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A REMARK CONCERNING UNIQUENESS
OF THE WOLD DECOMPOSION
OF FINITE-DIMENSIONAL STATIONARY PROCESSES
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(Received June 11, 1985)

Summary. The uniqueness of the Wold decomposition of a finite-dimensional stationary
process without assumption of time-containedness is proved. As a corollary the correspondence
betwzen the Wold decomposition of full rank stationary process and the Lebesgue decomposition
of its spectral measure is easily obtained.
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1. INTRODUCTION AND PRELIMINARIES

An orthogonal decomposition of a stationary process into the regular and singular
parts was established for the first time by H. Wold [7]. A more abstract form which
points out the operator-theoretical nature of the fact can be found in [1] (cf. also
[5])- It may seem to be little surprising that the natural assumption of the so-called
time containedness of the regular part is of no importance for the uniqueness of the
decomposition in the one-dimensional case. In fact, the same argument applies to
stationary processes generated by a set of elements for which the regular part is
n-dimensional. The proof requires elementary Hilbert space geometry only.

As a consequence of the uniqueness theorem we obtain a new and more elementary
proof of the correspondence between the Wold decomposition of a full rank station-
ary process and the Lebesgue decomposition of its spectral measure.

Let # be a Hilbert space. We shall denote by P(Z) the orthogonal projection
of # onto a closed subspace & of #. All projections are considered to be orthogonal.

A sequence (f,),z Of vectors in J# is called a (discrete time) stationary process
if the scalar products (f,, fm) depend of the difference n — m only, i.e.

(fn+k7fm+k) = (fpf) forall n,mkeZ.
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Since an analogous relation holds for linear combinations of vectors f; it follows
that there exists a unitary operator U acting on the whole space # which satisfies

Uf, = fu+1 orequivalently U"f, = f,

for all ne Z, and U is uniquely determined on the reducing subspace containing

V f;, the closed linear span of all f;. Conversely, given a unitary operator U € B(#)
JeZ
and an x € &, the sequence (f, = U"X),.z is a stationary process. The above con-

sideration allows us to introduce the following definition.

1.1 Definition. 4 triplet (#,U, x), # a Hilbert space, U e B(#) a unitary
operator and x € #, is called a stationary process.

Similarly, a double sequence (f}),ez, i = 1,2, ..., N, of vectors from # is called
a finite dimensional stationary process if the Gram matrix (f},f})};=; depends
on the difference n — m only. Obviously, we can use the same reasoning as before
so that the following definition describes the more general situation.

1.2 Definition. Let U € B(5#) be a unitary operator and & a subset of #. Then
(o, U, &) is called a stationary process.

Consider now a stationary process (#, U, &), & < #. Denote by Eq(Hy) the
smallest invariant (reducing, respectively) subspace of U* containing %, i.e.

o0
Er =VU%, Hy= V U%.
k=20 k=—o
The restriction U* ] E, is an isometry so that the Wold decomposition applies.
In other words, the space E, can be decomposed into a direct sum of two subspaces
reducing with respect to U* | Eg,

Ey = (N U'Ey) ® (Ex © U*Ey) @ U*(Ex © U*Ey) @ ...),
k=0

so that the restriction of U* to the first subspace is a unitary operator and the re-
striction to the second is a unilateral shift of multiplicity dim (E; © U*E,) £ dim
span & (see [5], p. 4).

Let #4 = N U*E,4, and denote by %, the wandering subspace, 4, = Ey ©
k<0

© U*E,. We shall also use the notation M,(F,) = @ UF, and M(F,) =
k<0
= @ Uk.g?_z.

Moreover, this decomposition is unique in the following sense: if E, = #; ® #,
and U* | 5, is unitary and U* | #, is a unilateral shift then #; = %, and #, =
= M+(.g-1‘).

Clearly,
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1.3 Definition. A stationary process (#,U, %) is called singular if Ex < Hy.
It is called regular if #4 = {0}.

If we denote Q =1 — P(%) then QU = UQ and Q(%) = M, (F¢) < E,.
Since QU = UQ the subspaces Hyy and H(;_g)s are orthogonal and x = Qx +
+ (1 — Q)x for each xe Z. Further, the process (#, U, Q%) is regular and
(+¢,U,(1 — Q) %) is singular. Indeed,

Ey-ge =V U"P(Ry) Z = clos (P(Ry) V U"%) = clos (P(Ry) Eq) =
n<o0 n<0

= '%1' = CIOS (P(.%Q‘) Ha-) = ClOS (P(‘%!I)V Un.%‘) = V U’I P(.%a-) 3'6' = H(I—Q)l"
neZ

neZ
Since Q% = M ,(F4) wealso have Eyy = M, (F4)and

Rox = N UEgy = N U* M (F4) = {0 .
k<0 k<o

On the other hand, it follows from the uniqueness of the Wold decomposition
that if P is any projection such that it commutes with U, maps & into Ey, (#, U, P%)
is regular and (#,U, (1 — P) %) singular, then P |Hy = Q| Hy. We can now
sum up these facts in the following definition.

1.4 Definition. Let (,}?, U, .’2’) be a stationary process. The only pair of stationary
processes (#,U, Q%) and (#,U,(1 — Q) %) is called the Wold decomposition
of (#,U, %), if

1° Q is a projection such that QU = UQ and Q% < Eg,

2° (#,U, Q%) is regular and (#,U,(1 — Q) %) is singular.

2. THE UNIQUENESS OF DECOMPOSITION

We shall use a slightly modified version of the Wold decomposition based on the
fact that a bilateral shift of finite multiplicity cannot contain a bilateral shift of higher
multiplicity (see [5], Proposition 2.1). Precisely, if Wis a unitary operatorand &,, &£,
two wandering subspaces of Wsuch that M(%,) € M(%,)and dim.%, = dim £, <
< oo then M(%Z,) = M(Z»).

The inclusion Q% < Eg in condition 1° of 1.4 implies Eyy = E4 and has a natural
meaning: “the past” of the regular part in the Wold decomposition depends on
“the past” of the initial process only. Nevertheless, it may be replaced by a weaker
one.

2.1 Proposition. Let (#, U, ) be a stationary process. Then there exists an ortho-
gonal projection Q such that
1° QU = UQ, 0% < H,,
2° (#,U, QF) is regular with dim Fy, = dim F, and (#, U, (1 — Q) %)
is singular.
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Conversely, if dim Fq4 < o and Q satisfis 1° and 2° then (#, U, Q%), (#, U,
(1- 0) &) is the Wold decomposition of (#, U, %).

Proof. It is easy to see that Q = 1 — P(%y) also satisfies dim Fy, = dim F,.

To prove the second part of the assertion let us consider a projection Q satisfying
1° and 2°. Condition 1° implies Hyy = Hy. Using the singularity of (o, U,
(1 — Q) Z) we have

Eqy < Egy @ E—gyr = Ege @ Hyy_gyx
and, for ne Z,
UEy < U'Egy @ U"H(y_gyr = U"Egs @ H(1_g)r -
Condition 1° and regularity of (+#, U, Q%) imply
By = QOU"E“ < (N UEge) ® Hiy-gye = Hu-gx = Hy © Hox,

ns nso0
hence M(Fy4) = Hog © Hy © Ry = M(Fy). Both Fy4 and F, are wandering
subspacesof U | Hy and, by 2°, dim %4 = dim F,. If dim F, < oo then M(Fq) =
= M(Z ) by Prop. 2.1 of [5].

Clearly, Q| Hy is an orthogonal projection and QHy = Hgy = M(F45). On
the other hand, M(#4) = (1 — P(#,)) Hy, thus Q|Hy = (1 — P(#,))| Hy.
The proof is complete.

The following example shows that if dim #4 = co, conditions 1° and 2° do not
imply the uniqueness of the decomposition.

2.2 Example. Consider the following double sequence of orthonormal vectors
in a Hilbert space 7,
- €0,-2 €0,~1 €00 €01 €02 ---
€1,-1 €10 €11 oo
€0 ---

and define a unitary operator U € B(#) satisfying
Uej;=e,;  for i20, jeZ.

If & = {ep:k =0} then (#,U, Z) is clearly a regular stationary process and
dim 4, = oo. Let us define

0
m _—_Z2‘kekk, M =H,.
k=0

The projection Q = 1 — P(4) clearly satisfies condition 1° and we shall show
that it also satisfies condition 2° of Proposition 2.1. By easy computation we have,
for k = 0,
P(#) ey = P(M) Urey = U P(M) ey, =
= 27*U* P(M) 2%eyy = 27FU* P(M) ey
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because
2kekk — €00 L
Since
Hpyye = V U* P(M) e, = V U*"U* P(M) ego =
neZ neZ

s k=0
= clos (P(#) V U*~ke,) = clos (B(a)  U*~*eyq) =
i
=V U*U* P(M) eqo = V u* P('/”) eo = Epcaye >
nz0 k20
k20 nz0

the process (#, U, P() &) is singular.
Now, we shall show that (#, U, (1 — P(A ) & ) is regular. If we denote by & —

=V ¢ then
k20
Hy = @ UZ .

keZ

To compute #p(4.y We shall use the inclusion
U"Epanyz = U" clos (P(M*) Eq) = clos (P(#*) UEy) < U"Eqy v M
and the decomposition
U¥Ey v M = ® (U¥Eg v M) " U¥Z .

keZ
For any n = 0, we have also

(U¥Ey v M)nZ =m v Ve,

izn
so that
U¥Ey v M = @ (UXEy v M) UXZ = @ UH(U* *Ey v M) Z] =
keZ kez,
= @U*m v V ¢;) ® @ U*Z .
k<n jzn—k kzn
Denoting
U*k(m \"2 V ejj)a k<n,
A = jzn—k
nk —
%, kzn,
for any n 2 0, we clearly have An+ 1, © “m and QOAnk = M n U*Z. The equality

U*"Eq V # = @ Ay

keZ
now implies

n U*"E = .
Rpunyx =";\0U* Epcuryz C,.;O( z v M) ";‘0 ke@; Ay = HA

On the other hand, Zp 4uye < M+ so that By 4y = {0} and the regularity of
(9%, U, P(#1)%) is proved.
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3. STATIONARY PROCESSES WITH THE SPECTRAL MEASURE ABSOLUTELY
CONTINUOUS WITH RESPECT TO THE LEBESGUE MEASURE

Let us now consider the Hilbert space I? = L*(T) with the norm |f|3 = [¢|f|* dm
where T is the unit circle and m the normalized Lebesgue measure on T. As usual,
denote by S the unitary operator of multiplication by e'* on I?. Given a natural
number n, we shall denote by I*(n) the Hilbert space of all n-tuples f = (fy, ..., f,)
with fie I? (i = 1,2, ..., n) equipped with the scalar product (f, g) = Yi-1(fi 9:)-
Let S,e B(I*(n)) be the bilateral shift operator, S,f = (Sfy,...,Sf,), feL*(n).
Obviously I*(n) = M(# ,) where M = {e;:e;, = 64,k = 1,2,...,n}.

3.1 Definition. Let (#, U, ) be a stationary process. Denote by E the spectral
measure of U. The set of Borel measures

pr = {tey = (E() X, p): X, y € X}

will be called the spectral measure of (#, U, &). We shall say that py < m (ug L m)
iff e,y < m (uy,, L m, respectively) for all x, y e %.

If Z consists of a single element x then the spectral measure of (#, U, %) is non-
negative, u, = |E(*) x|%.

If & is finite, = {xy, ..., X,}, then the spectral measure of (#, U, %) can be
considered as a matrix puy = (p;)7 with nonnegative diagonal entries.

3.2 Lemma. Let #,, #, be two Hilberts spaces, U, € B(#,), U, € B(#,) unitary
operators and & < #. If & e B(#,, H#,) is an isometry such that ®U; = U,d
then

1° Egy = PEy and F o5 = OF o,
2° Hpy = ®H,,

3° RBpa = DRy
Proof.
Egpge = VULOZ = V OULE = &\ UX% = PE,
k=0 k=0 k<0
and
Fox = Egqe © UEpy = PEy © U,PEy = PEy © U Ey =
= @(Ey © U Ey) = OF .
Similarly,
Hyy = PH, .

Further,

Rogx = O UsEpy = A UsBPEy = 0 OUE, = 6%y .
k<0 k<O k50

3.3 Proposition. Let ¥ = {x,, ..., x,} be a subset of # such that the stationary
process (#, U, &) satisfies dim Fo = n and py < m. Then (#, U, %) is regular.
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Proof. Since p;; <« m there exist functions f;; € [}(T) such that f,; = du,;/dm
(i,j = 1,...,n). Given 4y, ..., 4,€ C we have

2 A7 my(+) = [E() YAwi|® 2 0
t.J i

so that Y A;A} p;(+) is a nonnegative Borel measure on T which is absolutely continu-
ous with respect to m. Consequently, its density ZAi,l;?‘ ;j 1s nonnegative a.e. This
implies that there exists a Borel subset o, of T such that m(s,) = 1, all functions f; J
are defined on g, and Y A4} f;(t) = O for te go, Ay, ..., A€ C.

In other words, matrices (f;;(f)) are positive semidefinite so that there exist functions
¢;; defined on o, such that

(:5(0)) = (2:,(0)) (@:5())* for tea,.
Since
k;l%(l)lz = fi(?)
for t € o, we have ¢;; € I*(T).
Let us now set

Ox; = @; = (@15 -.0> Oju) € IX(n) .
The relations (x;, x;) = (¢;, @;) (i, j = 1, ..., n) make it possible to define an isometry
& on H, with values in I*(n) which satisfies
&x; = dx; and BU = §,8.

According to Lemma 3.2 the process (I*(n), S,, %) satisfies dim F gy = n. Now,
using Proposition 2.1 of [5] we deduce that (I*(n), S,, %) is regular and, conse-
quently, (#, U, &) is regular as well. The proof is complete.

If n =1 then there are only two possibilities: either (#, U, x) is singular or
dim &, = 1. So we have

3.4 Corollary. Let (5#,U, x) be a stationary process satisfying p, < m. Then
it is either regular or singular.

4. THE LEBESGUE DECOMPOSITION OF THE SPECTRAL MEASURE

Let (o, U, ) be a stationary process with the spectral measure pq. If P is a pro-
jection which commutes with U then P also commutes with E() and, for x, ye &,
Hxy = (E(*) x, ) = (E(*) Px, Py) + (E()(1 = P)x,(1 = P) y) =

= Upx,py T K(1~P)x,(1-P)y >
or shortly,

By = Upg + U-pyx -
Clearly ppx < g and pi-pyar < Uy .
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The spectral measure of a regular process (#, U, &) is absolutely continuous
with respect to m. Indeed, the unitary operator U | Hy is a bilateral shift so that its
spectral measure is equivalent to m ([5]) It follows that the spectral measure of a non-
singular process (#, U, &) cannot be orthogonal to m. In other words, if py L m
then (5, U, %) is singular.

On the other hand, if U is a bilateral shift and & < 5 such that Hy is reducing
to U then (#, U, %) is singular and py < m. In view of these considerations it is
not unnatural to ask what is the connection between the above decomposition and
the Lebesgue decomposition of measures g, , (x, y € Z) into absolutely continuous
and orthogonal parts with respect to m.

Let & be a subset of #, y € Hy, and let us consider the nonnegative Borel measure
Hy = |E(*) y|*. Let the Lebesgue decomposition of p, have the form

p=p 4, p<m, Flm.
If p, is concentrated on B then y = E(B) y + E(B°)y and the measure
Mewy = |E(+) E(B) y|* = |E(B n ) y|* is absolutely continuous while gy, is
orthogonal to m so that u* = pg, and p° = ugg.),. Since subspaces reducing U
are invariant to E(+), elements E(B)y and E(B) y are in Hy, as well.

Now let us define subspaces )

H*={yeHy:p, < m},

H* = {yeHyp, L m}.
Both subspaces are closed, mutually orthogonal and Hy = #° @ s#°. The relation
My, = p, implies that they are also reducing to U.

4.1 Proposition. Let & = {x, ..., X,} be a finite subset of # and let (#,U, %)
be a stationary process with dim F, = n. If (#,U, Q%), (5#,U,(1 — Q) %) is
the Wold decomposition of (#, U, ) then

Ug = Pox + H1-oyx
is the Lebesgue decomposition of the spectral measure of (#, U, ) into absolutely
continuous and orthogonal parts with respect to m, i.e.
Hxix; = Hoxi,x; + K1 -Q)xi,x;
is the Lebesgue decomposition of p,, ., i, j=1,2,...,,n.

Proof. According to what has been said above both #* and #* are reducing
subspaces to U, #° L #* and x = P(#°) x + P(#°) x for xe Z.

Obviously, Hp ey © #°, Hppsyx © #° and thus Hpipayg L Hppuyg- Since
Hpenz L m the process (5#, U, P(#°) %) is singular.

We shall show that (#, U, P(#°) %) is regular. Regularity of (#, U, Q%) implies
Hyy = 5#°, and consequently, 4 < M(# «) = Hpy © #*. Thus we have

Fy < P(#°) Ey © U*Ey = P(#°) Ex © P(#°) U*Ey
(== C]OS (P(fa) Ex) e C]OS (P(%a) U*EI) = EP(f")f @ U*EP(*u)x = ‘gP(Z")! .
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It follows that dim & ppeyy = dim Fo = n. MOIEOVET, Up sy < M and, according
to Proposition 3.3, (#, U, P(#°) &) is regular. The decomposition (#’, U, P(#°) %)
and (#, U, P(s#°) ) satisfies condition 1° and 2° of 2.1 so that P(#°) & = Q%
and P(#*) & = (1 — Q) Z. The proof is complete.
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Souhrn

POZNAMKA O JEDNOZNACNOSTI WOLDOVA ROZKLADU
KONECNEROZMERNYCH STACIONARNICH PROCESU

KAREL HORAK, VLADIMIR MULLER, PAVLA VRBOVA

V praci je dokazana jednozna&nost Woldova rozkladu konecndrozm&rného stacionarniho
procesu bez pfedpokladu asové podtizenosti. Dusledkem je jednoduchy dukaz korespondence
mezi Woldovym rozkladem stacionarniho procesu plné hodnosti a Lebesgueovym rozkladem
odpovidajici spektralni miry.

Pe3rome

3AMEYAHUE OB ENVHCTBEHHOCTHU PA3JIOXXKEHHIS BOJIBIOA
KOHEYHOMEPHBIX CTAIIMOHAPHBIX ITPOIJECCOB

KAREL HORAK, VLADIMIR MULLER, PAVLA VRBOVA

JIOKa3LIBAETCSi €AMHCTBEHHOCTh pa3jioxeHds BojbJa KOHEYHOMEPHOTO CTALMOHAPHOTO Hpo-
necca 6e3 MpeAUONIOXEHHA HONYMHEHHOCTH MCXODHOMY mpoueccy. Kak crnencTsue HONMydaeTcs
3JIEMEHTAPHOE 0Ka3aTeJIbCTBO COOTBETCTBHA Pa3ioxkeHus Bojija CTalHOHapHOro OpOLEcca MaKCH-
MaJILHOTO panra u pasinoxenus JleGera ero COeXTPaiIbHON MepHI.
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