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STABILITY ANALYSIS OF REDUCIBLE QUADRATURE METHODS
FOR VOLTERRA INTEGRO-DIFFERENTIAL EQUATIONS*)

V. L. BAKKE, Z. JACKIEWICZ

(Received August 22, 1985)

Summary. Stability analysis for numerical solutions of Volterra integro-differential equations
based on linear multistep methods combined with reducible quadrature rules is presented. The
results given are based on the test equation

t
yi(y=yy()+ j- A+ ut + vs) p(s) ds

0

and absolute stability is defined in terms of the real parameters y, 4, z and v. Sufficient conditions
are illustrated for (8; 0) — methods and for combinations of Adams-Moulton and backward
differentiation methods.

Keywords: Stability of numerical solution, Volterra integro-differential equations.

1. INTRODUCTION

In this paper we investigate the asymptotic behavior of numerical solutions of
Volterra integro-differential equations (VIDEs) based on the class of linear multistep
methods combined with reducible quadrature rules. These methods were introduced
by Matthys [8] and further investigated by Wolkenfelt [11]. Matthys derived some
conditions for A-stability (a concept analogous to that for ordinary differential
equations) for these methods based on the test equation

(1) V() =y (1) + f;l ¥(s) ds

with y and 4 complex. Wolkenfelt [ 11] computed via boundary-locus method stability
regions with respect to (1) for two classes of methods employing backward dif-
ferentiation formulas. Stability analysis for some numerical methods based on the
test equation (1) was also performed by Brunner/Lambert [5] and Baker et. al. [1]
(see also the survey paper by Brunner [4] for more information).

*) This research was performed with partial support from the National Science Foundation,
while the first author was supported under EPSCOR grant NSF PRM-8011447 and the second
author under grant DMS-8401013.
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Stability analysis for reducible quadrature methods for Volterra integral equations
of the second kind was performed by Wolkenfelt [12] based on a test equation
of convolution type. The analysis is facilitated by taking advantage of the fact that
application of reducible multistep methods to this test equation leads to a difference
equation of finite order with constant coefficients. Applying the approach of
Wolkenfelt to a more general test equation the authors [2] obtained a difference
equation of finite order but with variable coefficients. It was observed that this equa-
tion is of Poincaré type, and stability analysis was performed with the use of an
extension of the classical theorem of Perron. A similar analysis is presented here for
VIDEs based on the test equation

(2) y(t) =y ¥(t) + J

nWo) =1,

where 7, A, u, v are real. We are able to characterize the regions in the (hy, h*2,
h*u, h3v)-space for which the numerical solutions are bounded. Unfortunately, it
is not known to the authors in what region the solutions to (2) are bounded, and
in order to judge the quality of numerical methods based on the results presented
in this paper such information should be obtained. This seems to be a difficult problem
and some progress in this direction has been made by Sanchez [9]. (This problem has
recently been solved. See Note added in proof.)

In Section 2 some basic results related to Poincaré type difference equations are
presented, and an extension of the classical theorem of Perron [10] is given, which was
proved in [3]. These results are used in Section 3 to establish sufficient conditions
for absolute stability of the numerical methods considered. Results for ((7; 9) methods
as well as for combinations of Adams-Moulton and backward differentiation methods
are obtained in Section 4. The regions of absolute stability are plotted as illustration
of our approach.

(A + pt + vs) p{s)ds, t=0

t
0

2. BOUNDEDNESS OF SOLUTIONS OF DIFFERENCE EQUATIONS

In this section we consider the difference equation of order r with variable coef-
ficients

(3) Zai,nyn—i = 09
i=0
n=r,r+1,..., where o;, = o; + n ', i =0,1,...,r and o; and B; are

constants. Define the characteristic polynomials associated with this equation as

r

6o = Yud ™t WE) = L pE

=0
Equation (3) is a difference equation of Poincaré type (see [10]) and we use results
concerning boundedness of solutions of (3). One of the principal facts about such
equations is the Perron Theorem, which we state here as given in [10].
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Theorem 1. Let 44, 42, - - -» 45 be the distinct moduli of the roots of the polynomial ¢
and let 1, be the number of roots whose modulus is q,, multiple roots being counted
according to their multiplicity, so that 1, + I, + ... + I, = r. Then, if ay + 0,
o,, * for all n, the difference equation (3) has a fundamental system of solutions,
which fall into s classes such that, for the solutions of the Ath class and their linear
combinations,

lim sup 2/|y,| = 4, -

n—>ow

The number of solutions of the Ath class is I,.

We note here that if all roots of ¢ have modulus less than 1 then every solution
of (3) is bounded, while if ¢ has a root of modulus greater than 1, there exists an
unbounded solution of this equation. In [3] the authors consider the case in which
the polynomial ¢ has some roots of modulus 1. This may occur in some applications
in numerical analysis, and in Section 4 we give some examples as an illustration.
Thus, suppose that ¢ is a simple von Neumann polynomial and denote its essential
roots, i.e. those of modulus 1, as &, &,, ..., &. Denote its nonessential roots, i.e.
those of modulus less than 1, as &1, & 4a, ..., &. We state the result for (3) here

as in [3].

Theorem 2. Assume that oy % 0 and o, , + 0 for all n; the polynomials ¢ and
have no common factor and ¢ is a simple von Neumann polynomial with essential
roots &, &5, ..., 8 (k=0 is allowed). Then every solution of (3) is bounded,
provided that

T 3

- = lArg (fz) - Arg(?i)l s-m,

2 2

where y; = —Y(&)d'(&), i = 1,2,..., k. Here, Arg(z) stands for the principal
value of the argument of the complex number z, i.e. Arg(z)e(—m, n].

The assumption that ¢ is a simple von Neumann polynomial cannot be relaxed
(see Remark 1 in [3]).

3. STABILITY ANALYSIS OF REDUCIBLE QUADRATURE METHODS
FOR VOLTERRA INTEGRO-DIFFERENTIAL EQUATIONS

Consider the VIDEs of the form

4) y(6) = f(t, y(2), 2(2)), t=0

¥(0) = yo,
where

(5) z(t) = J:K(t, s, y(s)) ds ,
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and f and K are continuous. Let h > 0 be a given stepsize and put ¢, = nh, n =
= 0,1,.... For the numerical solution of (4)~(5) we will consider the linear
multistep method for ODEs with coefficients @;, b, i = 0,1,...,k, @ #+ 0, |ag| +
+ |bg] # 0, coupled with the quadrature formula

jtnP(t) dt = hi w,.; P(;) -

The resulting method is given by

M=

k
(6) Z AiYu—i = h Bif(tn—i’ Yn—i> Zn—-i) ’
i=0 i=0
i=kk+1,..., where
(7) Zn—i = h Z Wn—i,jK(tn—b tj, yj) .
Jj=0

These methods were introduced and convergence theorems were developed by
Linz [7]. Following Matthys [8] and Wolkenfelt [11, 12] we will assume that the
quadrature rule (7) is reducible to the linear multistep method for ODEs with
coefficients a;, b;, i = 0, 1, ..., k, i.e. the following relation holds

0, j=01,...n—k-1,
b,_j, j=n—k ..,n.

(3) éoaiwn-i.f ={

Denote by ¢ and & (Q and o) the characteristic polynomials of the linear multistep
method with coefficients a; and b;, i = 0,1, ...,k (a;, b;, i = 0,1,..., k), i.e.,

k 3
o(¢) = Zoﬁiék'"', a(&) =Y bkt
i= i=0

K

o) =T, o)=Y bet".

i=0

The methods will be referred to as (g, &) and (g, o) methods, respectively. It is assumed
that:

(i) the (g, ) and (¢, 6) methods are consistent, i.e., g(1) = 0, g'(1) = &(1);
o(1) = 0, ¢'(1) = o(1);

(ii) the (g, &) and (o, 6) methods are zero stable, i.e. ¢ and ¢ are simple von
Neumann polynomials;

(iii) these methods are implicit, i.e. by + 0 and by + 0.

Further, it is assumed that ¢, ¢ and @, ¢ have no common factors.

It is the purpose of this paper to investigate the boundedness of numerical solutions
of VIDEs using (6)—(7) where the weights satisfy (8). As mentioned in the introduc-
tion, stability analysis for this method will be based on the test equation
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0 v =70 + [ w9 as, 120

¥(0) = yo
where y, 4, 4, v and y, are real. Boundedness properties of solutions to (9) are not
known to the authors, however it is conjectured that for y < 0, 2u + v < 0 and
1+ v < 0 the solutions of (9) are bounded. (See Note added in proof.) If y > 0,
y 2 0 and g + v > 0 it can be shown that solutions of (9) are unbounded.

The method (6)—(7) with w, ; subject to (8) is called a ((g, 5); (¢, 6)) method. The
investigation of stability properties of these methods will follow the approach of
Wolkenfelt [12] and the authors [2], [3], in which application of these methods to
the test equation (9) leads to a difference equation of fixed order which characterizes
the solution of (9). Thus, the method (6)—(7) applied to (9) takes the form

k n—i
Z Vu-i = h Y bi(yyu-i + 1Y wn—i,j(}' + u(n — i) h + vjh) J/j) >
i=0 j=0
n==Fkk+1,... .Taking a weighted sum of these successive equations using the
coefficients a;, I = 0, 1, ..., k, we have

k kK kK
Zalayn I—i Z Z tyyn [l 1+

0
Kk ;
+ 1y Y X abw, (A4 p(n = 1= i) b+ vik) y;,

n=k+k, k+k+1,.... Using (8) along with the convention that w,; =0
for j > n it follows that

kK
(10) Zo Z,Oazaiyn—z-i =

= HE (@ + BB = )l = ) 3 -

kK n—-i &k
- hz Z z Z albiwn—l—i,jﬂhlyj ’
i=0 j=01=0
n==k+k, k+k+ 1,.... Another application of the weighted sum of successive

equations (10) using the coefficients a,, p = 0, 1, ..., k, and condition (8) yields the
difference equation of order 2k + k
k k

(11) > 3 3 (afad — haby -

p=01=0i=0
— h2bb(A+ pn—2p—i)h+v(in—p—1—i)h)y,_y—i—, = 0.
We now define the notion of absolute stability for the (g, 6); (¢, o)) methods.

Definition 1. The ((g, 6); (¢, 0)) method is said to be absolutely stable for given
hy, h*y, h®p and h3v if, for these values, every solution of (11) is bounded.
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Definition 2. A region < in (hy, h?2, h3pu, h3v)-space is said to be the region
of absolute stability for the (g, G); (0, 0)) method if the method is absolutely stable
Sor all (hy, h?A, h3u, h3v) e of.

Equation (11) can be written as

k k k
(12) XX XAk + v)abb; + nNafabihy — a3; —

p=01=0 i=0

— hubb(2p + i) — h>vbb{p + | + i)} Yuei—p-: =0

which is in the form of (3), and it can easily be established that the characteristic
polynomials associated with (12) are given by

$(&) = W + v) e(¢) 0(¢) 5(¢)

and
W(&) = hy e*(&) 6(¢) — e*(&) (&) + e(&) a(&) 6(8) (h*A — (2k + k) h*(n + v)) +
+ Eh°p(20(8) 6(8) /(&) + o(&) 0(€) 7(8)) + Ehy —d% (e(¢) a(¢) 5(¢)) -

Thus, if &, &,, ..., &, are the essential roots of &, &; = 1, &,, ..., £, are the essential
roots of ¢ and &, 4, &, 42, ..., &,4, are the essential roots of ¢ it follows from j; =

= —Y(&)P(&), i=1,2,..,p and v, = —Y(&)|P'(&), i =1,2,...,p + g, that

s (&) o(&y) _E
" TR EUE O

i=12,...,p,
(14) V= _&2r+)

u+v
i=1,2,...,p, and

(15) v = Q(éi) é(i;) _ VQ(‘:i) _ vE;
LR+ aE) (&) e+ v)a(E) m+y
i=p+Lp+2,..,p+q.

Since the difference equation (12) is of Poincaré type, we have the following
theorem as a consequence of Theorem 2.

Theorem 3. Assume that conditions (i)—(iii) hold for (g, ) and (¢, 6) and that ¢
is a simple von Neumann polynomial. Then the region of absoiute stability <f
for the (@, 6); (¢, 6)) method is given by

& = {(hy, hy, hu, hv):g < |Arg(&) — Arg(7)| £=m, i=12,..,p, and

N W
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T 3
5§ \Arg(é,-) - Arg(yi)\ < En, i=12,..,p+4q},

where 7; and y; are defined as in (13), (14) and (15).

4. EXAMPLES

As a special case we may consider the (0; 6)-methods in which the characteristic
polynomials are given by
o) =¢-1, §)=0t+1-10,
of)=¢—~-1, a§)=0+1-0,
where 0 £ 0, 0 < 1.

We first observe thatif § < % or 0 < 1, then & or ¢ has a root with modulus greater
than 1, hence by Theorem 1 there exists an unbounded solution of (11) so the region
of absolute stability is empty.

If 8 > 1 and 0 > ] then the only essential root of ¢(&) is &; = 1. In this case
71 = —(2u + v)[(x + v) and o consists of all (hy, h*y, I*u, h*v) such that 2 +
+v>0andu+v>0o0r2u+v<Oandu+v<O.

If 0 = 1 and 6 > 1 then the essential roots of ¢ are &; = —1 and &, = 1. Thus
71 = (8 + A + v) (1 = 20))/(h*(w + v) (1 — 20)), and from Theorem 3, j; > 0.
The region of absolute stability in this case consists of all (hy, h?A, h>u, h3v) such
that 2u + v < Oand g + v < 0, or 2u + v > 0 and x + v > 8/(h¥}20 — 1)).

If0>%and 0 =1, then & =1, &, = —1, y, is defined as before and y, =
= 8/(h*(u + v) (1 — 20)) + 4y/(h*(1 + v)) + v/(n + v). Theorem 3 requires that
y2 > 0 for this method to be absolutely stable, from which it follows that
o = X U E where

B = {(hy, A, b3, h3v): 2u + v < 0, u+ v < 0, v < =8/(h¥(1 — 20)) — 4y/h?}
A (hy, WA, B, h3v): 2p + v > 0, p + v > 0, v > —8/(h¥(1 — 20)) — 4y/h*} .

It

If 6 = 0 = 1, Theorem 3 cannot be applied since ¢ is not a simple von Neumann
polynomial. The authors conjecture in this case that the region of absolute stability
is empty (see Remark 1 in [3]).

As an illustration, the regions of absolute stability for these cases of the (8; 6)
-methods are plotted in Figure 1, where

cp = 8[(h3(20 — 1)), ¥ = —8/(h3(1 — 20)) — 4y[h>.

As a second example consider the combinations of Adams-Moulton (AM) and
backward differentiation (BD) methods. For the Adams-Moulton method with
k = 2, the characteristic polynomial ¢ has a root of modulus greater than 1 (see
Gladwin/Jeltsch [6]). In this case the regions of absolute stability for the methods
(AM; +), k =2 2 and (+; AM), k = 2 are all empty.
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Fig. 1. Stability regions for (8, 8)-methods.

The polynomial ¢ associated with the backward differentiation method for k =
= 1,2,...,6 has only one essential root, namely &, = 1. The other characteristic
polynomial is of the form o(£) = b,*. Thus, for the methods (BD; BD), k, k =
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=1,2,...,6, the polynomial ¢ associated with the difference equation (12) has
only one essential root, and the hypotheses of Theorem 3 are satisfied. The region
of absolute stability for these methods is given by &/ = o/, U o,, where

oy = {(hy, h*A, h®p, Rv):u+v<0,2u+v< 0},
Ay = {(hy, WA, RPu, BV w +v>0, 2u +v > 0} .

(BD; AM)
Fig. 2. Stability regions for (BD; BD), (AM; BD) methods.
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If we combine BD with AM, the only AM method necessary to consider is for
k = 1, since for k = 0 this method is equivalent to BD with k = 1, and if k = 2,
as mentioned above, the polynomial  has a root with modulus greater than 1. The
characteristic polynomials associated with AM, k = 1, are given by

o8 =1, ofd)=3(+1).

If we consider (AM;BD), k=1, 1 £ k £ 6, the hypotheses of Theorem 3 are
satisfied, and the characteristic polynomial ¢ associated with (12) has the essential
roots & = —land & = 1. From (13) we have

J1 = (=D do(=D)(RP(p + v) b) + 1
and from (14),
_ty

Vi = .
Bty

From Theorem 3 it follows that we we must have y; > 0 and y; < 0 for stability.
Define the region

o = {(hy, B2, WPp, W) (= 1)F " de(=1)J(h*(n + v) by) + 1 > 0}

Then the region of absolute stability for the methods (AM; BD),k = 1,1 < k/< 6
is given by & N 7.

If we consider the methods (BD; AM), 1 < k <6, k =1, the polynomial ¢
has the essential roots &; = 1 and ¢, = —1. Again, the hypotheses of Theorem 3
are satisfied and if we define the region

o = ({124, W, 1) (= D (= D]+ ) B) +
+ (R ) + vl + ) 2 0}

then the region of absolute stability for these methods is given by o N 7.

The only method in this class left to consider is (AM; AM), k = k = 1. This
corresponds to (8, 6) methods with 8 = 6 = 1.

The above regions are illustrated in Figure 2, where

¢ = (=1 4o(=1D)[(1°b), W = ("UE 49(—1)/(h*bg) — 4y[h?

Note added in proof. The authors recently shown that for 2u + v < 0 and
#t + v < 0 the solutions of the test equation (2) are bounded. The approach is to
consider the associated third order differential equation. If one makes a substi-
tution of the form ¢ = s*, 0 < a < 1, the resulting equation has bounded coef-
ficients and as a consequence we can use classical stability criteria to investigate
boundedness of solutions. A complete proof will appear in a subsequent paper.
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Souhrn

ANALYZA STABILITY REDUCIBILNICH METOD RESENI
VOLTERROVYCH INTEGRODIFERENCIALNICH ROVNIC

V. L. BAKKE, Z. JACKIEWICZ

Je podana analyza stability numerického FeSeni Volterrovych integrodiferencialnich rovnic
zaloZzena na linearnich vicekrokovych metodach kombinovanych s reducibilnimi metodami
kvadratury. Vysledky jsou zaloZeny na testovaci rovnici

t
Yy = yy@) +J (A -+ pt+ vs) y(s) ds
0

a absolutni stabilita je definovana pomoci redlnych parametra y, A, # a v. Pro (8; 6)-metody
a pro kombinace Adamsovych-Moultonovych metod s metodami zpé€tného diferencovani jsou
ilustrovany postacujici podminky.
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Pesrome

AHAJIU3 YCTOMYUBOCTU NMPUBOJAUMEIX METOJOB PEIMIEHUA
WUHTETPO-IU®PEPEHIIMAJIBHBIX YPABHEHUI BOJILTEPPA

V. L. BAKKE, Z. JACKIEWICZ

B cTaThe npoBenéH aHanW3 YCTOWYMBOCTHM YHCIICHHOTO pEIIeHMs MHTErpo-nnuddepeHuuanbHbx
ypaBHewit BonbTeppa, OCHOBAHHOTO HAa JIMHEHHBIX MHOTOLIATOBBIX METOHaX KOMOMHMPOBAHHBIX
C MPUBOJUMbIMHE METOJAMH KBaApaTyphl. Pe3yibTaTsl OCHOBAHBI HA UCHTHITATENHLHOM YPABHEHHH

t
Yy = yy) +J. (A - ut + vs) y(s) ds
0

u aBGCoONIOTHAsA YCTOMYMBOCTD OINpeesieHa MPH MOMOIIM AEHCTBUTENIBHBIX NAapaMeTpoB ¥, A, 4 U V.
Has (0; 0)-meTonos n 1is MeToaa Anamca-MyJITOHa, KOMOMHMPOBAHHOTO C METOJAMH OOPAaTHOTO
nupdepeHUMPOBaHNS, YIUTIOCTPUPOBAHBI JOCTATOYHBIE YCIIOBWS.
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