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OPTIMAL DESIGN OF AN ELASTIC BEAM ON AN ELASTIC BASIS

JAN CHLEBOUN

(Received September 27, 1984)

Summary. An elastic simply supported beam of given volume and of constant width and
length, fixed on an elastic base, is considered. The design variable is taken to be the thickness
of the beam,; its derivatives of the first order are bounded both above and below. The load consists
of concentrated forces and moments, the weight of the beam and of the so called continuous
load. The cost functional is either the H2-norm of the deflection curve or the L?-norm of the
normal stress in the extreme fibre of the beam.

Existence of solutions of optimization problems in both the primary and dual formulations
of the state problem is proved. For both formulations, approximate problems are introduced
and convergence of their solutions to those of the continuous problem is established. Theoretical
conclusions are corroborated by anillustrative example.

INTRODUCTION

The theme of this work stems from the paper [6], the assumptions imposed on
the beam being, however, of different physical nature.

An elastic beam of constant width, length and weight is considered. This beam is
fixed on an elastic base and its ends are hinged with fixed supports. Its own weight,
the concentrated forces and moments and the so called continuous load act on the
beam.

The thickness of the beam is taken for the design variable and the Lipschitz
functions bounded simultaneously from below and from above form the set of
admissible functions.

The cost function depends either on the deflection curve or on the normal stress
in the extreme fibre of the beam.

In Section 1 we formulate an optimal design problem and prove the existence of
a solution. Section 2 deals with a dual variational formulation as well as with the
existence of a solution. In Sections 3 and 4 we study finite element approximations
to the optimization problem and their convergence to the solutions from the pre-
ceding sections. An illustrative example and some comments are given in Section 5.
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I. PRIMARY VARIATIONAL APPROACH

1.1. Formulation of the problem

Let us consider an elastic beam lying on an elastic basis. The classical theory
(see e.g. [9]) yields the relation for the deflection function y:

d? s 4 d?y

—(E>~e* 2 )=q — ayy,

dx < 12 dx2> ’
where E is the Young modulus, s is the width of the beam, e is the thickness of the
beam, g is a continuous loading, a, > 0 is the constant of elasticity of the basis.

Now let the thickness e be a function depending on x and let the length of the
beam be equal to 1. For simplicity we shall write the product E(s/12) only as E.
Under these conditions the differential operator of the deflection function may
be expressed in the form
2 2
D(w) = 4 E &3(x) d*w(x) + aow(x), xe€<0,1).
dx? dx?

Let us define a bilinear form

e o) = |

Q

E 3(x) v"(x) w'(x) dx + J‘ ag v(x) w{x) dx,
o

where Q = (0, 1) and the derivatives are denoted by primes. The parametric function
€€ U:ld)

L’ud = {ee CO‘I(Q) N 0< €min g e(x) é €hax > X E Q;

de

dx

<Cy; je(.r)dx=C2; CI,C2>O},
Qo

where C,, C,, €nins €max are given constants and C%'(Q) is the set of Lipschitz
functions on Q. The variable functions v, we V = {ve H¥(Q); v(0) = v(1) = 0}.
HYQ) denotes the Sobolev space W**(Q), k = 1,2, ..., with the usual norm ||,.
The seminorm ([ (v™)? dx)'/? will be denoted by |-|,. It is obvious that ¥ is a Hilbert
space.

The differential equation

(1.1) D(w) = F

with boundary conditions w(0) = w(1) = w’(0) = w'(1) = 0 corresponds to the
hinge joint of the beam ends.
Let us replace (1.1) by

(1.2) Ale; u,v) = (F(e),v) YveV,
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where ueV, ee U,

F(e) = .gl(Pi&:x - X)) = MS'(x = X)) + fo — pe

represents the load of the beam (positive acting upwards). Here P, M; and p > 0
are given constants, X; e <0, 1) are prescribed points, & is the Dirac measure and
fo€Ly(Q). Then

(F(e), vy =Y (P, v'X,) + M, V(X)) +'[ (fo — pe)vdx.
i=1 o
The state problem (1.2) is the variational formulation of (1.1). Furthermore, let us
define
Jile,u) = |ul3, Jji(e u) = j e*(u")* dx.
2
The functional j, corresponds to the magnitude of the deflection curve, j, is propor-
tional to the normal stress in the extreme fibre of the elastic beam.
We shall solve the optimization problem:

Let u(e) € V be a solution of the state problem (1.2), ee U,4 a given function. Let
us define 7 (e) = j{e, u(e)), i = 1, 2. Find a control e} € U,q4 such that

(1.3) Jiled)=min 7e), i=12.

ecUqaq

1.2. Existence Theorem

The proof of our existence theorem is based on a general result for a class of optimal
design problems (see [5]):

Let U be a Banach space of controls and U,y = U a set of admissible design
variables. Assume that U,4 is compact in U.

Let a Hilbert space ¥ with a norm ||+ || be given. Consider a bilinear form A(e; -, *)
and a linear continuous functional {F(e), -> on V, both depending on a parameter
ecU. Assume that there exist positive constants «,, o, and a subset U°, U,y <
< U° < U, independent of e, v, w and such that

(1.4) |A(es 0, w)| < oy]Jo] [[w]
(1.5) Ale; w, w) = ao|w||?

hold for allee U® and v, we V.
Moreover, assume that:

E}

(1.6) if e,e,eU° e, e inUand v, — v (weakly) in Vfor n - o0,

then A(e,; v,, w) = A(e; v, w) Ywe V;
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(1.7) if e,e,eU° e, > e inU, then {F(e,),v) — (F(e),v) YveV;
(1.8) there exists a positive constant 7, independent of e, v and such that

|[<F(e), o3| < 7[lo]
holds for all ee U® and v e V.
We consider the following state problem:
for ee U, find u(e) € V such that

(1.9) Ae; u(e), v) = (F(e), vy VveV.
Under the assumptions (1.4), (1.5), (1.8) the state problem (1.9) is uniquely solvable

for any ee U°.
Let a functional j: (U x V) — R be given, which satisfies the following condition:

(1.10) if e,,eeU° e, > e inU, u, —~ u in V{weakly) =

= lim inf j(e,, u,) = j(e, u).

Denoting the cost functional by #(e) = j(e, u(e)), where u(e) denotes the solution
of (1.9), we may consider the optimal design problem:

find e® e U,, such that
(1.11) H(e®) < F(e) VeeU,.

Theorem 1.1. Under the assumptions (1.4) to (1.8) and (1.10), the optimal design
problem (1.11) has at least one solution.

Proof. See [5].

Theorem 1.2. The problem (1.3) has a least one solution for i = 1, 2.

v Proof. It is sufficient to verify the assumptions of Theorem 1.1. Let us introduce
U= C(0, 1)), U= {eeU; ey, < e(x) < ey Vxe<0,1>}. The set U, is
bounded and closed in C(Q) and, moreover, consists of uniformly continuous func-
tions. The theorem of Arzeld implies the compactness of U,q in C(Q).

The inequality (1.4) can be easily established.
Owing to the inequality

J. (V) dx = — ( v'odx £ o], oo £ 3(|0]3 + |0l5)
Q Q

"

the assumption (1.5) is fulfilled.
The validity of (1.6) is an easy consequence of the boundedness of the sequence
{v,}2 1 in H¥(Q) and of the uniform convergence of e,.
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It is readily seen that the functional F{e)e V* and (1.8) holds, because of the
continuous embedding H*(Q) = C(Q).

The condition (1.7) is obvious.

Let us verify (1.10). The norm squared is a weakly lower semicontinuous functional
and the case of j, is solved. For any fixed e € U,4 the functional j,(e, -): ¥ - R*
is weakly lower semicontinuous. Next, j,(e,, u,) = j,(e, u,) + I and

1] =

J (e = ) (up)? dx| = [lez = ey [ulz > 0, = o0,
Q

since all the norms |u,||, are bounded. Hence

lim inf j,(e,, u,) = lim inf j,(e, u,) + lim I = j,le, u),

n— o n— oo n— oo

Q.E.D.
2. DUAL VARIATIONAL FORMULATION OF THE STATE PROBLEM

The state problem (1.2) will be transformed into the dual variational formulation,
called the principle of minimum complementary energy.

2.1. Derivation of the Dual Variational Formulation

First we derive the functional of complementary energy by means of the Friedrichs
transform (see [3]).

Denoting a(e) = Ee3, g = f, — pe, we can introduce the functional of potential
energy

(2.1) L(v) = %j [a(e) (v)* + aov*] dx — (F(e), v .

Let us define #, = v”, §, = v and the Lagrange multipliers 1;(x), 2,(x). Thus we
obtain the functional

'#(03 '11> ’123 }'1’ AZ) =

= %j [ale) 1 + agn3] dx — CF(e), v) +J Ay(v" = ) dx +J Aa(v = m2) dx .
Q2

Q2 2

Using integration by parts and setting the variations with respect to v, 71, #2 equal
to 0, we deduce the following conditions:

(2.2) 14(0)=0, 2(1)=0,
(2.3) M+ 24, —Fle)=0,
(2.4) ale)ny = 14,
(2.5) agh, = 2, .
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Let us denote b(e) = (a(e))™!, by = a; '. Using (2.4), (2.5), (2.3) leads to the
functional

1
) = J (be) 72 + boAZ) dx — f (b(e) 22 + boi2) dx =
0 2

- % f (b(e) 22 + byi2) dx .
(o]

Let us introduce H = [L,(2)]?* and the bilinear form on H x H:
2.6) (3 D) = f (b(e) Ty + bokal) dx .
Q

It is easily seen that H with the scalar product (2.6) is a Hilbert space.
Let us define

B{4,v) = J (20" + Aw)dx VieH, ve H(Q);
2

Hy={ieH; eV, A = ale)v’, 2, = az},

H,

{AeH; Bl,v) =0 VveV},

Ap = {Ae H; B(4,v) = {F(e),v) YveV}.

Any vector 4 € Ay satisfies (2.2), (2.3) in the weak sense. We shall write 4 = A(v)
iff ; = a(e) v”, 1, = aqv.

Let us remark that A, is the bending moment of the beam and 1, is the reaction
of the elastic basis.

Theorem 2.1. (Principle of minimum complementary enérgy.) Let #(3) = 1[|A|%
be given. Then
(2.7) F(4°) = min F(4) = 1° = A°(u) ,
AEAF

where u is the solution of the problem (1.2).

Proof. The proof is based on the method of orthogonal projection. The space H,
is orthogonal to H,. Let Ae H,, A€ H,. Then we have (i, 1)y = B(i, v) = 0.
Evidently A’u) e H,. For A€ Ay we have 4 — i(u) € H,, since

B(4 — #{u), v) = f [(4 = 24(w) v + (25 = A,(u)) v] dx = <F(e), v —
‘f (a(e) u"v" + aquv)dx =0 VveV.

123



Consequently, for A € A, we may write
1405 = 14 = a(w) + 2[5 = (2 = A5 + [M)]%-

and the proof is complete.
Q.E.D.

Remark. It is not difficult to prove that H, and H, are closed subspaces of H
and H=H, ® H,.

Next we shall employ the structure of the affine hyperplane A,. Let A°e A, be
a particular element. Then we may write A, = A° + H,. Hence for y € H, we have

F@) =700 + 1) = H2°% + x5 + (2% -
Thus the principle of minimum complementary energy has the form

(2.8) D(xo) = z”lo”n + (%0, A%y = min &(y) < zo = Mu) — 2°,

xeH>
where u is a solution of (1.2).
The condition (2.3) will be exploited now. For Ay we have 1] = F(e) — 4, in
the sense of distributions. Consequently, for Ae Ap, 4 = [/11, 12] we can define
a functional G(4) € [H*(Q)]* by means of the relation

(G(2), wy = f (Aw" — A{w)dx, we H(Q).

For any ye H, = A, we have {G(x),v) = B(y,v) =0 Vvoe V. The equality
{G(x), v> = 0 implies y(1) v'(1) — x,(0) v'(0) = 0 as we find by integration by
parts. From these conditions, y;(0) = y,(1) = 0 follows. We see that

(2.9) ieV=y=1[i —7]eH,;
(2-10) reH, =y =[x -], 7eV.

Let us define the scalar product (z, 7)o = (o (b(e) x7 + box"7") dx and the norm

Ixlo = (t- 0o 2. 7 € HY(RQ).
Now we specify the particular element A° = [4{, 43] € A;. The functions are
defined as follows:

(2.11) =0,
1) = 25(P, M3 x) + j (o — pe) () (x = ) dt — x j (o= p) (0 (1 = Dt
where

i=1

3P, M x) = Y [pi f “H(t - X)) di — MH(x — )Ti)] - xi[p,.(l ~ %) - M]]
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and H denotes the Heaviside function. Integration by parts yields
j A" dx = (F(e),v) YveV.
Q

Conditions AJ(0) = A{(1) = 0 are also fulfilled. The function A{ is the bending
moment of the simply supported beam (13 = 0).

Theorem 2.2. (Equivalent version of the principle of minimum complementary

energy.)
Let us define a functional on V:

w(7) = 472 + f b(e) 729 dx

Then

(2.12) ¥(x’) = min ¥(z)

if and only if 1° = [i°% —(3°)"] = A(u) — A°, where u is the solution of (1.2).

Proof. Let y = [x1, x2] = [ —%'] 7€V,

j [b(e) 7 + bo()?] dx + f ble) 279 dx =

Q

(1) =

0o | =

= x| +f ble) 729 dx = B(y).
0

We have used A9 = 0. The first inequality mm ¥(%) = min &(x) holds according
z2eH>
0 (2.9). The second inequality min ¥(j) < < min ®(y) is an easy consequence of
xevV 2€H>

(2 10) and A(u) — A° € H,. Finally, the assertion (2.12) follows from (2.8).
Q.E.D.
2.2. Existence Theorem

We shall apply the above results to the functionals #, and #,.

Let Au) = [A,(u), A,(u)] solve (2.7). Then u” = (a(e))™! A4(u), u = ag ' A,(u).
Let 7° be the solution of (2.12), ie. [A4(u), 2,(u)] = [49, 0] + [2° —(°)"]- In-
serting this into #;, we have

710 = a? Y12 Fale) = j (A + 1) dx.
Q

Thus we obtain the equivalent version of the optimization problem:
find a control &; e U, i = 1, 2, such that

(2.13) #1(@1) = min (z°e))"]
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(2.14) F,(¢;) = min J‘ e *(AY(e) + 7°(e))* dx, .

eeUaqa

where 7°(e) is the solution of the problem (2.12) which is taken with a parametric
function e and the function /l?(e) also depending on e.

Theorem 2.3. Both the problem (2.13) and the problem (2.14) have at least one
solution.

Proof. We know (Theorem 1.2) that there exist e;e U,y, i = 1,2, such that
e S [Q]3 Ve e U and o w(en)2 = e u(0) Ve'e Uiy ) solves (1.2)
with a parameter e. The latter relations result in solutions of (2.12) and (2.13).
In fact, u”(e) = A,(e)/Ee® and u(e) = 4,(e)/a, according to (2.7).

Q.E.D.

Remark. Let us notice that the solution 7°(e) e V even satisfies 7°(e) € H*(Q).

3. APPROXIMATIONS OF THE PRIMAL APPROACH

The following assumptions are considered a basis for our forthcoming consider-
ations:

(I) Let N be an integer and 7, a partition of the interval <0, 1) into N sub-
intervals A; = (X;_y,X;> of the length h; j =1,2,..., N(h); X, =0, Xy = 1.
Let P,(A) be the set of polynomials the order of which is at most k. We define

Uly = {e€ Uy, e|s;€ Py(A) Y},
Vi, ={veV, v|s;ePs(A)) V;}.

(1) Instead of A(e,; v, w,) we shall use the form
N(h)
Aylen; vy W) =Y. (Ee,?(éj)J‘ vpwy, dx + J‘ agvuw), dx) ,
j=1 Aj Aj

where &; = H(X;_, + X); e,€ Uly; vy, w, €V,

ko
(I11) Assume that there exist open subintervals D, such that {J D, = <0, 1),
k=1
D, D, =0, k+m, ky =1, and for any k the function f, is extensible from D,
onto D, in such a way that f, € C'(D,). Let 7 denote the mesh 7, refined by the
points Y, = D, " Dyyy, k=1,..., ko, — 1.
(IV) Instead of F(e) the following functional F,(e) will be used:

Fi{ex) (v,,) = (F(ey), vypn =
= i(Pi u(X;) + M, v(X) — jl pev, dx + {jlfov,, dx} ,
i=1 0 h

[
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where e, € ULy, X; are prescribed points and { }, denotes the approximate value of
the integral, obtained by means of the trapezoidal rule on the mesh 7.

Lemma 3.1. Let the assumptions (1)—(1V) be satisfied. Then

(1) | 4u(ens vn wi) — Aless v wi)| < ¢ hllonll2 [wil 2
Ve, e Uty , vy, w, e H(Q),
(32) |<F(er). 02> = <Fley), o] £ elfo) ko2 Vo, HYQ).

Proof. Studying the left hand sides of these inequalities on the intervals A; and
AT = (X;_y, Y, we can easily derive (3.1), (3.2); for the details see e.g. [6].
Q.E.D.
The form A,(e,; -, *) on ¥, x ¥, and the functional F,(e,) e V' comply with the
assumptions of the Lax-Milgram Theorem. Consequently,

(3'3) Ah(eh; Uy, Uh) = <F(eh)7 v Yo, eV,

is uniquely solvable for any fixed e, € U*,.

Lemma 3.2. Let the assumptions (1)—(IV) hold. Furthermore, let a sequence
{e,,}, e, € U, converge to a function e uniformly on the interval <0, 1> for h — 0.
Finally, let u(e) be the solution of (1.2) and let u,(e,) be the solution of (3.3). Then

“u(e) - uh(eh)nz -0, h->0,.

Proof. Let us denote for brevity u, = u,e,). The sequence {u,} is bounded,
since af|u,||3 = Ay up, uy) = <Fey)s vidn < (c(fo) h + ¢) [uy]2- The space V is
convex and closed, i.e. weakly closed and u, — u* e V (weakly) in V; the picked
subsequence is denoted {u,} again.

It is not difficult to derive by means of regularization (see e.g. [7]) that there
exist functions v, € C*(Q), v, - v in V for x » 0,. Denoting the Hermite cubic

interpolate of v, € C*(Q) over the partition 7, as v, € V;, we easily obtain
”v,, — v]l2 -0, h->0,.

The following auxiliary assertions are derived from easy estimates or a weak

convergence.

(3.4) |Aley; uy, v,) — Ale; uy, v,)| > 0, h—0,;
(3.5) |A(e; up, v,) — A(e; uv)) >0,  h—0,;
(3.6) |[A(e; up, v) — A(e; u*,v)] -0, h—0,.

Combining (3.1), (3.4), (3.5), (3.6), we have
(3.7) |Ai(en; up, v) — A(e; u*,0)| >0, h—>0,.
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Similarly

(3.8) |[<F(en), v,y — <F(e),v,»] =0, h—>0,;
(3.9) [<F(e), v,y — (F(e),vp] -0, h—0,
and

(3.10) [<F(en), v,>0 — <F(e), 0| >0, h—0,

by virtue of (3.2), (3.8), (3.9).

Passing to the limit with h — 0, and using (3.7), (3.10), we conclude that
A(e; u*, v) = (F(e), vy Vvoe V. The uniqueness of u(e) yields both u(e) = u* and
the weak convergence of the primary sequence {u,} to the function u*. It remains
to prove the strong convergence.

Combining |<F(e,), u,» — <F(e), u(e)y| - 0, h > 0, and (3.3), (1.2), (3.2), we may
write

(3.11) |Au(en; wp, uy) — Ale; u(e), u(e))] -0, h—0,

Let us introduce the scalar product A(e; u, v) in V, the norm being [u, =
= [A(e; u, u)]*/%. The following estimate is a consequence of (3.1), (3.4), (3.11):
[l = Ju(e)l] = [A(es up w) — Ailess w, )| +
+ |Ai(es; wyo ) — A(e; ule), u(e)) >0, h—0,

Using the weak convergence u, — u(e), we accomplish the proof. In fact,
oollu, — u(e)]|3 < (uy — u(e), u, — u(e)),—>0, h—>0.
Q.E.D.

Definition 3.1. Let the approximate optimal design problem 2,;, i = 1,2, be
defined in this way:
find e, e U", such that
Filen) = jder, wler)) = minhj,-(e,,) >
enelUad
where u,(e,) solves (3.3).

‘Remark. For brevity we shall write el; = e. This convention will be used in
Theorem 3.1 and Section 4.2.

Lemma 3.3. The problem 2,; has at least one solution for any sufficiently small
and positive h; i = 1, 2.

Proof. We employ Theorem 1.1 again. Let us choose U = C(Q) V="V,
U® = {ee C(Q); 0 < ey < €(x) < €y Vx € Q). Tt is evident that Ujy < U is a
compact set and that the form A4, and the functional F,(e,) fulfil (1.4), (1.5) and (1.8),
respectively.
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Let us verify (1.6). Let us assume e, e, € U°, e, - e in U and v, — v (weakly) in ¥},
for n —» 0. The dimension of the space V}, is finite, therefore the convergence v, — v €
eV, in H*Q) is strong. Then

N(h)
<y [E

Jj=1

|4i(ens v, W) — Ay(e; v, w))

_[ (ex(&) vy — (&) vy + (&) vy — (&) v") wdx
N

J

IIA

-4

+f aol(v, — v)w|dx >0 n—> o0 Ywel,.
Aj

The condition (1.7) is a consequence of the equality

a!
l<F(eil)’ U>h - <F(e)’ U>h| = 'J pU(e - e,,) dx

Finally, the condition (1.10) is fulfilled in virtue of the proof of Theorem 1.2,
since ¥, © V = H*Q)n Hy(Q).

Q.E.D.

Lemma 3.4. Let us consider the approximate problem ;. Assume that a sequence

{e,,}, e, € Uy, converges to a function e uniformly on the interval <0, 1> for h — 0,.
Then

lim Z{e,) = 7e), i=12.
B0+
Proof. The case of i = | immediately results from Lemma 3.2. Indeed,

Hunenllz = Ju(e)la] = Juiles) = ule)]. -

Combining the boundedness of the sequence {u,(e,)} and the assumptions of the
lemma, we derive
l/z(eh) - fz(e)! -0, h—-0,.
QE.D,
Theorem 3.1. Let {e}?}, h — 0., be a sequence of solutions of the approximate
problems Py, i = 1, 2. Then there exists a subsequence {eJ} such that for h — 0,
e) = € in C(Q), uz{e)) — u(e®) in H*Q), where €® € U,y is the solution of the
optimization problem P; and u(e®) € V is the corresponding solution of (1.2).

Proof. Let # € U,q be an arbitrary function. There exists a sequence {n,}, n, € U",,
such that 1, - 5 in C(Q) for h — 0, (see [2]). Let us denote by u,(n,) the solution
of (3.3) where e, is replaced by #,. Since U,4 is compact in C(Q), there exists a sub-
sequence {ej} < {ej} such that ej — €° uniformly on @ for i — 0, so that e € U,,.
Having in mind the definition of the problem P,;, we arrive at the inequality
F{ep) £ Fin;). Passing to the limit with h — 0, and applying Lemma 3.4, we
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derive #(€°) < #,(n). Hence ¢° is a solution of the problem 2, The remaining
part of the assertion is essentially Lemma 3.2.

Q.E.D.

4. APPROXIMATIONS OF THE DUAL VARIATIONAL FORMULATION

In this section we adopt the assumptions (I)—(IV) from Section 3, however, we
distinguish { }, and { },., i.e. the approximate values of the integral obtained by
means of the trapezoidal rule on the mesh 7, and on the mesh 7}, respectively.

4.1. Approximations of the Principle of the Minimum Complementary Energy

The further part of this paper deals with the numerical analysis based on Theorem
2.2. A parametric function e is indicated in the functional Y.

Lemma 4.1. Let 3° € V, 37 € V,, s € V,, be such functions that

¥(e; x°) = min ¥(e, z), ¥(e; %) = min ¥(e; z,)
xeV XhEVn
and
P(ess Z;?) = min ql(eh; ) -

Zn=Vn

Let the sequence {e,,}, e, € U",, converge to a function ee Uy uniformly on the
interval €0, 1) for h - 0,. Then

Y(e; 7y) > (e x°) and |1° - 22“2 -0 for h—-0,.

Proof. Vis a Hilbert space and the functional ‘I’(e, +) has positively definite second
Gateaux derivative, therefore there exist unique functions x°, xj and 7, (see e.g. [4],
Theorem 6.4.5; similar theorems can be found also in [8]).

The sequence {j,} is minimizing as we now derive with the assistance of the fol-
lowing three auxiliary assertions.

A) Y(e; 1y) — ¥(es %), h—0,.

In fact, let {v,}, v, € V, be a sequence such that ||x® — v,[, = 0, h - 0,. Then
0< ¥(ex) — Plesr®) < ¥lesv) — ¥(e;2°) >0, h—0,.

B) Using the uniform convergence e, — e, we derive for any bounded sequence {w,}:

(4.1) Y(e;wy) — Y(eswy) >0, h—>0,, wyeV,.

<) Y(esiy) — Y(esxn) >0, h—0,.
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The sequences {|x;].} and {||7;].} are bounded for i — 0,. Indeed, if e.g. the
sequence {77 ,} is not bounded, then the inequality

l1’\,5'112 )Z;?) 2 KO”Z;?”% - Kl”i}?”z , KoKy >0,

leads to a contradiction ¥(e,, 0) = 0 < ¥(e,, #7) for sufficiently small h. Analo-

gously for {[x7]}
Let us assume now that there exist subsequences, also denoted by {Z,(,)} and {1},

with the property
Y(ie;iy) — Ylesx))=e Vh, 0<h<d,, ¢>0.

The assertion B) implies that there exists ,, 0 < d, =< d,, such that
Y(ewiy) — Plesxy) =4 Yh, 0<h<94,.
Using once more B), we have
Y(ewin) — Yiesr) =4 Vh, 0<h=<6,56,.

Since Y(e,; +) attains its minimum over V; at the point 77, we have derived a contra-
diction.
Finally, applying A) and C), we conclude that

¥(e; x°) — ¥(e; 77) tends to zero for h — 0, .

The sequence { Z,?}, h — 0., minimizes the coercive, weakly lower semicontinuous
and strictly convex functional ¥(e; ), hence ([4], Theorem 6.4.5)
[2° =] =0, h—0,.
Q.E.D.

Using a numerical method to carry out the computations, we obtain only an
approximate value of ¥(e,, v,). For this reason we shall introduce a functional ¥,.
First, let us approximate the function A{ (see (2.11)) by a function 4,. Let us define

X)) = { j :"(Xj — ) (old) = pext) dt)}h*, J =0, N(B).

Next, let us construct the Lagrange linear interpolate I of A on the mesh J7,.
Let the function 4, be given by

( 1

) =159 —x{ |

where

P M%) = 3 [p,. J “H(t - X,)dt — MH(x — X,.)] - xiiX::l[Pi(l _X) - M.

i=1 0

(1 = ) (folt) — pe) dt} L P M; %), xe0, 1),

0 h*
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Now we can define the functional

V(e 1) = % f bl x4 z bey) () J o2 dx + { f Qz;(e,,) - dx} ,

h

& =HX;-1 + X))

Lemma 4.2. There exists just one function vy € V, for which
(4.2) ¥, (ey; vp) = min ¥,(e,; v,) -
vheVn

Proof. The functional ¥,(e,; *) is coercive, weakly lower semicontinuous and
strictly convex on V.
Q.E.D.

Lemma 4.3. Let a sequence {e,,}, e, € U",, converge to a function e € Uy, unifm mly
on the interval Q for h— 0,. Then ]];Z -, “2 — 0, h > 0,, where y°cV is
a solution of (2.12) and v} € V,, solves (4.2).

Proof. The proof is based on the following convergence. If {||v,],} is a bounded
sequence, then

(4.3) (e v,) — Pilesv) >0, h—0,.
Now we are going to verify this assertion.

V(e Uh) - lI/h(eh; Uh) =1, +1,,
where

1 1 Ny
11=§Jv (e,,)u,,dx——Zbe,,) J)J vf dx,
P

I = J‘Qb(e,,) 0,20 dx — { j b v dx}h.

It is easy to estimate I,:

1 Nty L Ny » 2
=5 X f [blen) () = ble) (&)] virdxl = - ¥ & j 3hle e} ey, 07 dx <
= > ;.
3 - ’
= EL—‘: n;ax “eh 4e,,|[C(Aj) ”Uh“§ h.

We may write I, = I; + I,, where

I, = J bles) 0pl? dx — f bley) ota dx
0 2

1
I, = ‘[ b(ey) v,dy dx — {f b(ey) vl dx} .
o 0 h
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The crucial point of the estimation of I5 consists in

A(x) = W(x) = xIs — xIg + I;(x) — I2(x),
where

= {[ 0= 000~ peiy e
= [0 006t~ peyor

1) = j “(x = (o) — pe) .

The assumption Af = (Y,_,, ¥,) may be introduced without loss of generality.
Then

f (1= ) (folt) = pea(t) = (1 = Y ) (fol¥ee) = pes(¥es) +

J‘ hdt.
C(A1*) J Ar*

+ (1 = Y) (fo(Y) = p e X))]}
Thus we obtain
(4.4) [Is —I| < h max (1 = 2) (o)) = P eit)]crp) -

dr < “dit (1 = 1) (folt) = p e1)

Now we shall deal with I, — I].

II7( ) I'l* J)I_

L (X, = ) (folt) = pes)) dr =
- { j 05 = () ~ pald) dt}

<

h*

< max
k.j

i((xj ) (o) = p )|

J hdx £ ZmaX “fo - pehHCl(Dk) h.
C(Dy)

For xe<X;_,, X ;) we derive
(4.5)
[+(x) = I 25(x)| = |I

() =+ TA) = 2001 (x = X, = 4 ,o)

< [5(X5-0) = A(X-0)] +

J: _1(x — 1) (fof) = pen) dt\ N

+x-x,0 j:’“'(fo(t) ~ peld) dt‘ T
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x —X._,

i HL (X = 0/{/ot) = par) dt}h* +
+ {J:j_‘(xf = X; 1) (fo(t) = pet) dz}h;l

The term I; tends to zero by virtue of (4.4), (4.5) but the term I, is left to analyse.
Let us introduce Z, = 1, — AY(P, M; +). It is seen that the functions 1, are bounded
idependently of the meshes 7, and 7. The derivative 1, satisfies

() = (W) = X)) = j[{ j (X — ) (folt) — p el dt} "

| <x =X 0l - peti) ik 1= :<1 — 0 (flt) - p eh<t>):r}h*,

hence all the norms ||7,] 1. ; are bounded independently of the partition. Then

=[] (00 (80 A0) = 200t 05 5 20, +

<6 max 170 = perlcrpy 1 -

bles) (X ) v(X)) Z,,(Xj)]} dx

the continuous embedding H*(Q) = C'(Q) being applied to the function v, The
estimate for

< h? max ||b(e,) v,di]c1a,y = Kih*,
j

G{P,M) =

j {ble0) () 1) 22(P. M3 ) =

- %[b(e‘,’)( J= l) Uh Jj- 1) 'IO(P M; XJ 1) + b\eh)( U,,(X,)/IO(P M; XJ)]} dx

proceeds by two different cases:

Firstly, X;¢A;, i =1,...,i, i.e. a differentiable function is integrated and
G,(P, M) £ K,h* K, > 0, independently of i, j.

Secondly, X ;€ A;. Functions b(e,), v,, AY(P, M; -) are bounded and G(P, M) < K3h,
K, > 0.

Finally, |I,| £ < (Kl + K,) h? + ZK h = O(h),h - 0,.We have proved that

I,-0,h—-0,, hence Y(ey; v,) — Y’,,(e,,, v) =0, h—>0,.

With regard to the properties of ¥(e; ), for the strong convergence of {vj} it is
sufficient to show that this sequence is minimizing (cf. the proof of Lemma 4.1).

Taking into consideration the coerciveness of ¥, on H 2(Q), we see that the sequence
{onll2}, h = 0., is bounded.

Further, we shall proceed in the same way as in Lemma 4.1, part C). Let the fol-
lowing inequality hold for a subsequence of {vp} (also denoted by {v;}):

Y(e;v0) — Y(es7°) 26, >0, 0<h<4,.
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Inserting 7° = %° into Lemma 4.1, we derive
‘1’(9;17,?)—‘1’(6;2,?)382>0, & <&, 0<h=d2504,

(4.1) = Y(esvp) — Ples i) 2 e3 >0, g3<é6, 0<h=<d63=y,;

B

(4= Piesv)— Yiesin) e >0, e <&, 0<h=<a=<s,;
(43)= Wlesv)— Vi) zes >0, es<é, 0<hsds5s4,;
(43) = Ylesv) — Vet Ze>0, gg<és, 0<h=<ds<5

Since v} is the point of minimum of ¥,, we arrive at a contradiction. Thus { luhr
is a minimizing sequence for h —» 0,. Hence

of = 2]~ 0, h—o0,
Q.E.D.

4.2. Approximations of the Optimization Problem

We know (Theorem 2.3, Remark) that 7°(e) e H*(Q). It is logical to use the func-
tional #,(e,) = [[(v})]|3 as a numerical approximation of #,(e), v} solving (4.2).
but since generally the norm |(v}))"||, does not exist, it would be necessary to use
polynomials of higher order for the approximation of the space V. This difficulty
can be avoided by introducing the cost function js(e, u) = |u|3, because |u|, and
|u||, are equivalent norms in the space V. Then our optimization problem can be
transformed from (2.13) to the following problem:

find a control &; € U,4 such that

(4.6) #5(83) = min J e ®(A(e) + 7%(e))* dx.

eelUag

Since (4.6) is similar to (2.14), we shall study only the case of #,.

Definition 4.1. Let the approximate optimal design problem &), be defined
in this way:

find e) € U, such that

jlh(el?) = ]2h eh: Uh(ei?)) = min fz:.(eh)

epelaa"

where vy(ey)) € V, solves (4.2) with a parametric function e, and

1
Jalen vy) = {‘[ ey “(Aulen) + v4)? dx} , v eV,.
0

h
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Lemma 4.4. The problem 2}, has at least one solution for any positive h.

Proof. Let {e}}2., = Ul be a minimizing sequence, i.e.

n=1

lim /Zh(e;:) = inf /2h(eh) .

n— o enelUag"

It is seen that the sequence {vp(e})} -, is bounded in H*(Q) since 4,(e}) is bounded.
Hence there exists a weakly convergent subsequence vy{e}) — Ww,e V,, m — .
The linear dimension of ¥, is finite and therefore v;(e}") — w, in H*(Q), m — oo.
By virtue of compactness of Ul in C(Q) there exists a uniformly convergent sub-

sequence {ej};, < {ey'}w_, with a limit ej e U’;. Combining this convergence

and boundedness of vj(e}) in H*(Q), we have 4,(ef) — 4,(ef) in L,(Q) for k — co.
Hence

(4.7) Vel w,) — Vle; W) >0, k—>o, W,eV,.
Taking the strong convergence |vp(e}) — W,]|, = 0, k — oo, we obtain
(4.8) ¥ (ehs W) — Yhlers vp(el)) > 0, k— oo
By means of (4.7), (4.8) we derive

V(e W) — Wile; viler) > 0, k- oo

For any v, € V, we have ¥,/e}; v,(e})) < P,(e}; v,). Passing to the limit with k — oo,
we conclude that
lllh(e;?; Wh) § lljh(el?; vh) Vvh € Vh .

The uniqueness of the solution w, e V, is a consequence of the properties of ¥,.
According to Lemma 4.2 we may write W, = v,(ejy).

Inserting the term j,,(e}, vj(ey)), we arrive at the convergence
Jaule)) = Saule) >0, k- oo
Using the following equalities, we prove the assertion of the lemma:

inf #3,(e;) =klim /2/:(92) = fztx(e;?)

encUaa"

Q.E.D.

Lemma 4.5. Let functions e, € de converge to a function ee€ U, uniformly
on the interval Q for h — 0. Then

lim fzh(e/x) = fz(e) .

h—0 4+
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Proof. Denoting I = {q e, *(4,(e,) + vP(e,))? dx, we estimate the expression

k(/l) = II - jlh(eh)l =

3 [ 65 Chle) + a8 = 3600 () (- +

+ op(en) (X;- 1)) + e (X)) (Aalen) (X)) + vR(en) (X))?]} dx| .

Two cases are possible:

(1) X;¢A,, i = 1,...,i, The function J, is differentiable and the functions e, *,
s vy, are bounded in C*(A)) independently of j and k (for the boundedness of vy
we apply Lemma 4.3 and the continuous embedding H*(Q) = C*(&2)). Hence
the integral over A; has the rate of convergence O(h?), h — 0.

2) X;eA;, ie{l,...,iy}. In this case the rate of convergence is only O(h), but the
J 1 0
number of such intervals is at most i,.
Combining (1) and (2), we conclude that k(h) tends to zero for h — 0.

An estimate of #, — I remains. Combining the definition of A and some parts
of the proof of Lemma 4.3, we arrive at the uniform convergence 4,(e,) — 4] {e)
on Q. From this and from the convergence of vy, ey we obtain that also #, — I
tends to zero for h —» 0.

Q.E.D.

Theorem 4.1. Let {e,?}, h — 0., be a sequence of solutions of the approximate
problem P} ,. Then there exists a subsequence {eg} such that for h — 0, e — €°
in C(Q), vi(ey) — 7°(e°) in H*(Q), where vy(ey) is a solution of (4.2), e®e U,

is a solution of (2.14) and 3°(e°) € V is the corresponding solution of (2.12).

Proof. This proof is based on the same idea as that of Theorem 3.1.

Let us take 7 € U,q. Then there exists a sequence {n,}, 7, € Uly, such that n, - 1
in C(Q) for h — 0 (see [2]). Let us denote by u,(n,) the solution of (4.2), where e,
is replaced by #,,.

The set U,4 is compact, hence there exists a uniformly convergent subsequence
fef} = {e}}, e = €®€ U,y in C(Q) for h — 0,. From the definition of the problem
2, we conclude that #,,(e}) < #,,(n;). Passing to the limit with h — 0, and
applying Lemma 4.5, we derive #,(e®) < #,(n). Consequently, €® is a solution
of (2.14). The remaining part of the assertion is essentially Lemma 4.3.

Q.E.D.

Remark. The preceding lemmas and the theorem are easily applicable to the
functional #; and to the problem (4.6).
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5. REALIZATION AND COMMENTS

5.1. Example

The previous theory is illustrated by the following example: one concentrated
force P = —20 acts on the beam at the point X = 0-5, E = 10000, a, = 100,
p =10, ey, = 005, e, = 02, the Lipschitz constant 0-45, [;e(x)dx = 01
(see Section 1.1). The cost function is j,(e, u) = 3 e*(u”)* dx.

This problem was solved by means of numerical approximations of the primal
approach (Section 3). From among the many methods of nonlinear programming,
Rozen’s algorithm of gradient projection was chosen (in detail see [1]) The gradient
V.7,(e,) was evaluated by means of the adjoint state problem (see e.g. [5]).

Practical results were obtained for a partition of the interval <0, 1) into 24 sub-
intervals. Some of these results are represented by Fig. 1 which requires the following
commentary:

The constant function e} is the first approximation, i.e. the initial choice of the
thickness of the beam, #,(ef) = 2:526. For the second approximation e, we
have #,(e;) = 0-683. The best result was shown in the tenth approximation,
Fa(e]) = 0:392.

All calculations were done by an HP 9825A calculator, one iteration (i.e. the
step from e} to e} * ') took about 5 minutes.

0.00 0.50 1.00

Fig. 1.
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5.2. Comments

The dual variational formulation of the state problem does not simplify our opti-
mization problems in contrast to the problems without an elastic foundation from
the paper [6]. In addition, the cost function j; makes certain difficulties. On the other
hand, we may expect that approximative results for j, will be better than those
obtained by the primal approach. However, the numerical solution of 2}, appears
somewhat more difficult than the solution of 2,,.

The constant a, can be replaced by a positive function ay(x), K; < ao(x) £ K,
Vx e O,K,, K, > 0 being constants. This is a more general description of the reaction
force of the elastic basis.

We may omit the assumption (II) in Section 3, then the value of A(e,; v, W)
must be computed accurately. Simplifying the theory, we arrive at a little more
complicated computer program.
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Souhrn

OPTIMALNI NAVRH PRUZNEHO NOSNIKU NA PRUZNEM PODKLADE
JAN CHLEBOUN
UvaZuje se pruzny prosté podepfeny nosnik daného objemu a konstantni Sitky i délky uloZeny

na pruzném podkladu. Za navrhovou proménnou se bere funkce prub&hu tloustky nosniku, jeji
derivace do 1. ¥adu jsou omezeny shora i zdola. ZatiZeni sestava z osamélych sil a momenta,
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vlastni tiZe a tzv. spojitého zatiZzeni. Cenovy funkcional je bud integral druhé mocniny pruhybové
Cary a jeji prvni a druhé derivace, nebo integral druhé mocniny napéti v krajnich vlaknech nos-
niku.

Dokazuje se existence feSeni optimalizacnich problému pfi primarni i dualni formulaci sta-
vové tiohy. Pro obé formulace se zavadéji aproximadni ulohy a je dokdzdna konvergence jejich
teSeni k teSeni spojitého problému. Teoretické zavéry jsou doplnény ilustraénim prikladem.

Pesome

ONTUMM3ALVIA ®OPMBI VIIPYTOU BAJIKU HA VIIPYTOM OCHOBAHUU

JAN CHLEBOUN

PaccmarpuBaeTCs MPOCTO HOAJAEpKHBaeMasi Ganka AAHHOTO O0beMa M MOCTOSHHOW LUMPHHBL
W JJIMHBL HA YIPYTOM OCHOBaHMH.

JlokazaHO CyLIeCTBOBAaHUE PEIICHU MPOGIeM ONTUMMU3ALKMY B NIEPBOHAYAIBLHOMU (TiepeMeLIECHHE)
M nyanbHOM (HampsbkeHue) ¢opMyimpoBkax. [nst o0erx BBOAATCA HPHOKEHHBIE MPOOIEMBI W
JIOKa3bIBA€TICs CXOAMMOCTh HX DPEHICHHI K DPELICHHIO HEeMpephIBHOM Mpobiembl. TeopeTuyeckue
HCCIIeI0BaHUSl JOMOJIHEHBI TIPUMEPOM.

Author’s address: RNDr. Jan Chleboun, Vyzkumny Gstav transportnich zatizeni, Kartouzska
4/200, 150 00 Praha 5.
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