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31(1986) A P L I K A C E M A T E M A T I K Y No. 2, 118-140 

OPTIMAL DESIGN OF AN ELASTIC BEAM ON AN ELASTIC BASIS 

JAN CHLEBOUN 

(Received September 27, 1984) 

Summary. An elastic simply supported beam of given volume and of constant width and 
length, fixed on an elastic base, is considered. The design variable is taken to be the thickness 
of the beam; its derivatives of the first order are bounded both above and below. The load consists 
of concentrated forces and moments, the weight of the beam and of the so called continuous 
load. The cost functional is either the H2-norm of the deflection curve or the L2-norm of the 
normal stress in the extreme fibre of the beam. 

Existence of solutions of optimization problems in both the primary and dual formulations 
of the state problem is proved. For both formulations, approximate problems are introduced 
and convergence of their solutions to those of the continuous problem is established. Theoretical 
conclusions are corroborated by an illustrative example. 

INTRODUCTION 

The theme of this work stems from the paper [6], the assumptions imposed on 
the beam being, however, of different physical nature. 

An elastic beam of constant width, length and weight is considered. This beam is 
fixed on an elastic base and its ends are hinged with fixed supports. Its own weight, 
the concentrated forces and moments and the so called continuous load act on the 
beam. 

The thickness of the beam is taken for the design variable and the Lipschitz 
functions bounded simultaneously from below and from above form the set of 
admissible functions. 

The cost function depends either on the deflection curve or on the normal stress 
in the extreme fibre of the beam. 

In Section 1 we formulate an optimal design problem and prove the existence of 
a solution. Section 2 deals with a dual variational formulation as well as with the 
existence of a solution. In Sections 3 and 4 we study finite element approximations 
to the optimization problem and their convergence to the solutions from the pre­
ceding sections. An illustrative example and some comments are given in Section 5. 
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1. PRIMARY VARIATIONAL APPROACH 

1.1. Formulation of the problem 

Let us consider an elastic beam lying on an elastic basis. The classical theory 

(see e.g. [9]) yields the relation for the deflection function y: 

d 2 / F s 3 d 2 y \ 

dx\ 12 dx2) 

where E is the Young modulus, s is the width of the beam, e is the thickness of the 
beam, q is a continuous loading, a0 > 0 is the constant of elasticity of the basis. 

Now let the thickness e be a function depending on x and let the length of the 
beam be equal to 1. For simplicity we shall write the product E(s/12) only as E. 

Under these conditions the differential operator of the deflection function may 
be expressed in the form 

De(w) = ^ - E eҢx) u - - l f ! ) + a0 w(x), x є <0, 1> 
dx2 \ K ' dx 

Let us define a bilinear form 

A(e; v,w)=\ E e3(x) v"(x) w"(x) dx -j- a0 v(x) w(x) dx . 
J Q J Q 

where Q = (0, 1) and the derivatives are denoted by primes. The parametric function 

e e Uad» 

Uad = Le C°>l(Q) ; 0 < emln ^ e(x) S emax , xeQ; 

— ^ C, ; f e(x) dx = C2 ; Cu C2 > o j , 
<*x )n J 

where C{, C2, emm, emax are given constants and C0'1^) is the set of Lipschitz 

functions on Q. The variable functions v,weV= {v e H2(Q); v(6) = v(i) = 0}. 

Hk(Q) denotes the Sobolev space W^'2^), k = 1, 2, ... , with the usual norm ||-||&. 

The seminorm (§Q(v{k))2 dx) 1 / 2 will be denoted by |- jfe.It is obvious that V is a Hilbert 

space. 

The differential equation 

(1.1) De(w) = E 

with boundary conditions vv(0) = w(\) = w"(0) = w"(\) = 0 corresponds to the 

hinge joint of the beam ends. 

Let us replace (1.1) by 

(1.2) A(e; u, v) = <F(e), v> Vv e V, 
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where u e V, e e Uad. 

F(e) = f (Pt8(x - Xt) - Mt8'(x - X,)) + f0 - pe 
i = l 

represents the load of the beam (positive acting upwards). Here Ph Mt and p > 0 
are given constants, Xt e <0, 1> are prescribed points, 8 is the Dirac measure and 
f0 G Lt(Q). Then 

(F(e), v} = Y (P, o%) + M-t v'{X)) + (/o - Pe) v dx 

The state problem (1.2) is the variational formulation of (1.1). Furthermore, let us 
define 

j\(e,u)= \\u\\2
2, j2(e,u)= e2(u")2dx. 

j n 

The functional j \ corresponds to the magnitude of the deflection curve, j 2 is propor­
tional to the normal stress in the extreme fibre of the elastic beam. 

We shall solve the optimization problem: 
Let u(e) e Vbe a solution of the state problem (1.2), e e Uad a given function. Let 
us define /'t(e) = jt(e, u(e)), i = 1,2, Find a control e°t e Uad such that 

(1.3) //el) = min /t(e), i = 1, 2 . 
eeUad 

1.2. Existence Theorem 

The proof of our existence theorem is based on a general result for a class of optimal 
design problems (see [5]): 

Let U be a Banach space of controls and Uad <= U a set of admissible design 
variables. Assume that Uad is compact in U. 

Let a Hilbert space Vwith a norm || • || be given. Consider a bilinear form A(e\ *, •) 
and a linear continuous functional <F((?), •> on V, both depending on a parameter 
e eU. Assume that there exist positive constants a0, ai and a subset U°, Uad c 
c [/° c [/, independent of e, v, w and such that 

(1.4) |A(e; v, w)\ S OCJLJ|t?]| ||w|| , 

(1.5) A(e;w5w)^a0||w||2 

hold for all e e U° and v, w e V. 
Moreover, assume that: 

(1.6) if e, en e U°, en -> e in U and v„ -- v (weakly) in Vfor n -> co , 

then A(en; v„, w) -> A(e; v, w) \fw e V; 
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(1.7) if e, en e U°, en -> e in U, then <F(e„), v> -> <F(e), v> Vv G V; 

(1.8) there exists a positive constant y, independent of e, v and such that 

\(F(e),v>\Sv\H 
holds for all e e U° and v e V 

We consider the following state problem: 
for e e Uad find u(e) e V such that 

(1.9) A(e; u(e), v) = <F(e), v> Vv 6 V. 

Under the assumptions (1.4), (1.5), (1.8) the state problem (1.9) is uniquely solvable 
for any eeU°. 

Let a functionalj: (U x V) -> R be given, which satisfies the following condition: 

(1.10) if en, e e U°, en -> e in U, u„ -> i/ in V (weakly) => 

=> lim inf j(e„, M„) ^ j(e, u) . 
f t - * 00 

Denoting the cost functional by f(e) = j(e, u(e)), where u(e) denotes the solution 
of (1.9), we may consider the optimal design problem: 

find e° e Uad such that 

(1.11) f(e°)^f(e) V^GUad. 

Theorem 1.1. Under the assumptions (1.4) to (1.8) and (1.10), the optimal design 
problem (1.11) has at least one solution. 

Proof. See [5]. 

Theorem 1.2. The problem (1.3) has a least one solution for i — 1, 2. 

\ Proof. It is sufficient to verify the assumptions of Theorem 1.1. Let us introduce 
U = C«0, 1» , U° = {eeU ; eminSe(x)S emax Vx G <0, 1>}. The set Uad is 
bounded and closed in C(Q) and, moreover, consists of uniformly continuous func­
tions. The theorem of Arzela implies the compactness of Uad in C(Q). 

The inequality (1.4) can be easily established. 
Owing to the inequality 

f (V'f dx = - f VV dx S \v\2 H o S H\V\22 + H o ) 
J Q J Q 

the assumption (L5) is fulfilled. 
The validity of (1.6) is an easy consequence of the boundedness of the sequence 

{vn}n
x
=1 in H2(Q) and of the uniform convergence of en. 
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It is readily seen that the functional F(e)e V* and (1.8) holds, because of the 
continuous embedding H2(Q) C C^jQ). 

The condition (1.7) is obvious. 
Let us verify (1.10). The norm squared is a weakly lower semicontinuous functional 

and the case of j x is solved. For any fixed ee Uad the functional j2(e, •): V-» R + 

is weakly lower semicontinuous. Next, j2(en, un) = j2(e, un) + I and 

/ = (e2
n-e>)(u'tfdx < \e: - e C(U) \\un\\2 0 , n -> oo 

since all the norms ||w..||2 are bounded. Hence 

lim inf j2(en, un) ^ lim inf j2(e, un) + lim I = j2(e, u), 
n->oo n -* oo n-»oo 

2. DUAL VARIATIONAL FORMULATION OF THE STATE PROBLEM 

Q.E.D. 

The state problem (1.2) will be transformed into the dual variational formulation, 
called the principle of minimum complementary energy. 

2.1. Derivation of the Dual Variational Formulation 

First we derive the functional of complementary energy by means of the Friedrichs 
transform (see [3]). 

Denoting a(e) = Ee3, g = f0 — pe, we can introduce the functional of potential 
energy 

>. (21) Se(v) = -[ [a(e) (v")2 + a0v
2] dx - (F(e), v 

Let us define r\1 = v", ^2 = v and the Lagrange multipliers Aj(x), X2(x). Thus we 
obtain the functional 

^(v^^iu,^!,^) = 

[a(e) n\ + a^2
2] dx - <F(e), v> + j Xx(v" - ^1) áx + Л2(v - ц2) йx . 

Using integration by parts and setting the variations with respect to v, ^\, rj2 equal 
to 0, we deduce the following conditions: 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

Яj(0) = 0 , Я t(l) = 0 , 

Å'[ + Å2 - F(e) = 0 : 

a(e) цx = Åt , 

ЯoПг = h • 
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Let us denote b(e) = (a(e))~\ b0 = a0\ Using (2.4), (2.5), (2.3) leads to the 
functional 

^ i , A2) = - f (b(e) 2 2 + b0X
2

2) dx - f (b(e) X\ + b0X
2

2) dx = 
2 J Q J Q 

1 C 
= (b(e) X\ + b0X

2

2) dx . 
2 J Q 

Let us introduce H = [L2(:Q)]2 and the bilinear form on H x H: 

l'2-б) (Я, І)н = (b(e) / ^ І ! + b0À2À2) dx . 

It is easily seen that H with the scalar product (2.6) is a Hilbert space. 
Let us define 

B(k, v) ( V + Л2v) dx VkєH , v є H2(ß) ; 

H! = {k e H; 3v e V, Aj = a(e) v", A2 = «0v} , 

H2 = {k e H; B[k, v) = 0 Vv e V} , 

AF = {2 e H; B(A, v) = <F(e), v> Vv e V) . 

Any vector ke AF satisfies (2.2), (2.3) in the weak sense. We shall write k = k(v) 
iff kt = a(e) v", A2 = a0v. 

Let us remark that Xt is the bending moment of the beam and X2 is the reaction 
of the elastic basis. 

Theorem 2.1. (Principle of minimum complementary energy.) Let £f(k) = ilW.H 

be given. Then 

(2.7) 9>(k°) = min &>(k) o k° = k°(u) , 
XEAF 

where u is the solution of the problem (1.2). 

Proof. The proof is based on the method of orthogonal projection. The space Ht 

is orthogonal to H2. Let keHv keH2. Then we have (k, k)H = B(k, v) = 0. 
Evidently k(u) e Hv For ke AF we have k — k(u) e H2, since 

B(k - k(u), v) = f [(X, - X,(u)) v" + (X2 - X2(u)) v] dx = <F(e), v> -
J Q 

(a(e) u"v" + a0uv) dx = 0 Vv e V. -L 
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Consequently, for k e AF we may write 

\k\\2

H = ||A - k{u) + A(M)12„ = \\k - A(t.)||2

fl + \\X(u)\\2

H • 

and the proof is complete. 
Q.E.D. 

R e m a r k . It is not difficult to prove that Hi and H2 are closed subspaces of H 
and H = H! 0 H2. 

Next we shall employ the structure of the affine hyperplane AF. Let k° e AF be 
a particular element. Then we may write AF = k° + H2. Hence for / e H2 we have 

<?{k) = ^{k° + z ) = ii|A°i2

H + i||xi2„ + (x, n , . 

Thus the principle of minimum complementary energy has the form 

(2.8) <D(/0) = ilzollfl + fro, °̂)H = min <P(X) o Z o = *(u) - 1° , 
*eH 2 

where u is a solution of (1.2). 
The condition (2.3) will be exploited now. For AF we have X[ = F(e) — k2 in 

the sense of distributions. Consequently, for keAF, k = [kl9 A2] we can define 
a functional G(k) e [H2(;Q)]* by means of the relation 

<G(Л), w> = (Л.w* - AJw) dx , wєH\Q). 

For any % e H2 = A0

 w e n a v e <£(/)> y> = &(%•> v) = 0 Vv e V The equality 
<G(/), v> = 0 implies Xi(l) v'(l) — #i(0) v'(0) = 0 as we find by integration by 
parts. From these conditions, Zi(0) = #i(l) = 0 follows. We see that 

(2.9) ^eV=>x = [x,-x"]eH2; 

(2.10) * e . f f 2 - > Z = [ x . - r ] , z e V -

Let us define the scalar product (x, X)Q = la {b{e) XX + l'oXT) dx and the norm 
\\x\\Q = {x,x)Q/2;X,XeH2{Q). 

Now we specify the particular element k° = [/l°, A°] e ^F- The functions are 
defined as follows: 

(2.11) ^ = 0 , 

A?(x) = A?(P, M; x) + f ( jo - Pe) (t) (x - t) dt - x f (j0 - pe) (f) (1 - f) d/ , 
Jo Jo 

where 

A?(P, M; x) = J [P. f H(t - K,) dt - M,H(x - Kf)l - x £ [P*(l - Xt) - M,] 
-=i L Jo J *=-
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and H denotes the Heaviside function. Integration by parts yields 

ľ k\v" áx = <F(e),v> Vvє V. 
J Q 

Conditions k®(0) = k®(i) = 0 are also fulfilled. The function k\ is the bending 

moment of the simply supported beam (k°2 = 0). 

Theorem 2.2. (Equivalent version of the principle of minimum complementary 

energy.) 

Let us define a functional on V: 

V(x) = iUfa + \ b(e)nUx. 
J Q 

Then 

(2.12) W(f) = min W(x) 
ZeV 

if and only if f = [x°, — (x°)"\ = k(u) — k°, where u is the solution of (1.2). 

Proof. Let / = [xu Xi\ = [x, ~x"\, X e V, 

*(x) = ~ f [H^ X2 + b0(r)2\ dx + f b(e) *A? dx = 
2 J& J^ 

= i||x||S + f fc(«)^?dx = #( z). 
J« 

We have used A2

 == 0. The first inequality min W(x) = min #(/) holds according 
ZeV xeH2 

to (2.9). The second inequality min T(x) = min <P(x) is an easy consequence of 
zeV Z e H 2 

(2A0) and k(u) - k° e H2. Finally, the assertion (2.12) follows from (2.8). 

Q.E.D. 

2.2. Existence Theorem 

We shall apply the above results to the functionals e/l and f 2. 

Let k(u) = [kx(u), k2(u)\ solve (2.7). Then u" = (a(e))~1 kt(u), u = a^1 k2(u). 

Let f be the solution of (2.12), i.e. [kx(u), k2(u)\ = [A?, 0] + [f, -(x°)"\- In­

serting this into f ^ we have 

ЎÁe) = aťЦfУW , /a(e) = £- e"4(A? + x0)2 dx . 

Thus we obtain the equivalent version of the optimization problem: 

find a control et e Uad, i = 1, 2, such that 

(2.13) / . ( * . ) = min \\(x°(e))"\\j , 
eeVaa 
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(2.14) f2(e2) = min f e ' ^ e ) + f(e)f dx , 
e 6 [ / ad J Q 

where x°(e) is the solution of the problem (2A2) which is taken with a parametric 
function e and the function X\(e) also depending on e. 

Theorem 2.3. Both the problem (2A3) and the problem (2A4) have at least one 
solution. 

Proof. We know (Theorem 1.2) that there exist et e Uad, i = V 2, such that 
\\u(ei)\\

2
2 = \\u(e)\\2

2 Vee Uad and \\e2 u"(e2)\\
2

0 = \\e u"(e)\\2 Vee Uad, u(e) solves (1.2) 
with a parameter e. The latter relations result in solutions of (2A2) and (2A3). 
In fact, u"(e) = X^JEe3 and u(e) = A2(e)ja0 according to (2.7). 

Q.E.D. 

Remark . Let us notice that the solution y°(e) e V even satisfies x°(e) e H4(Q). 

3. APPROXIMATIONS OF THE PRIMAL APPROACH 

The following assumptions are considered a basis for our forthcoming consider­
ations: 

(I) Let N be an integer and 3~h a partition of the interval <0, 1> into N sub-
intervals Aj = <Xj-l9Xjy of the length h; j = 1, 2 , . . . , N(h); X0 = 0, XN = 1. 
Let Pfc( A) be the set of polynomials the order of which is at most k. We define 

Uad = { e e U a d , eUjeP^Aj)^}, 

Vh ={veV, v\AJeP3(Aj)Vj}. 

(II) Instead of A(eh; vh, wh) we shall use the form 

N(h) 

4- I a0vhwh dx ) , 

where tj = i(X /~i + xj)'> eh e Uh
ad; vh, wh e Vh. 

fco 

(III) Assume that there exist open subintervals Dfc such that (J Dk = <0, 1>, 
fc = l 

Dkn Dm = 0, k 4= m, k0 = 1, and for any k the function f0 is extensible from Dh 

onto Dfc in such a way thatf0 e C1(Dfc). Let ;jT* denote the mesh 3Th refined by the 
points Yk = Dkn Dk+19 k = 1, ..., k0 — 1. 

(IV) Instead of F(e) the following functional Fh(e) will be used: 
Fh(eh) fa) = <F(eh), vh>h = 

N(h) i /• 

- t(Pt <*) + Mtv'AXÙ) - f pe„vh dx + í foVhdxi , 
0 )h 
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where eh e Uh
d, Xt are prescribed points and { }h denotes the approximate value of 

the integral, obtained by means of the trapezoidal rule on the mesh <T*. 

Lemma 3.1. Let the assumptions (I) —(IV) be satisfied. Then 

(3.1) \Ah(eh; vh, wh) - A(eh; vh, wh)\ ^ c h\\vh\\2 \\wh\\2 

VeheUh
ad,vh,wheH2(Q), 

(3.2) \<F(eh), vh} - (F(eh), vh\\ ^ c(fo) h\\vh\\2 Vv„ e H\Q) . 

Proof. Studying the left hand sides of these inequalities on the intervals A7- and 
A* = <X /-i , Yk), we can easily derive (3.1), (3.2); for the details see e.g. [6]. 

Q.E.D. 
The form Ah(eh; •, •) on Vh x Vh and the functional Fh(eh) e Vh comply with the 

assumptions of the Lax-Milgram Theorem. Consequently, 

(3.3) Ah(eh; uh, vh) = <F(eh), vh}h Vvh e Vh 

is uniquely solvable for any fixed eh e Uh
d. 

Lemma 3.2. Let the assumptions (I) —(IV) hold. Furthermore, let a sequence 
{eh}, eh e Uh

d converge to a function e uniformly on the interval <0, 1) for h -> 0 + . 
Finally, let u(e) be the solution of (1.2) and let uh(eh)be the solution of (3.3). Then 

\u(e) - uh(eh)\2 -> 0 , h. -> 0+ . 

Proof. Let us denote for brevity uh = uh(eh). The sequence {uh} is bounded, 
since Gc\\uh\\

2
2 ^ Ah(eh; uh, uh) = <F(eh), vh}h ^ (c(f0) h + c) \\uh\\2. The space V is 

convex and closed, i.e. weakly closed and uh ~- u* e V (weakly) in V; the picked 
subsequence is denoted {uh} again. 

It is not difficult to derive by means of regularization (see e.g. [7]) that there 
exist functions vx e C"°(Q), vx -> v in V for x -> 0 + . Denoting the Hermite cubic 
interpolate of vx e C°°(Q) over the partition &~h as vh e Vh, we easily obtain 

\\vh - v\\2-> 0 , / t - > 0 + . 

The following auxiliary assertions are derived from easy estimates or a weak 
convergence. 

(3.4) \A(eh; uh, vh) - A(e; uh, vh)\ -> 0 , h -> 0+ ; 

(3.5) \A(e; uh, vh) - A(e; uh, v)\ -> 0 , h -> 04 

(3.6) \A(e; uh, v) - A(e; u*, v)\ -> 0 , h -> 04 

Combining (3.1), (3.4), (3.5), (3.6), we have 

(3.7) \Ah(eh; uh, vh) - A(e; u*, v)| -> 0 , h -> 0 + . 
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Similarly 

(3.8) \(F(eh), vhy - <F(e), v„>\ -> 0 , h -> 0 + ; 

(3.9) |<E(e), .A> - <T(e), »>[ - 0 , ft -* 0 + 

and 

(3.10) \<F(eh)9vh>h-<F(e),v>\-*09 b-+0+ 

by virtue of (3.2), (3.8), (3.9). 
Passing to the limit with h -> 0+ and using (3.7), (3.10), we conclude that 

A(e; u*, v) = <F(e), v> Vv e V The uniqueness of u(e) yields both u(e) = u* and 
the weak convergence of the primary sequence {u,,} to the function u*. It remains 
to prove the strong convergence. 
Combining |<F(e,.), uh} - <F(e), u(e))\ -> 0, h -> 0 + and (3.3), (1.2), (3.2), we may 
write 

(3.11) \Ah(eh; uh, uh) - A(e; u(e), u(e))\ -> 0 , h -* 0+ . 

Let US introduce the scalar product A(e; u, v) in V, the norm being ||u||4 = 
= \_A(e; u, u)]1/2. The following estimate is a consequence of (3.1), (3.4), (3.11): 

I I M A ~ IK^IIAI = \A(e> uh> uh) ~ Meh', "h, uh)\ + 

+ \Ah(eh; uh, uh) - A(e; u(e), u(e))\ -> 0 , h -> 0+ . 

Using the weak convergence uh —- u(^), we accomplish the proof. In fact, 

cc0\\uh - u(e)\\l ^ (u/T - u(e), uh - u(e))A -> 0 , h -> 0 . 

Q.E.D. 

Definition 3.1. Let the approximate optimal design problem £Phi, i = 1, 2, be 

defined in this way: 

find ehi G Uh
d such that 

Si(e°hi) = jt(e°h, uh(e°h)) = min ft(eh) , 
eheUad

h 

where uh(eh) solves (3.3). 

Remark . For brevity we shall write ehi = eh. This convention will be used in 
Theorem 3A and Section 4.2. 

Lemma 3.3. The problem 0>hi has at least one solution for any sufficiently small 
and positive h; i = 1, 2. 

Proof. We employ Theorem 1.1 again. Let us choose U = C(Q), V= Vh, 
U° = {e e C(Q); 0 < emm S e(x) ^ emax Vx 6 Q}. It is evident that U*d c U is a 
compact set and that the form Ah and the functional Fh(eh) fulfil (1.4), (1.5) and (1.8), 
respectively. 
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Let us verify (1.6). Let us assume e, en e U°, en -> e in U and v;l -* v (weakly) in Vh 

for n -> oo. The dimension of the space Vh is finite, therefore the convergence vn -> v e 
e Vh in H2(Q) is strong. Then 

N(h) 

= 1 
j = 1 

\Ah(en; vn9 w) - Ah(e; v, w)| = 

(e3fe.) vn - e3fe.) v;; + e\Q v"n - e3fe) v") w dx 
Aj 

a 0 | (v„ — v) w\ dx -> O n -> oo Vw e ^ . 
'AI 

+ 

The condition (1.7) is a consequence of the equality 

|<F(e„), v)h - <F(e), ,>, | = pvкe en)d> 

Finally, the condition (1.10) is fulfilled in virtue of the proof of Theorem 1.2, 
since Vh c V = H2(.Q) n ff *(fl), 

Q.E.D. 

Lemma 3.4. Let us consider the approximate problem ^hi. Assume that a sequence 

{eh}9 eh e Uad, converges to a function e uniformly on the interval <0, 1) for h -> 0 + . 

Then 

lim/,(e,) -=/,(*)- i = 1,2. 
/i->0 + 

Proof . The case of i = 1 immediately results from Lemma 3.2. Indeed, 

\\\uh(eh)\\2- \\u(e)\\2\£ \\uh(eh) - u(e)\\2 . 

Combining the boundedness of the sequence {uh(eh)} and the assumptions of the 
lemma, we derive 

\Meh) ~ fi(e)\ ~> 0 , h -> 0+ . 
Q.E.D. 

Theorem 3.1. Let {eh}, h -> 0 + , be a sequence of solutions of the approximate 
problems ^hi, i = 1,2. T/ien there exists O subsequence {e,,} such thal for h ~> 0+ 
e/t" -> e° in C(O), u/,(e£) -> u(e°) in H2(.Q), where e° 6 Uad is the solution of the 
optimization problem Pt and u(e°) e V is the corresponding solution of (1.2). 

Proof. Let n e Uad be an arbitrary function. There exists a sequence {nh}, nh e Uad, 
such that nh -> w in C(.Q) for h: -> 0+ (see [2]). Let us denote by uh(nh) the solution 
of (3.3) where eh is replaced by nh. Since Uad is compact in C(Q), there exists a sub­
sequence {eh} a {eh} such that e\ -> e° uniformly on Q for h -> 0+ so that e° e Uad. 
Having in mind the definition of the problem Phh we arrive at the inequality 
/ / ( e ? ) = / » ( ^ ) - Passing to the limit with h -> 0+ and applying Lemma 3.4, we 
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derive fie) g ft(rj). Hence e° is a solution of the problem &%. The remaining 
part of the assertion is essentially Lemma 3.2. 

Q.E.D. 

4. APPROXIMATIONS OF THE DUAL VARIATIONAL FORMULATION 

In this section we adopt the assumptions (J) — (IV) from Section 3, however, we 
distinguish { }h and { }h*, i.e. the approximate values of the integral obtained by 
means of the trapezoidal rule on the mesh 3~h and on the mesh #~h, respectively. 

4.1. Approximations of the Principle of the Minimum Complementary Energy 

The further part of this paper deals with the numerical analysis based on Theorem 
2.2. A parametric function e is indicated in the functional W. 

Lemma 4.1. Let X° e F j J e Vh, Xh e Vh be such functions that 

V(e; x°) = min W(e, X) , W(e; X°h) = min V(e; Xk) 
xeV XhSVh 

and 

V(eh; fh) = min V(ek; Xk) . 
Xh^Vh 

Let the sequence {eh}, eheU^d, converge to a function eeUad uniformly on the 
interval <0, 1> for h -• 0 + . Then 

y(e;X°h)^W(e;X°) and \\X° - fh\2 -> 0 for h-+0+. 

Proof. Vis a Hilbert space and the functional *P(e, •) has positively definite second 
Gateaux derivative, therefore there exist unique functions X°, Xh and Xh (see e.g. [4], 
Theorem 6.4.5; similar theorems can be found also in [8]). 

The sequence {/°} is minimizing as we now derive with the assistance of the fol­
lowing three auxiliary assertions. 

A) V(e; x°h) ~> *(e; 7°), h -+ 0+ . 

In fact, let {vh}, vh e Vh be a sequence such that \X° — vh\\2 -> 0, h -» 0 + . Then 

0 S V(e; x°h) - V(e; X°) S V(e; vh) - W(e; X°) -+ 0 , h->0+. 

B) Using the uniform convergence eh -> e, we derive for any bounded sequence {wh}: 

(4.1) W(e; wk) - V(ek; wk) - 0 , h -» 0 + , wkeVk. 

C) v(e;fi)- V(e;X°h)->0, h->0+. 
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The sequences {||x£||2} and {||zi?||2}
 a r e bounded for h -> 0+. Indeed, if e.g. the 

sequence {\\xh ||2} is not bounded, then the inequality 

W(eh; fh) = Ko||^°||2 ~ ^i| |^0 |]2 , K0,Kt > 0 , 

leads to a contradiction ^(e,,, 0) = 0 < W(eh, xh) for sufficiently small h. Analo­

gously for {|[zj||2}-
Let us assume now that there exist subsequences, also denoted by {f} and {Xh}> 

with the property 

W(e; f) - W(e; XH) = £ V/i, 0 < h <: St , e > 0 . 

The assertion B) implies that there exists <52, 0 < b2 ^ <5l9 such that 

W(eh; fh) - <F(e; X°h) = ±8 Vft, 0 < ft ^ <S2 . 

Using once more B), we have 

W(eh; x°h) ~ V(eh; X°h) = *e Vfc , 0 < A = <53 = <52 . 

Since ?P(eA; •) attains its minimum over Vh at the point f, we have derived a contra­
diction. 

Finally, applying A) and C), we conclude that 

W(e; x°) - W(e; xl) tends to zero for h -> 0+ . 

The sequence {f}, h -> 0+, minimizes the coercive, weakly lower semicontinuous 
and strictly convex functional W(e; •), hence ([4], Theorem 6.4.5) 

| | Z
0 - X , ° | | 2 - 0 , / z - > 0 + . 

Q.E.D. 

Using a numerical method to carry out the computations, we obtain only an 
approximate value of W(eh, vh). For this reason we shall introduce a functional Wh. 

First, let us approximate the function A? (see (2.11)) by a function Xh. Let us define 

Xt(Xj) = {[X\Xj - 0 (f0(t) - p eh(t) dt)\ , 7 = 0 , . . . , N(h). 

Next, let us construct the Lagrange linear interpolate IX* of Xh on the mesh ^ . 
Let the function Xh be given by 

Xh(x) = I A*(x) - x { f (1 - t) (/o(l) - P eh(t)) d t j + A°(P, M; x) , x e <0, 1> , 
Uo )h* 

where 

A?(P, M; x) = £ [P , f H(t - KO dt - MfH(x - Kf)l " x t [P,(l - X,) - M J . 
i-il Jo J '*-
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Now we can define the functional 

чh(eh\ vh) = - b0(v'hf áx + \ £ % ) (tj) ! vl áx + j f b(eh) vhXh ax] , 

tj^axj^ + xj). 

Lemma 4.2. There exists just one function vh e Vhfor which 

(4.2) Th{eh; v°h) = min Wh(eh; vh) . 
Vh^Vh 

Proof. The functional *¥h(eh; •) is coercive, weakly lower semicontinuous and 
strictly convex on Vh. 

Q.E.D. 

Lemma 4.3. Let a sequence {eh}, eh e U^d, converge to a function e e Uad uniformly 

on the interval Q for h -> 0+. Then \\%° — vh\\2 -» 0, h -» 0 + , where y° eV is 

a solution of (2.12) and vh e Vh solves (4.2). 

Proof. The proof is based on the following convergence. If {||t^||2} is a bounded 

sequence, then 

(4.3) W(eh; vh) - Wh(eh; vh) -> 0 , h - 0+ . 

Now we are going to verify this assertion. 

y(eh; vh) - Wh(eh; vh) =h+I2, 
where 

i r i N(A) /• 
I! = - b(eh) v2 dx - - £ % , ) fo) v2 dx , 

2J<i 2 j = i JAj 

IX -

72 = H**) M i d x ~ j fo(^) M*d* 

wo p 
I [b(eh)(x)-b(eh)(Q]v2

hdx 
; = 1 J A ; 

It is easy to estimate h '-

1 N(h) 

2 j = i 

, Лf(A) i 

< i V i 
" 2 / Ѓ l E j 

Щe'ь Ч Ц Q Д J ) ľл d* ^ 

= Tzmaxll-A*-*iťW) Wla fc-2£ i 

We may write I2 = I3 + I4, where 

73 = b(eh) vhX\ dx - b(eh) vhXh áx , 
Jí3 J Q 

h = 6(c*) M/. d x ) 6(CA) MA d*[ • 
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The crucial point of the estimation of I3 consists in 

_i?(x) - kh(x) = xi5 - xI6 + I7(x) - n*(x), 
where 

u = 

Һ = 

Цx) = 

' ( I - O Í / O W - P «»(*)) 4 > 
0 JA* 

(1 - ř) (j0(ř) - p eh(t)) d ř , 
) 

C ( x - í ) ( j 0 ( í ) - p e A ( ř ) ) d ř . 

The assumption Af = <Yfc_1? Yfe> may be introduced without loss of generality. 
Then 

{(i - _)(/0(_) -Peh(t) - i[(i - n-_)(/o(n-i) - .p^(n-i) + 

+ (i - rfc) (/0(Yk) - p efi(yfc))]} d ř < ^((í-t)(f0(t)-Peh(t))) 
át j 

C(Дi*) J Äi* 

hdt . 

Thus we obtain 
(4.4) |/5 -I6\ = h max ||(1 - í)(/ 0(ř) - p eh(t))\\cl(Dk) . 

k 

Now we shall deal with I7 - I/l*. 

| / 7 (x,)-n*(„,) | = 

ГXJ 

(Xj - t) (j0(ř) - p eh(t)) dř 

(Xj - t) (f0(t) - p eh(t)) át] 

^ max 
kj 

-UXj-t)(fo(t)-peh(t))) 
át C(Dk) 

h áx S 2 max | | / 0 - peh\\CHDk) h . 
Jo k 

For x E <K7_1 ? Xj} we derive 

(4.5) 

| / 7 ( x ) - / A * ( x ) | = /7(x) - \ [A*(X,) - „*(_,_.)] (x - _,_.) - #(_,_.) < 

<.|/7(x,-1)-я*(x,_1)| + (x - ř) (/0(í) - p eh(t)) dř 
X./-1 

+ (x-„,_,)[(f0(t)-peћ(t))ăt 
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x - X j-i f ' (Xj - t) (f0(t) - p eh(t)) díl 
JXj-l U* 

í (Xj -Xj^)(f0(t)-pehft))dt\ 
Jo Jh 

_= 6 max | | /0 - peh\\CHDk) h 

The term I3 tends to zero by virtue of (4.4), (4.5) but the term I4 is left to analyse. 
Let us introduce lh — Xh — A?(P, M; •). It is seen that the functions lh are bounded 
idependently of the meshes tTh and 3T*. The derivative lh satisfies 

Һ Һ 

+ 
X/-i 

(Xj -Xj^)(f0(t)-peh(t))dt 

(Xj-t)(f0(t)-peh(t))dt\ + 
Xj-i Jh* 

ì 

Й*J 

(í-t)(f0(t)-peh(t))dt\ , 

hence all the norms ||^/,||C-(A;) a r e bounded independently of the partition. Then 

Gj = {Ь(eh) (x) vћ(x) Цx) - ì[b(eh) (Xj-J vJXj^) ЦX.-i) + 
åj 

+ b(eh)(XJ)vh(Xj)lh(XJ)]}dx = h2 max \\b(eh) vhlh\\cHAj) = Kth
2 , 

the continuous embedding H2(Q) c CX(Q) being applied to the function vh, The 
estimate for 

Gj(P, M) = {b(eh)(x)vh(x)X%P,M;x) 
&J 

- ì[Ь(eh) (Xj- г) vh(Xj_ 0 Л°(P, M; Xj_,) + &(.„) (__y) - ^ ) A°(P, M; X,)]} dx 

proceeds by two different cases: 
Firstly, X{$Aj, i— 1, ..., i0, i.e. a differentiable function is integrated and 

Gj(P, M) = K2h
2, K2 > 0, independently of i,j. 

Secondly,X teAy. Functionsb(eh),vh, X\(P,M; -)are bounded and O/P, M) <_ K3fr, 
K3 > 0. 

N(ft) io 

Finally, |/ 4 | ^ Z ( K ! + ^2) ^ 2 + E X 3 h = 0(h), h -> 0+. We have proved that 
j = 1 i = 1 

I2 -> 0, fi -> 0+, hence y f o ; v,) - _?,(«,; v„) -> 0, h -> 0+. 
With regard to the properties of *P(e; •), for the strong convergence of {vh} it is 

sufficient to show that this sequence is minimizing (cf. the proof of Lemma 4.1). 
Taking into consideration the coerciveness of Wh on H2(Q), we see that the sequence 

{IK II2}* h -> 0+, is bounded. 
Further, we shall proceed in the same way as in Lemma 4.1, part C). Let the fol­

lowing inequality hold for a subsequence of {vh} (also denoted by {vh}): 

W(e; v°h) - ¥(e;f) ^ s, > 0 , 0 < h = 5X . 
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2 ? 

3 > 

Inserting x° = / ° into Lemma 4.1, we derive 

Wye; v°h) - V(e; fh) ^ e2 > 0, e2 < e. , 0 < h < fc § 5. ; 

(4.1) => V(eA; i>A°) - «P(e; zA°) > a3 > 0 , £3 < e2 , 0 < h = S3 < S 

(4A) => f(eft; yft°) - «P(e„; f)>ze4>0, e4 < e3 , 0 < h = <5* < 3 

(4.3) *> <Pft(eft; r-A°) - «f (eft; *ft°) >, e5 > 0 , £5 < £4 , 0 < h < «55 § «54 ; 

(4.3) => V ft(e„; v°h) - <Fh(eh; f) ^ e6 > 0, e6 < e5, 0 < h = S6 < d5 . 

Since vh is the point of minimum of H>h, we arrive at a contradiction. Thus {vh} 
is a minimizing sequence for h -» 0+ . Hence 

Q.E.D. 

4.2. Approximations of the Optimization Problem 

We know (Theorem 2.3, Remark) that x°(e) e H4(Q). It is logical to use the func­
tional f\h(eh) = ||(i>£)"||2 as a numerical approximation of fi(e), v° solving (4.2), 
but since generally the norm ||(v£)"||2 does not exist, it would be necessary to use 
polynomials of higher order for the approximation of the space V. This difficulty 
can be avoided by introducing the cost function j3(e, u) = \u\\, because |w|2 and 
|w||2 are equivalent norms in the space V. Then our optimization problem can be 
transformed from (2.13) to the following problem: 

find a control e3 e Uad such that 

(4.6) f3(e3) = min f e'6 (A?(e) + f(e))2 dx . 
^Uad J Q 

Since (4.6) is similar to (2.14), we shall study only the case of f 2. 

Definition 4.1. Let the approximate optimal design problem 0>\2 be defined 
in this way: 

find eh e Uad such that 

f2h(e
0

h)=J2h(eh\v
0

h(e
0

h))= min / 2 A ( e „ ) , 
eheV,ah 

where vh(ef,) e Vft solves (4.2) with a parametric function eA and 

J2i,(eh, Vh) = | eA"4(ift(eft) + vh)
2 dxi , v„ e V„ . 
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Lemma 4.4. The problem ^h2 has at least one solution for any positive h. 

Proof. Let {en
h}™=1 cz Uh

d be a minimizing sequence, i.e. 

lim/2 / l(eA")= M f2h(eh). 
»-+ 00 ehSvadh 

It is seen that the sequence {v°h(e
n
h)}^i is bounded in H2(Q) since Xh(e"h) is bounded. 

Hence there exists a weakly convergent subsequence vh(e™) -^> whe Vh, m -> oo. 
The linear dimension of VA is finite and therefore vh(e™) -> wh in H2(Q), m -> oo. 
By virtue of compactness of U*d in C(jQ) there exists a uniformly convergent sub­
sequence {4}/c°°=i c : {4"}/ri°-i wit-1 a Hmit e° e U^d. Combining this convergence 
and boundedness of vh(eh) in H2(Q), we have kh(e

k
h) -> /l/.(eA) in L^O) for k -> oo. 

Hence 

(4.7) n ( e ° ; w„) - n(e A ; wh) - 0 , fc -> co , vv„ e V„ . 

Taking the strong convergence |f;°(ej;) — vvft|2 -> 0, k -> oo, we obtain 

(4.8) <FA(4; **) - n ( ^ ; t>*K)) - 0 , fc - oo . 

By means of (4.7), (4.8) we derive 

y , K ; vv*) - vh{e\; v°h{e\)) -> 0 , fc -* oo . 

For any vh e Vh we have ¥h(e
k
h; vh(el)) = ^(e^; £>/.)• Passing to the limit with k -> oo, 

we conclude that 

¥h(e°h;wh)^ Wh(e°h;vh) VvheVh. 

The uniqueness of the solution wh e Vh is a consequence of the properties of *Fh. 

According to Lemma 4.2 we may write wh = vh(eh). 

Inserting the term j2h(e
k
h, vh(eh)), we arrive at the convergence 

filel) - fjek
h) -> 0 , k -> oo . 

Using the following equalities, we prove the assertion of the lemma: 

inf f2h{eh) = lim f2h{e\) = f2h{e°h) 

Q.E.D. 

Lemma 4.5. Let functions eh e Uh
d converge to a function e e Uad uniformly 

on the interval Q for h -> 0 + . Then 

lim f2h(eh) = f2(e). 
f i^O + 
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Proof . Denoting I = §Qeh

 4(Xh(eh) + v^(eh))2 dx, we estimate the expression 

k(h) = \l - ў2h(eh)\ = 
N(ft) f 

z {eь-чч'ь)+»ïЫ)2-ite4(xJ-i)(Чeь)(Xj-i) 
J=ЧAJ 

+ vl(eh)(X^)f + e;\Xj)(Xh(eh)(X} + v°(eh) (X,))2]} dx 

Two cases are possible: 

(1) Xt$ Aj, i = 1, ..., i0. The function Xh is differentiable and the functions eh

4, 

X,„ v° are bounded in Cl(Aj) independently of j and h (for the boundedness of vh 

we apply Lemma 4.3 and the continuous embedding H2(Q) a C1^)). Hence 

the integral over Aj has the rate of convergence 0(h2), h -> 0+. 

(2) Xt E Aj, i e {1, ..., i0}. In this case the rate of convergence is only 0(h), but the 

number of such intervals is at most i0. 

Combining (1) and (2), we conclude that k(h) tends to zero for h -> 0+. 

An estimate of f 2 — I remains. Combining the definition of X\ and some parts 

of the proof of Lemma 4.3, we arrive at the uniform convergence Xh(eh) -> X\ (e) 

on Q. From this and from the convergence of v°, e° we obtain that also f2 — I 

tends to zero for h -> 0+. 

Q.E.D. 

Theorem 4.1. Let {e^}, h -> 0+, be a sequence of solutions of the approximate 

problem 0h2. Then there exists a subsequence {eh} such that for h -> 0+, e% ~> e° 

in C(Q), v°(e°) -> f(e°) in H2(Q), where v°h(e°h) is a solution of (4.2), e° e Uad 

is a solution 0/(2.14) and x°(e°) E V*5 the corresponding solution of (2.12). 

Proof. This proof is based on the same idea as that of Theorem 3.L 

Let us take n e Uad. Then there exists a sequence {nh}, nh e Uad, such that nh —> n 

in C(Q) for h -> 0 (see [2]). Let us denote by uh(nh) the solution of (4.2), where eh 

is replaced by nh. 

The set Uad is compact, hence there exists a uniformly convergent subsequence 

K } c K } , 4 ~* e° e ^ad in C(S) for h -> 0+. From the definition of the problem 

0>\2 we conclude that f2h(en) = cfihfyn)- Passing to the limit with h -> 0+ and 

applying Lemma 4.5, we derive f2(e°) S fi^)- Consequently, e° is a solution 

of (2.14). The remaining part of the assertion is essentially Lemma 4.3. 

Q.E.D. 

R e m a r k . The preceding lemmas and the theorem are easily applicable to the 

functional y3 and to the problem (4.6). 
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5. REALIZATION AND COMMENTS 

5.1. Example 

The previous theory is illustrated by the following example: one concentrated 

force P = - 2 0 acts on the beam at the point X = 0-5, E = 10 000, a0 = 100, 

p = 10, emin = 0-05, emax = 0-2, the Lipschitz constant 0-45, j ^ e(x) dx = 0-1 

(see Section 1.1). The cost function is j2(e, u) = JQ e2(w")2 dx. 

This problem was solved by means of numerical approximations of the primal 

approach (Section 3). From among the many methods of nonlinear programming, 

Rozen's algorithm of gradient projection was chosen (in detail see [1]). The gradient 

^ f2(eh) was evaluated by means of the adjoint state problem (see e.g. [5]). 

Practical results were obtained for a partition of the interval <0, 1) into 24 sub-

intervals. Some of these results are represented by Fig. 1 which requires the following 

commentary: 

The constant function eh is the first approximation, i.e. the initial choice of the 

thickness of the beam, /2(eh) = 2-526. For the second approximation el

h we 

have #2(el) = 0-683. The best result was shown in the tenth approximation, 

f2(e9

h) = 0-392. 

All calculations were done by an HP 9825A calculator, one iteration (i.e. the 

step from eh to en

h

 + l) took about 5 minutes. 
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5.2. Comments 

The dual variational formulation of the state problem does not simplify our opti­

mization problems in contrast to the problems without an elastic foundation from 

the paper [6]. In addition, the cost function j\ makes certain difficulties. On the other 

hand, we may expect that approximative results for j2 will be better than those 

obtained by the primal approach. However, the numerical solution of &\2 appears 

somewhat more difficult than the solution of gPh2. 

The constant a0 can be replaced by a positive function a0(x)9 Kx g a0(x) ^ K2 

Vx e Q,Kl9K2 > 0 being constants. This is a more general description of the reaction 

force of the elastic basis. 

We may omit the assumption (II) in Section 3, then the value of A(eh9 vh9 wh) 

must be computed accurately. Simplifying the theory, we arrive at a little more 

complicated computer program. 
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S o u h r n 

OPTIMÁLNÍ NÁVRH PRUŽNÉHO NOSNÍKU NA PRUŽNÉM PODKLADĚ 

JAN CHLEBOUN 

Uvažuje se pružný prostě podepřený nosník daného objemu a konstantní šířky i délky uložený 
na pružném podkladu. Za návrhovou proměnnou se bere funkce průběhu tloušťky nosníku, její 
derivace do 1. rádu jsou omezeny shora i zdola. Zatížení sestává z osamělých sil a momentů, 
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vlastní tíže a tzv. spojitého zatížení. Cenový funkcionál je bud integrál druhé mocniny průhybové 
čáry a její první a druhé derivace, nebo integrál druhé mocniny napětí v krajních vláknech nos­
níku. 

Dokazuje se existence řešení optimalizačních problémů při primární i duální formulaci sta­
vové úlohy. Pro obě formulace se zavádějí aproximační úlohy a je dokázána konvergence jejich 
řešení k řešení spojitého problému. Teoretické závěry jsou doplněny ilustračním příkladem. 

Резюме 

ОПТИМИЗАЦИЯ ФОРМЫ УПРУГОЙ БАЛКИ НА УПРУГОМ ОСНОВАНИИ 

^АN СНЕЕВО^Ч 

Рассматривается просто поддерживаемая балка данного объема и постоянной ширины 
и длины на упругом основании. 

Доказано существование решений проблем оптимизации в первоначальной (перемещение) 
•и дуальной (напряжение) формулировках. Для обеих вводятся приближённые проблемы и 
доказывается сходимость их решений к решению непрерывной проблемы. Теоретические 
исследования дополнены примером. 

Ашког'з аййге^з: КЛЧГОг. 1ап СМеЪоип, Уугкитпу йзгау (.гашроПтсп г а т е ш , КаПоигзка 
4/200, ШООРгапа 5. 
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