented a procedure by which we
can verify, in a finite number of steps, whether a linear estimator is admissible or
not. However, this condition is not suitable for practical use.

It is easy to prove that linear estimators which are locally best in the relative interior
of the parameter set are admissible. Stepniak (1987) has shown that all such estimators
and their limits constitute a complete class in linear estimation, both unbiased and
biased. This class is not greater, and usually smaller, than the class of all locally
best estimators. However, not all limits are admissible. A sufficient condition for ad-
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missibility of a limit was given by Stgpniak (1986) for the case of unbiased estimation
in a linear model with the natural parameter space.
This paper extends this result to the general linear model and to biased estimation.

2. THE RESULTS

In this paper the usual vector-matrix notation will be used. By &, we will denote
the space of all symmetric matrices of n x n, by &7 — the cone of all non-negative
definite matrices in &,. Moreover, tlie symbol ri(K), where K is a nonempty set
in the Euclidean space R™, stands for the interior of K relative to the minimal affine
set including K, that is,

ri(K) = {x e K: S(x, ¢) n aff (K) < K for some & > 0},

where S(x, ¢) is the open ball in B™ centered at x and of radius ¢ (cf. Rockafellar,
1970).

Let Y be a random vector of dimension n x 1 with the expectation EY = Xf
and the variance-covariance matrix Cov Y = X, where X is a known n x p matrix
and (B, %) is a unknown element of a given set Q in the product B” x &, . Consider
the estimation of a parameter & = ¢'f, ¢ € R?, by estimators of the form ¢ = d'Y,
where d belongs to a given closed convex set D in R". A particular case is the linear
unbiased estimation specified by D = {d =d; + d,: X'd; = ¢ and d,Xf =0
for all f}.

The mean square error of an estimator d = d'Y under a parameter (B, X) is defined
by

MSE(d | B, %) = E(d'Y = ¢'B)* = tr (2dd’) + tr {BB'(c — X'd) (c — X'd)}.

We note that the MSE is a linear function of § = (Z, f’). For convenience we
shall write 6, and 0, instead of X and Bf’, respectively. Defining the inner product
{+,*) in the space &, x &, by (A, 4,),(By, B,)> = tr (4,B,) + tr (4,B,)
we may identify the set of the possible values of 0 = (0,, 0,) with a subset of R™,
where m = in(n + 1) + 4p(p + 1). Further, using some arguments in Olsen,
Seely, Birkes (1976) and LaMotte (1982) we may reduce our consideration to some
compact convex set @ of 0. Thus the problem of linear estimation of @ in the class D
reduces to the statistical game (@, D, R) with the parameter set ©, the decision
set D and the risk function

(1) R(8, d) = tr (0,dd") + tr {6,(c — X'd) (c — X"dY) .

It is well known (cf. Blyth, 1951) that any decision rule d which is Bayes relative
to a prior distribution T on @ with the support @ is admissible. We can also exploit
the fact that the risk function (1) satisfies the condition

(2) R(20 + (1 — 2)8,d) = AR(6,d) + (1 — A) R(8, d)
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for all 0,0 ® and 1€e[0,1]. By this condition and by Jensen’s inequality the
Bayes risk of a rule d relative to a prior t depends on 7 only through the expectation
E, corresponding to this distribution. Moreover, a rule d is Bayes relative to 7 if
and only if it is locally best at the point @ = E,. Thus, in linear estimation the term
“Bayes” may be replaced by “locally best”” while the condition on 7 given by Blyth
may be replaced by the corresponding condition on E,. To this aim we state the
following lemma.

Lemma 1. Let K be a nonempty closed convex set in R™ and let © be a distribution
on K with the support K. Then the expectation of =, if it exists, belongs to ri(K).
Conversely, for each k, € ri(K) there exists a distribution t in R™ with the support
K and the expectation k.

Proof. Without loss of generality we may assume that dim (K) = m. Then the
interior int (K) relative to ™ is nonempty and coincides with ri(K).

Let 7 be a distribution on int (K) such that supp (n) = K. Then E, e int (K).
Suppose, on the contrary, that E, = k + ko. As k + (ko — k) € int (K), there exists
a scalar A > 1 such that k + A(k, — k) € int (K). Define

A To
T=——"n+ —
A A
where 7, is the distribution concentrated at the point k + A(ky — k). Then E, = k,
and supp (r) = K.
Now let = be a distribution with the support K. Then 0 < t(int(K)) < 1. If
7 (int (K)) = 1 then E, € int (K). Otherwise let us define distributions

(B N int (K))
- 1(int (K))
7o(B) = E(B_— %nt (K))
1 — (int (K))
in K. We notice that E, eint(K) and E, eK. Thus E, = t(int(K))E,, +
+ (1 — ¢ (int (K)) E,, € int (K) which completes the proof.
From this lemma we get O

n,(B) =

and

Corollary 1. If 0 € ri(©) then any linear 0-best estimator is admissible in D.

Olsen, Seely, Birkes (1976) and LaMotte (1982) proved that all 0-best estimators,
0 € O, constitute a complete class. It was recently shown by Stepniak (1987) that all
f-best estimators for 0 € ri(©) and their limits also constitute a complete class. This
class is not greater, and usually smaller, than the class of all locally best estimators.
However, not all limits are admissible. A sufficient condition for the admissibility
of a limit was given by Stepniak (1986) for the case of unbiased estimation in a linear
model with the so called natural parameter space.
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Considering statistical games with a convex set @ we will extend this result to the
general linear model and to biased linear estimation.
Denote by @* the set of all distributions t on @ such that the Bayes risk

r(z, d) = [o R(6, d) dz (0)
of a rule d relative to 7 is finite for all d € D. It is easy to prove

Lemma 2. Let © be a convex compact set in R™ and let R(@, d) be a continuous
SJunction of 0 for each d € D. Then for each inadmissible rule d in the statistical
game (O, D, R) there exists a rule d, such that r(z, dy) < r(t, d) for all Te O*
with the strict inequality for all distributions t with the support ©.

As a consequence of Lemmas 1 and 2 we obtain

Corollary 2. Under the additional condition (2), for each inadmissible rule d
there exists a rule dy such that R(0, dy) < R(0, d) for all 0 € ©, with the strict
inequality for 0 € ri(©).

Now we are ready to prove the main result of this paper.

For arbitrary 6 and 0 in © such that 0 € ri(©), and for an arbitrary sequence
{ca} of scalars such that 0 < ¢, < 1, n = 1,2, ..., define

(3) Oy=cH+(1l~¢)0, n=12,...

Theorem. Let d,, n = 1,2, ..., be a 0,-best linear estimator of @ within D under
the risk (1) Then lim d,, if it exists, is admissible.

Proof. First, notice that A0 + (1 — A) @€ ri(©) for all Ae(0,1) by virtue of
the relation S(A0 + (1 — 1) 0, de) = AS(0,¢) + (1 — 1) 0.

Suppose on the contrary that d = lim d, is inadmissible. Then, by Corollary 2,
there exists a d, € D such that R(20 + (1 — 1), d,) < R(40 + (1 — 10), d) for all
LE (0, 1). In particular, d is inadmissible under the restricted parameter set ©, =
={0,0].

On the other hand, in this restricted case, the estimator d,, n = 1, 2, ..., is admis-
sible because it is Bayes relative to prior 1, on @, defined by 7,(0) = ¢, and 7,(8) =
=1 — ¢, Thus, by Theorem 2 in Stgpniak (1986), the limit d = lim d, is also
admissible. This contradiction completes the proof. O

From this theorem we immediately obtain Theorem 4 in Stgpniak (1986).
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Souhrn

POSTACUJICI PODMINKA PRIPUSTNOSTI
PRI LINEARNIM ODHADOVANI{

Nedavno bylo dokazéno, Ze viechny odhady, které jsou lokalné nejlepsi v relativnim vnitiku
parametrického prostoru, tvofi spolu se svymi limitami Gplnou tfidu v linedrnich odhadech,
jak vychylenych, tak nevychylenych. Ne vSechny tyto limity jsou v8ak piipustné. Autor podal
postacujici podminku pfipustnosti limity pro pfipad nevychyleného odhadovéani v linedrnim
modelu s prirozenym parametrickym prostorem (1986). V tomto ¢ldnku se uvedeny vysledek
zobecriuje na obecny linedrni model a na vychylené odhadovani.

Pesome
JOCTATOYHOE VCJIOBUE JIOIIYCTUMOCTH ITPU JIMHEMHOM OLIEHUBAHUM
CZESLAW STEPNIAK

HexasHo BBUIO JOKa3aHO, YTO BCE OLICHKM, KOTOPHIE SBJISIOTCS HAMITyYIIMMHM B OTHOCHTEJIbLHOMK
BHYTPEHHOCTH IIPOCTPAHCTBa IapaMe1poB, OOpasylOT BMECTE CO CBOMMM IIpeJefiaMd IIOJIHbIA
KJ1acC B JIAHEMHBIX OLEHKAX, KaK CMEUIEHHBIX TaK M HECMEIISHHBIX. OOHAKO HE BCE OTH IIPElEJibl
IonycTAMbI. ABTOp cratbm Haweén (B 1986 r.) mocraTovyHoe YCIOBME MAOIYCTHMOCTH IIpeleia
B ClIyyae HECMEIIEHHOIO OLECHUBAHMS B JIMHEAHOM MOJENIM C €CTECTBEHHBIM IPOCTPAHCTBOM Iapa-
METpPOB. B HACTOSIEN CTATBHE HTOT PE3YJILTAT 0006IIAETCS HA OOILIYIO JIMHEHHYIO MOJE/b H CMe-
IEHHOE OLICHMBAHKE.
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