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31(1986) APLIKACE MATEMATIKY No.1,54-77 

SHAPE OPTIMIZATION IN CONTACT PROBLEMS BASED 
ON PENALIZATION OF THE STATE INEQUALITY 

J A R O S L A V HASLINGER, PEKKA NEITTAANMAKI, T I M O TlIHONEN 

(Received January 18, 1985) 

Summary. The paper deals with the approximation of optimal shape of elastic bodies, uni­
laterally supported by a rigid, frictionless foundation. Original state inequality, describing the 
behaviour of such a body is replaced by a family of penalized state problems. The relation 
between optimal shapes for the original state inequality and those for penalized state equations 
is established. 

1. INTRODUCTION 

This paper is concerned with optimal shape design of a two dimensional elastic 
body on a rigid frictionless foundation. The problem is to redesign the boundary 
part of the body where the unilateral boundary conditions are assumed, in such 
a way that the total energy of the system in the equilibrium state is minimized. 
The numerical results obtained show that as a by-product we can find such a shape 
for the contact part of the body that the contact stress is constant. This result is of 
great practical importance. 

In the paper [10] Haslinger and Neittaanmaki give the proof of existence of 
a solution when the state problem is formulated in terms of the variational inequality 
on a variable domain. In this paper a different approach is used. The variational 
inequality is replaced by a family of penalized problems, each of which is given as 
a classical elliptic (nonlinear) boundary value problem. We show that the correspond­
ing optimal designs (associated with the penalized problems) are close (in an appro­
priate sense) to an optimal design of the original problem (see Chapter 4). 

In Chapter 5 we present finite element discretization of our design problem and 
discuss the convergence of the approximations. Some numerical results are presented 
in Chapter 6. 

Mathematical theory of shape optimization problems, including their approxima­
tion by finite elements, can be found in [1, 5, 12, 13, 14, 20] (state problem governed 
by equations) and in [8, 9, 10, 11, 15, 17] (state problem governed by variational 
inequalities). For sensitivity analysis we refer to [2, 4, 13, 19, 21, 22, 23]. The existing 
literature on contact problems in connection with the shape optimization seems to be 
minor. We mention [2, 3, 9, 10, 13]. 
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2. THE OPTIMAL SHAPE DESIGN PROBLEM 

Let us consider a two-dimensional elastic body Q = Q(a) cz R2 having the follow­
ing geometrical structure 

Q(a) = {(x1? x2) e R2 \ a < xt < b, 0 ^ a(xx) < x2 < y} , 

a, b, y > 0 given constants and a e C0,1(<a, b>) a function; d.Q(a) = fD u f F u Fc(a), 
Fjr, 4= 0 (a possible partition of dQ(a) is given by Fig. 2.1). The shape of the contact 
surface Fc(a) is defined by a control parameter a from the set ^ a d of admissible 
controls, 

(2.1) <%ad = ja e C°'1«a, b» | 0 S a(xx) ^ C0 < 7 , a(a) = -4, a(b) = B , 

a ^ C! , meas (Q(a)) = C21, 
d x x J 

A, B, C0, Cx and C2 are given positive constants. 

Suppose that the body Q(a) is unilaterally supported by a rigid frictionless founda­
tion (here by the set {(x1? x2) e R2 | x2 S 0}) and subjected to a body force F = 
= (Fl5 F2) and to a surface traction P = (Pu P2) on FF. 
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Fig. 2.1. 

In the classical formulation of contact problems one looks for a displacement field 
u = u(a) = (ui(a), u2(a)) satisfying the equilibrium equations (the dependence of u 
on a is emphasized by writting u = u(a)) 

(2-2) 
ÕX 

TІJ(U) + Fi = 0 in Q(a) , i = 1, 2 

where the stress tensor x(u) = {xij(u)}2j=l is related to the strain tensor E(U) 
= {sij(u)}2

)j=l by means of the linear Hooke's law: 
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*ij(") = cmi fiftiW, hi(») = - | ~ + ~ 
2 [dxt cxk 

with elasticity coefficients Cijkl satisfying the usual symmetry and ellipticity conditions. 

The following boundary conditions will be assumed (cf. Fig. 2.1): 

(2.3) ut = 0 on rD , i = 1,2 ; 

(2.4) *, /«) »y = P. on FF , i = 1, 2 ; 

(2.5) u2(^i? a(xi)) = — a(xi) V.^ e [a, b] ; 

(2.6) ^i(«) = 0 on Fc(a) (frictionless case) ; 

(2.7) T2(u) = 0 , (u2 + a) T2(«) = 0 on Fc(a) , 

where the standard notations and conventions of elasticity are used ([16]). 

In order to give the variational inequality formulation of (2.2) —(2.7) we introduce 
a Hilbert space V(a) of virtual displacements 

(2.8) 7(a) = V(Q(OL)) = {v e (H\Q(a)))2 \vt = 0 on FD, i = 1, 2} 

and its closed convex subset K(a) of admissible displacements 

(2.9) K(a) s K(Q(a)) = {v e V(a) | v2(xi, OL(XX)) = - a ( x i ) Vx± e [a, b]} . 

The variational form of (2.2)-(2.7) reads as follows ([16]): find u = w(a)eK(a) 
such that 
(&>(*)) (x(u), s(v - u))0Ma) = <L, v - u\ \Jv e K(a), 

where L is the given distribution of external forces, 

(2.10) < L , « > . = f F&dx + i 
J Q(a) J J 

withFe(L2(rQy))2, Pe(L2(FF))2 , Qy = (a, b) x (0,y)and 

(x(u), s(v))0Ma) = T0.(W) etfW dx • 
J«(a) 

We state the shape optimization problem. 

Problem P. Find a* e ^ a d such that 

(2.11) 4«*(a*), a*) = min <f(n(a), a ) , 

where S: K(a) x ^ a d -> ^ is fhe total potential energy functional, 

4«(a ) , a) = i(t(u(cc)), e(«(a)))0j«(a) ~ <L, a(a)>a, 
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in which u(a) is the solution of the state inequality (^(a)). 

According to [10] we have 

Theorem 1.1. Let °U.^ be given by (2.1). Then there exists at least one solution 
a* of Problem (P). 

To avoid the difficulties with possible non-differentiability of the mapping a -> «(a), 
the following approach will be used. Instead of the state variational inequality (^(a)) 
a family of penalized problems will be introduced: find uE = #£(a) e V(a) such that 

(0>e(dj) « 0 s(v))0tQ(a) + - Ba(u£, v) = <L, v\ , V. e V(a) , 
s 

where Ba is the penalty operator, 

(2.12) Ba(u, v) = [(u2(xi, a(xi)) + a(x i ) ) - ] 2 v2(xu a(xx)) dxt = 

= ((u2(a) + a ) - ) 2 v2(a) dxi , 

s —> 0 + is a penalty parameter and a~ denotes the negative part of a (a~ : = 
:-(H-a)/2). 

The penalized optimal shape design problem (PE) now reads as follows: 

Problem (PE). Find a* e %ad such that 

(2.13) < % K ) ; «f) = ™n <%(«): «) -

where w£(a) e V(a) is the solution of (£PE(a)). 

3. SOLVABILITY OF PROBLEM (Pe) 

In order to prove the solvability of Problem (PE) we need some preliminary results. 

Lemma 3.1. Let an -» a in C°(<a, b>) and /et <peK(<x) be given. Then there exists 

{<Pj}?=u (Pj e (C°°(.Qy))
2 such l/W 

( 3 J ) ^ l - , ( a M O ) )
e K ( a ^ ) ) ? 

(3.2) <?,•->£ in ( H 1 ^ ) ) 2 , 

where (p = (<pl9 cp2) denotes the Calderon extension of <p = (cpu cp2) from Q(a) 
on Qy and {anC/)} is a subsequence of {<xn}. 

Proof. The existence of {<pj}, (p} e (Hx(Qy))
2, satisfying (3.1),(3.2) has been proved 

in [10], Lemma 2.4. It remains to prove that <pj can be chosen more regular, namely 
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one may extract a subsequence {u,n} cz {un} such that 

uHl^u(m) (weakly) in (H\Gm))2 , 

where w(m) e V(Gm) : = {u e (Hl(Gm))2 \ut = 0 on rD n 5Gm}. 

As there exists n0(m + 1) such that for any n ^ ra0(m + 1), Qn =D Gm+1 =~> Gm 

we can extract a subsequence {wrt2} c {wMl} that converges weakly in (H^G^+j))2 

tou<m+»eV(Gm+1). 
Trivially, «(m) = « ( m + 1 ) in Gm. Similarly, for each k > 0 there exists n0(m + k) 

such that for n > n0(m + k), Qn ID Gm+k =-> Gm+fc_1 and consequently we can 
extract a subsequence {unie} cz {j*„fc J that converges weakly in (H1(Gm+h))

2 to 
u^eV(Gm+k). 

Denoting by {un} the diagonal sequence determined by {unk} we have 

(3.6) « ? ^ « k i n (^ ( G m)) 2 for every m , 

where n|Gm = n(m) on Gm. Clearly u e V(a*). To simplify notation we shall write 
again {un} instead of {un}. 

The next step is to show that u is the solution of the state problem (^£(a*)). For 
every n we have 

(3.7) (T(H„), s(w))0,Qn + Bn(um w) = (F, w)0fQn + (P, M>)0,rF VM> e V, 

where fr = { w e ^ 1 ^ ) ) 2 ] w( = 0 on FD}. As a„ -> a* in C°([a, b]) topology, we 
obtain from the right hand side of (3.7) that 

(3.8) lim (F, w)0iQn + (P, w)0^F = (F, w)0M^ + (P, H>)o,T, . 
n~* oo 

Next we shall prove that 

(3.9) Bn(un, w) -> M " . ») VWe(C»(fly))2 . 

We have 
/»& /•& 

(("2«(«») + O T w2(aB) dxx - ((u2(a*) + a*)")2 w2(a*) dx, ^ 
J a J a 

^ f KWa.) + <T)2 - N«*) + O T I M«»)l d*i + 

+ f ((u2(a*) + a*)")2 |w2(a„) - w2(a*)| dxx -= / , + I2 . 

As an -> a* uniformly in [a, 6], I2 -> 0 as n -> oo. Further, as |w2(aw)| remains 
bounded we can estimate using some elementary facts like \a2 — b2\ = \a — b| 
|a + b| and |a~ — b~| ^ |a — b| and the Holder inequality: 

hike f |(«2„K) + O T - ((«>*) + «TYI dxt g 
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й c ( ( (u2n(an) - u2(a*) + a„ - a*) 2 d x Л 

((«2„(«n) + v-nY + (и2(«*) + a*)")2 dxA 

The second term of this product remains bounded because of the compactness 

of the imbedding from Hx(Qn) to LP(r(an)) (in our geometry even uniformly with 

respect to n) for 1 ^ p < oo. Thus it remains to prove that the first term tends 

to zero. Now, using the notations 

rm = {(*!, x 2) e ^ 2 | x 2 = a*(xi) + 1/m, xt e (a, b)} , 

U2^m) = W

2 ( ^ l ?

 a * ( X l ) + l / m ) » * 1 e (#> &) 

we obtain from the triangle inequality 

(U2n(<*n) - U2^) + *n ~ ^'Y d * l ^ 

^ C j f (an - a*) 2 dxi + [ (i*2(a*) - u2(Fm))2 dxx + f (u2(Fm) - u2 r t(Fm))2 dx t + 
W a J a J a 

+ | («2n(rm) - u2n(a„))2 dxX = C(IU + I12 + J 1 3 + J 1 4 ) . 

Evidently J l t -> 0 as w -» co and analogously to [8] we can estimate 

I12 = M O - u2(rm))2 d*i ^ ( — - u 2 ( x 1 , x 2 ) d x 2 \ d x t g m - 1 ! ^ ! ? ^ . . ) , 

« 2 ( r m ) - « 2 n ( r m ) | 2 d x . g C | u 2 - « 2 , | o , r « = C I | U 2 - t^Jl.G^a*) > I13 = 

I14 = |м2 я(rи) - "2„(0| 2 dxx ^ = |u 2 „ l 
rb / r«« g \ 2 

w 2 (x i ,x 2 )dx 2 ) dxi ^ 
rm dx2 / 

^ C max |a*(x.) + 1/m - a„(x t)| | u 2 „ | i ,<«(*„) • 
xie[a,b] 

For every fi > 0 there exists m 0 such that Ii2 < /L. Using (3.4) we see that there 

exists n0 = n0(m0) such that for any n > n0, I13 < fi and Ii4 < \i. Thus we have 

proved (3.9) 

Now fix m and let n be such that Qn => Gm. Then 
"n — *-*m* 

« » „ ) , e(w))0 i f l | | = « » „ ) , <w)) 0 f G w + ««»),8(w))o.nn\o(«») + 

+ ( < * » ) , <w))o.(Q(a*)\G m )n^ n « 

As «„ -* w in (H x(Gm))2 and ( T ( ' ) , fi(M,))o,Gm *s weakly continuous, we obtain 
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(t(u„), s(w))0fGm -+ (T(«), s(w))0iGm as n -> oc , 

\(t(un)9 6(W))0,D„M2(«*)| -S j | «n j | l A \ f i ( a* ) || ̂ | | l ,0M\fi(a*) > 

|(T(HW), e(w))o,(Q<**)\Gm)nQ„\ ^ \\Un\\l,Dn \H\l,Q(a*)\Gm • 

Passing to the limit with n and using (3.4) we have 

lTm (z(un\ s(w))0fQn SL (\u\z(w))0,Gm + C\Mt,Q(«*)\Gm(**) > 
/i->oo 

Hm (T(HW), 8(w))0 ,fln ^ « » ) , <w))o,G,„ - C | |^ j | l ,0(a*)\Gm(a*) • 
H->OO 

Combining this with (3.8) and (3.9) and letting m tend to infinity we finally obtain 

(T(#I), 8(w))0Ma*) + B^(u, w) - (F, w)0jo(a:*) + (P, H>)0J/> Vw> e V. 

As any w> in V(a*) can be continuously prolongated to a function w in V we have 

that u — n(a*), i.e. M is the solution of (^£(a*)). 

It remains to prove that <f(a*) = inf <f(a). Indeed, 

ae^rad 

( 3 . 1 0 ) #{<*„) = ^Gm(a*)(an) + < ^ \ G m ( a * ) ( a * ) > 

where 

( 3 - U ) ^Gm(a*)(a«) = K T K ) > <««))o,Gw(a*) ~ ( ^ ««)o,Gm(a*) ~ (P, Un)0,rFnGm(^j 

and 

(3 .12) $Qn\Gm(«*) = ! « « « ) > <««))o,-Q„\Gm(a*) - (-F* W«)o,«n\GM(«*) ~ ( ^ »«)o,Mm = 

= ~ (F , W„j0?^n\cm(a*) ~ (I*? Unj0,Mm 

with 
Mm — {(x1? x2) e R2 | xj = a and x2 e (a(a), a(#) + 1/m), x1 = b 

and x2 e (a(b), a(b) + l/m)} 

(this consideration can be omitted if dist (FF, Fc(a*)) > 0). Now 

(3.13) lim $(an) ^ hm ^Gm(a*)(a„) + hm *an\Q»wM = 
n-*oo « -> oo n->oo 

^ -*(!*<«•)(**) + Hm ( - ( F , «„)o,fl„\Gm(a.) - (-*> "»)O,MJ ^ 
n->oo 

2: <rG„(«-)(a*) - C(\\F||o,fi(«.)\Gm(a.) + | ^ | O , M J • 

Here we ha we used the lower semicontinuity of $. Letting m -> oo we hawe that 

q = Urn <%,) ^ 4a*) . 
rt->00 

Thus a* solves Problem (Pe). Q 
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4. THE RELATION BETWEEN (PE) AND PROBLEM (P) 

Let us choose a sequence {ek} of positive numbers such that ek -> 0 as k -* °o. 
Denote by a* the solution of the optimal design problem (P£k) and by w* the solution 
of the associated state problem. Concerning the behaviour of the problem (P£k) as 
ek -» 0 we have the following theorem. 

Theorem 4.1. There exists a subsequence {<x*j9 w*(a*)} Of {a*, w*(a*)} and elements 
a* e ^ a d , «*(a*) e K(a*) such that 

(4.1) < - « * w C°( [a ,b ] ) , j -» co 

and 

(4.2) «* (a*) - «*(a*) i» ( I I ' ^ f a* ) ) ) 2 / o r any m 

where a*, w*(a*) are the solutions of (P) and (^(a*)), respectively, and Gw(a*) is 
defined by (3.5). 

Proof. Using Lemma A (see Appendix), we obtain 

(4.3) l-.ffli.ix-.,-) = C V / c = l , 2 , . . . 

As ^ a d is compact, there exists a subsequence of {a*} and an element a* e ^ a d such 
that 

a* -> a* uniformly in [a, b] . 

The construction of a weakly convergent subsequence {«*.} satisfying (4.2) is 
analogous to the method applied in the proof of Theorem 3.2. We shall denote the 
diagonal sequence by {«*} and the weak limit by w* e (H1(Q(a*)))2. As in the proof 
of Theorem 3.2 we obtain that 

(4.4) B*AU*> w) -» B**iu) Vfv e V as k -> oo . 

On the other hand, from the state equation we have using (4.3) 

(4.5) |Bak*(«*, w)\ ^ Cek\\w\\ua -> 0 as k - oo . 

Combining (4.4) and (4.5) we see that u* e Ker Ba* = K(a*). 

As the next step we prove that «* is the solution of the variational inequality 
(^(a*)) in Q(<x*). In other words, we have to prove that 

(T(«*) , e(w - »*))o,«(«*) = (F,w - «*)0,fl(««) + (P, w - «*)o,rF 

Vn>eK(a*). 

According to Lemma 3.1, for each H>eK(a*) we can find a sequence {wk}, whe 
e (Hl(Qy))

2, wk[Qk e K(a*) and such that wk -> w in (if 1(Oy))2. Now from the definition 
of Bk = Bak* we obtain 

62 



(4.6) (x(uk), s(wk - uk))0A ^ (F, wk - uk)0A + (P, wk - « f e ) 0 ^ , 

where .Qfc = .Q(a*). 

Concerning the left hand side of (4.6) we can estimate 

« « * ) , s ( ^ - n?))0 A = « » ? ) , s(wk - n*))0,Gw + « < ) , « K - «*))0 ,fifcM>(«*) + 

+ « « . ? ) > «(** - **))o,(f?(a*)\Gw)n^k -S W O ' S(Wk ~ «*))o ,Gw + 

+ « < ) > «(W*))o AMJ(«*) + « * ? ) - £(^))o,(fi(a*)\Gw)nflk • 

Thus we easily get 

(4.7) E 5 (r(«*), e(H>fc - ut))o,ak ^ (<«*), < * - «*))0,Gm + C|K»|| ,>fi(a.)XCm , 
fc->00 

where C > 0 does not depend on m. 

Similarly, 

(F, wk - u*)0>Qk = (F, wk - »*)o,Gm + (F, wk - »*)o^k\o(a*) + 

+ (F, Wk — «/c)o,(.Q(a*)\Gm)n^k 

and consequently, 

(4.8) lim (F, wu - «*)oiflfc = (F, w - n*)0,Gm - C(||^||0fO(a, )V-m + | |w| |0^ ( . . ) V ?J . 
/c->oo 

Finally, if we define Mm as in the proof of Theorem 3.2 we obtain 

(P, wk - n*)0,TF = (P, H>fc - <)o,rF\Mm + (P? w* ~ <)o,Mm 

and passing to the limit: 

(4.9) Jim (P, H>* - < ) 0 , r F = (P,w - «*)o,TF\M„, - C(j |P| |0^m + H | 0 > M J . 
k-> 00 

Combining (4.7), (4.8) and (4.9) and passing to the limit with m we find that w* 
solves Problem (0>(oc *)). 

It remains to prove that <f(a*) ^ <f (a) Va e ^ a d . Let a e Wad be fixed and let u(6t) e 
e K(6c) be the solution of (^{oc)). Using the classical results we known that there exist 
uk(u) e V(Q(6c)) (solutions of (^fifc(«)) such that 

uk(&)-* u{6i) in (H\Q{*)))2. 

Consequently, 

(4.10) <»*(«), «) -> « « ) , a) = £(a) . 

On the other hand, 

(4.U) g(ut(*:),«t)fk#(uk(&),&) 
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as follows from the definition of (PeJ. From (4.10), (4.11) and using the same approach 
as at the end of the proof of Theorem 3.3 we are led to 

4 a * ) £ Urn <f (a*) = S(a) Va e ^ a d . 
ft—> 00 

This completes the proof of Theorem 4.1. • 

5. THE FINITE ELEMENT APPROXIMATION OF (Pe) 

Approximation of Problem (P) will be defined starting from (Pe) by means of 
finite elements. We suppose that ^ a d is replaced by the set 

^ d = {a e q [ a , b]) | a | [flJ_1>fl<] e P t f a ^ , a,)]} n ^ a d 

where a = a0<a1<...<<%=b is a partition of [a, b], P x denotes the set 
of linear functions. For any ak e °U\d we define 

Q(ah) = {(xi9 x2) e R2 | a < x1 < b, och(x±) < x2 < y} , 

i.e., the variable part of the boundary Fc(a) is now approximated by a piecewise 
linear arc Tc(ah). 

By £Th(ah), ah e ^ a d , we denote a triangulation of Q(ah) such that the whole segment 
I. ==- |(x1? x2) | x! e [«,--!, OJ, x2 = a;i(x2)} is the whole side of a triangle Tt e 
e ^h(ah), and satisfying the usual requirements concerning the mutual position 
of two triangles belonging to 3~h(ah). Moreover, we shall consider only such families 
of {&~h(oth)}, which are regular uniformly for h -> 0+ with respect to aA e ^ a d , 
i.e. there exists <50 > 0 independently of h > 0 and aft e ^ a d , such that all interior 
angles of all triangles belonging to 3Th(ah) are greater or equal to r30 (for practical 
applications some other technical restrictions will be added, see Chapter 7). Finally 
suppose that ^~h(och) as a function ah is continuous for Vh. Next, the symbol Qh(ah) 
will denote the set Q(och) with a given triangulation $~h(ah); we also use the abbre­
viation Qh for Qh(ah). 

With any 3Th a finite dimensional space Vh(ah) a V(Q(ah)) will be associated: 

V,(a,) = {vh e (C(Q(ah)))
2 \ vhlTi e (P^T,))2 for any T, e rh%), vh = 0 on FD} . 

The approximation of (Pe) is now defined as follows: 

Problem (PE{h))h- Find a* e ^ a d such that 

^h(uth(ccth); <*%) = min Sh(ueh(ah), ah), 
ahevh

ad 

where 

(5.1) &h(uJ*h)\ och) = i(t(ueh(och)), s(ueh(ak)))0Mah) - <L, uEh(ah)}ah 

in which ueh(ah) e Vh(ah) is the solution of the discrete state equation 
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{&«:ki*k))k ( < " h), K*h))oM*H) + T£j B*h(
u*h> vh) == <L, vh}ah \/Vh e Vh(Q(ah)) 

with s = 8(h) ~> 0+ iff h -> 0-K 

Here Bah denotes the penalty operator: 

Bah(uEh, vh) = ([u2Eh + ah] Y v2h dx! 

The solvability of Problem (PE(h))h can be proved with compactness arguments. 

Assuming the properties of {&~}] we shall prove 

Theorem 5.1. Let a* e %h
aA be a solution of Problem (PE{h))h and let ufh be the 

corresponding solution of the state equation (& Eh(&h))h' Then there exists a sub­
sequence [a*] c {a*}, an element a* e %'ad and w*(a*) eK(a*) such that 

(5.2) a* -> a* in C°([a, b]) for h} -» 0+ , 

(5.3) «*/«*) - « V ) »» (H\Gja*)))2 for hj - 0+ , 

fOr any m ^ m0, where a* is the solution of Problem (P), «*(a*) the corresponding 
state and Gm(a*) is defined in (3.5). 

To prove this theorem we shall use the following result: 

Lemma 5.2. Let ah e <?/ad, a e ^ a d be such that ah -> a uniformly in [a, b] as 
h -> 0 + . Let «,. = uh(ah) be the solution of (&E{h)(ah))Jv Then there exists a sub­
sequence [uhj] c [uh] such that 

(5.4) %(%) -* "(a) in (H\GJ(ot)))2 as j -* oo , for any m > 0 , 

where u{a) e K(a) is the solution of(&(a)). 

Proof. Since uh e V(ah) we obtain from the definition of (^£(/l)(a/j))/l using Lemma A 
(see Appendix) that ||i*fc||i,.Qh S C independently of h. Now let m be fixed. Then there 
exists ho = h0(m) such that Gm(a) c Qh for all h — h0. Consequently, 

(5-5) W|l,Gm(«) = \\Uh\\l,QH = C Vh = h0 . 

The weakly convergent subsequence {%.} and an element i# G V(a) satisfying (5.4) 
can now be constructed exactly as in the previous proofs. 

The next step is to prove that u(a) e K(a). As in [9] we shall show that Ba(i#(a), w) = 
= 0 Vw e (Co°(fir))

2 which implies that u(a) e K(a). Let hj be a filter of indices for 
which (5.4) holds. Let w be an arbitrary function in (Co°(-^y))

2. For each hj with w 
we associate its linear interplate whj := nhjw\Q e Vhj(Qhj). Using whj as a test 
function in (^B{hj)(%))hj we get 
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(x(uhj), e(whj))o,% + j ~ B,hj(uhj, wh.) = (F, whj)0t% + (P, whj)0_rF . 

Thus from (5.5) 

(5.6) 0 ^ \BHj(uhj, whj)\ S e(hj) C\\wh\\u% . 

As the linear interpolates have the approximation property 

K - Hl>,% = chj\WkohJ = chj\\w\\2t0y
 3) 

we have that K | i , o . , = c - T h u s 

(5.7) l imB (uhj,whj) = 0. 
/ -•oo J 

On the other hand, 

\Bahj(uhj, whj) - Bx(u, w)\ ^ \Ba(u, w) - B,hj(uhj9 w)\ + |B%.(%,, w - whj)\ . 

The first term on the right tends to zero as hj -> 0 as follows from (3.9) and 

\%(uhj, * ~ whj)\ S C\\u2hj + ahj\\lrc(ahj) \\w - whj\\L*,(rct*hj)) £ 

-S C(||UhJ0,TC(V + H^Jo^c^.))2 Ik - ^J^(TC(«^) = 

= C ( | K I | i , % + Cx) ||w - W'fcJL^) -> 0 as fe,->0. 

Thus Ba(ii(a), H') = 0 VH> e (Co°(.Qy))
2, i.e. n(a)eK(a) . 

It remains to show that u = u(a) solves Problem (g?(a)), i.e. we have to verify that 

(5.8) (T(II), S(W - n))o,ft(«) = (F, H> - w)o,D(a) + (P, w - «)o,TF Vw eK(a) . 

Let w eK(a) be fixed and let w be its Calderon extension. According to Lemma 3.1 
one can find a sequence {w^. Wie(H2(Qy))

2 (even more regular) such that wt -> w 
in (H1(Qy))

2 for i -> oo. Let i be fixed. Then wteK(ah) provided h is sufficiently 
small, i.e. for h ^ ho(0- Thus, as ah. -> a, uniformly in [a, b], we notice that 

"ihj^^ KhMaMeK(*hj) 

for hj sufficiently small. 

As wih. eK(ahj) we obtain using the definition of B that 

(r(uhj), s(uhj - wih))0tQhi g (F, uh. - w>%)0,% + (P, uhj ~ Wihj)o,rF • 

Since uh. -* w in (Hx(Gm(a)))2 and w ^ -> wf in (HJ(iQy))
2 we easily obtain that 

Urn (x(uh), s(wih - uh))0tQ ^ (r(u),s(wi - u))0tGm(a) + C\\wi\\1Ml^Gm9 
hj-+0 "J 

3) Here we use the fact that the family {^(a/,)} is uniformly regular with respect to <xh e W*d. 

66 



lim {(F, wihj - uhj)0fQ + (P, wih. - uhj)0tГғ} £ (F, wt - u)Gm(a) + 
hj-+0 

+ (P, Wi - u)0trFn0m - C(0(||F||o.o(a)\Gm(«) + M o . r F M ? J 

and passing to the limit with m -> oo and then with i -> oo we have assertion (5.8). 
This completes the proof Lemma 4.2. • 

P roof Of Theorem 5.1. Let {a*}, h -> 0 + , a* e ^ a d be solutions of Problems 
(^e(/.))/v As m\d a %ad for all h and <^ad is compact in the C°([a9 b])-topology, 
there exists a subsequence {a*.} c {a*} and a* e ^ a d such that 

a*. -> a* uniformly in [a9 b] . 

From Lemma 5.2 we obtain the existence of a subsequence {uh.(cc*.)} of solutions 

of state problems (^/.^(a*.))^. such that 

uhj(*t) - «*(a*) in (HXG^a*)))2 Vme/V, 

where »(a*) e K(a*) and solves (^(a*)). 

To complete the proof of Theorem 5.1 it remains to show that a* is a minimizer 
of $ in ^ a d . Now with the same notations (cf. (3.10) — (3.11)) and techniques as in the 
proof of Theorem 3.2 (cf. (3.13))4) 

(5.9) Urn £hj(a*h) ^ Jim A,,Gm(«*)«) + lim ShjtQ .X G w ( a*)«) ^ 
ftj->0 hj-*0 hj^O J 

-S ^Gm(a*)(a*) + 11m ( ~ ( P , % ) 0 ,£>,,.\Gw(a*) ~ (-*% % J ) O , M J • 

Letting m -> oo in (5.9) we see that 

(5.10) Urn Shj(at)^ * (a*) . 
fc/->0 

Let a G ̂ a d be arbitrary and let a,, e ^ ' d be a sequence such that 

(5.11) 6th -> a uniformly in [O, b] . 

The existence of such a sequence has been proved in [1]. The solution u(6t) of 
(&(&)) can be approximated by a sequence {%.}, %. e ( H 1 ^ ) ) 2 such that %jo(a/j.) e 
e K(6thj) and 

(5.12) * * , - £ ( 4 ) in ( H W ) 2 > 

where «(a) denotes the Calderon extension of u(6t) (see the proof of Lemma 5.2, 
especially the construction of functions wih). Then by (5.10), (5.H), (5.12) and 
definition of Sh and $9 

*(a*) S lim Shj(4) s lim *kj(&hJ) -S lim V K ) = JM*)) - '(«) v* e * « i > 
ftj-^O fc/->0 ft,-*Q J 

4 ) We write simply £h(ah) for <?h(uh(<xh); <xh) 
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where 

J*(4) •= i(T0)> fiW)o,fl(«) " <L> <£>* • 

This completes the proof of Theorem 5.L • 

6. NUMERICAL REALIZATION 

Taking into account the geometry of Qh(och) and the piecewise linearity of Fc(och), 
for finding an optimal Fc(och) it is sufficient to find the x2-coordinates of the design 
nodes 

(6.1) Ax = (a„ aA(O,)) i = 0 , . . . , N(h), at = ih , 

such that $h(ueh(och); och) is minimum. 
As for fixed s and ft, the shape of Q(och) and the value of ueh depend on the design 

variables (x2-coordinates of At) 

(6.2) X = (x0, . . . , xN(h)) = (och(a0), ..., cch(aN(h))), 

we shall write Q(X) = Qh(och), ue(X) = uEh(ah). 

For fixed Q(X), uJX) can be obtained by solving the algebraic form of (^fi(A)('ZA))/r 

for nodal displacements Qe(X), 

QE(X) = (q*u • • •- ««(*)) > n(A) = dim KA(aA): 

(6.3) A(X) Qe(X) + - B(Q£(X), X) = F(X) + P . 
8 

Here -4(X) is the stiffness matrix, F(X) is the force vector arising from the body 
force, P is the contribution of the surface traction (independent of X). The operator 
B(', X): Rn(h)-> Rn(h) is a nonlinear mapping corresponding to the discretization 
of the penalty operator Bah. 

The discrete cost functional, written in terms of X and QE(X), reads now 

(6.4) S(Qe(X); X) = i(Qe(X), A(X) Qe(X)) - (F(X) + P, Qe(X)). 

Problem (Pe(h))h is equivalent to Problem (P(X)), defined as follows: 

Problem (P(X)). Find X* e @ such that 

(6.5) ' (&*(**); X*) = $(QB(X); X) for all Xe 9 , 

where QS(X) is the solution of (6.3) and where 2 is the set of admissible design 
points (cf. definition (2.1) of <%ad): 
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Ç Ç N(й) 

- — ^ š * , - * , - ! . ś ^ , i=l,...,N(/t), £ ( * ! + * ! - O - O Ж S t . 
Җh) Nyh) І = i 

Hence (PyX)) is a nonlinear programming problem with box constraints, linear 
inequality constraints and a linear equality constraint. 

The evaluation of the cost functional $ involves the solving of the nonlinear state 
problem. Consequently, the NLP-algorithm should use as few function evaluations 
as possible. Clearly, some gradient information is then necessary. In the following 
we shall evaluate the gradient of $ with respect to X. 

For brevity we write $(X) instead of S(Q[X); X). 
Let Xe 9 and VG RN{h)+1 be fixed. We denote by 

s'(x)^s'(x)v^]im

s^-+t^-^x\ 
t->0+ t 

Q'S(X) g l i m g * ( * + ' * 0 - g / * ) , 
t->0+ t 

A'(X) ^Krz<X+tV)-AW, 
t->0 + t 

F„X + tV) - F(X) 
F\X) = lim 

B'(QS, X) = lim 

t->0+ t 

B(QS,X + tV)-B(Qs,X) 

+ 0 + t 

the directional differentials of $, Q£, A, F and B, respectively. From (6.4) we obtain 

(6.6) S'(X) V = (Q[, A Q E - F - P ) - (F\ QE) + ±(ft, A'QS) . 

In order to eliminate Q'£ from (6.6) we introduce the adjoint system 

(6.7) (A + - -J- B(g£, X)) A = A& - E - P . 
V e 8QS J 

From (6.6) and (6.7) we obtain the directional gradient for 6 with respect to X, 

(6.8) S'(X) V = + \(QS, A'QS) - (F', Q.) + (A, F' - A'(X) Qe - - B'(Qe, X)) . 
£ 

We shall close this chapter with the following important remark. When instead 
of (^e(a)) the original inequality formulation (^(a)) is employed the mapping a -> w(a) 
is not differentiable (u(a) solves (&(oc))). However, in the case of the cost functional 
of the total potential energy it is possible to compute the gradient of $ even when the 
state is governed by the variational inequality. Namely, as the following calculation 
shows we do not need the derivative of the state explicitly. 
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Indeed, 

(6.9) T = AQ - F - P 

corresponds to the contact stress on TC(X)9 where A, F and P are the same as in (6.6) 
and Q = Q(X) denotes the nodal displacement vector in the finite element discretiza­
tion of the state inequality (^(a)). If 7} 4= 0 for some j e 0,..., N(h) (at nodes of TC(X)) 
this means that the corresponding node is in contact, i.e. Qj = —Xj. Consequently, 

(6.10) ^ = - ^ = - V 

dxt dxt 

Now we obtain by (6.9) and (6.10) 

(6.11) 

£ SKQ{X); X) = - Tt + ( £ - F,Q)-2- (Q, ( £ - A) Q) , i = 0,..., M » . 

We emphasize that (6.11) is possible because of the special property of the criteria 
functional. 

7. NUMERICAL EXAMPLES 

In numerical tests we suppose that the elastic body cosnsists of a homogeneous 
and isotropic material with the Poisson ratio v = 0-29 and the Young modulus 
E = 2-15. 1 0 u N m " 2 . 

E x a m p l e 7.1. We have chosen the parameters in definition (2.1) of ^ a d as follows: 
a = 0, b = 8, C0 = -05, A = 0-05, B = 0-05, y = 1, Ct = 0-025 and C2 = 7-8, i.e. 
=0(a) = {(xl9 x2) e R2 | 0 < Xj < 8, a(xx) < x2 < 1}. Furthermore, we suppose that 

rD = [x e dQ[a) | Xx = 0, xx = 8} 
and 

FF = {x e 50(a)| x2 = 1} 
(cf. Figure 7.1). 

The body force Fis assumed to be zero and the surface traction P = (0, P2) where 
P2= - 5-75 . 108 if Xj e (2,6) and 0 elsewhere. 

The triangulation ^h(och) of Qh(ah) is constructed with the aid of a uniform triangu-
lation ^h of Q = [0, 8] x [0, 1] by mapping all nodal points (x1? x2) of £Th to 
nodal points (x1? x2) = (S\\xl9 x2), S2

:h(xl9 x2)) of ^~h(ah)9 where 

(SW*.., *2), S ^ , *3)) = P 1 ' *2) 'f *2 " °'5 ' 
K ' K " \{*u «„%) + 2*& - ah(xt)) if 0^x2S 0-5. 

Thus the domain Qh(ah) and its triangulation are completely determined by the 
values of the design variables xt = ah(ih) i = 0, ...9N(h). 
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In Figure 7.1 we can see the triangulation of Qh(cch) for h = 1/2. 

o design nodes 

Fig. 7.1. Triangulation of Qh(ah) for some a,, e ^/Jd. 

Because of the symmetry with respect to the line xx = 4 in Example 7.1 we have 

analyzed only one half of the domain using 128 triangles (mesh-size h = 0-25). This 

gives us 17 design nodes on the moving boundary irc(ah). As the value aA(0) is fixed 

a priori this leaves us 16 degrees of freedom in minimization. 

In all test examples we have used the NPSOL routine of SOL (System Optimiza­

tion Laboratory, for the method see [6]). The gradient of $ has been computed 

Fig. 7.2. Diminution of $ versus iteration. 

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 

Fig. 7.3. Гc(4) (A) and Гc(4) ( + ) • 
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0. 

16. 

-31.-1 

-47/ 

-63. 

-78. 

\ i i i t i t t 7»*-t t l i i \J\ l l l l . l t / 

0.0 W S ?0 4.0 5.0 6.0 7.0 8.0 

Fig. 7.4. Contact stresses for the initial guess (A) and for the final design (+)• 

-4.7i 

Ғig. 7.5. Diminution of $ versus itєration. 

Fig. 7.6. Fc(a°( (A) and Tc(ai8(( + ) . 

by the formula (6.11). The state problem is solved by a modified relaxation method. 

The computation has been carried out by VAX 11/780. with FPA in single precision. 

The authors are indebted to A. Kaarna for his assistance in numerical tests. In Figure 

7.2 we can see the diminution of S{Q{X){k))\ X(k)) versus iteration. The initial shape 

(Fc(a0)) and the final shape (Fc(a6)) of the contact surface Fc are shown in Figure 7.3. 

Figure 7.4 shows the corresponding contact stresses (computed by the formula 

(6.9)). 
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Example 7.2. As in Example 7.1 but suppose that A = B = 0 and C0 = 0-1. All 
calculations have been carried out in a similar way as in Example 7.1. In Figures 
7.5 — 7.7 we can see the corresponding results. 

Example 7.3. Let 

0(a) = {(xl9 x2)e R2 | 0 < x1 < 4, 0 = x(xt) < x2 < 1} 

аnd îet 

Ѓad = Le Co д([0, 1]) | 0 = a^) = 0-05, a(0) = 0-05 , 

Idx! 
= 0-05 , meas (Q(oc)) = 3-9l . 

In Figure 7.8 we can see the partition of dQ(a). 

—. 1 . 

0.0 1.0 2.0 5.0 4.0 50 6.0 7.0 8.0 

Fig. 7.7. Contact stresses for the initial guess (A) and for the final shape ( + (. 

1 2 3 

Fig. 7.8. Í2(a), a Є Щ\d. 

We suppose that F s 0, P = (P., P2) = (0, 0) on r2

F and 

(P P) = I( 0 ' °) i f x e r ^ a n d ° < ̂ i < 2 > 
" l } [(-5-75. 108,-5-75. 108) if xeTl

F and 2 g x t ^ 4 . 

The solution strategy (triangulation, algorithms, gradient etc.) is the same as in 
Example 7.1. In Figures 7.9 — 7.11 we see the results. 
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3 4 5 6 

Iteraгюn 

Fig. 7.9. D i m i n u t i o n of ê. 

0.0 1.0 2.0 4,0 5.0 

Fig. T10. r c(ag) (A) and Fc(a£) ( + ). 

0. 

-12. 

-24. 

-36 . 

- 4 8 . 

-60 . 

- à — —*—ár—å *—å— — Ь — -

OjO 1.0 2.0 3.0 4.0 

Fig. 7.11. Contact stresses for the initial guess (A) and for the final shape ( + ). 

In all test examples the value of the cost functional is reduced and the part of Fc(a;j) 
where the body is in contact after deformation is enlarged. As a by-product we could 
find for rc(ah) such a shape that the contact stress will be evenly distributed when 
geometrical constraints are appropriate. This is of great practical significance for 
designers. From the mathematical point of view the functional $ is easy to handle 
whereas the direct minimization of contact stresses is more involved. 
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APPENDIX 

Lemma A. There exists a constant c > 0 independent of a e ^ a d , v e V(a) and 
such that 

( A 1 ) Hl,0(«) ^ C(e0'W' ei/1,))o,fi(a) 

/iOl^5 fOr any a e ^ a d and any v e V(a). 

Proof. It is known (see [24]) that the so called second Korn's inequality 

(A-2) HI-\o(«) = a((£0-W' 8i/V))o,Q(*) + (»> »)o,«(«)} 

holds for any i> e V(a) with a constant c > 0 depending on the lipschitz constant 
of a, only. Due to the definition of ^ a d , c can be chosen independently of a. Let us 
prove now that (A.2) is valid even without the second term on its right hand side, 
in other words (AT) is valid. 

Let (AA)be not true. Ther for any n integer there exist subsequences {a„}, {vn}, 
an G ̂ a d , vn e V[an) such that 

(A-3) kl l i .o„ = n(sij(vn)> e o W k o n • 

Without loss of generality we can suppose that 

(A-4) |h||1>fl„ = 1 Vn 

and there is a function a e %ad such that 

(A.5) an -> a uniformly in [a, b] . 

(A.3) and (A.4) imply 

(A.6) (£ij(vn)> Sij(vn)\o,Qn -+ 0 if n -> oo . 

On the other hand for n sufficiently large 

(A.7) (»„ »B)0,Oll ^ g/2 

as follows from (A.2), (A.4) and (A.6). 

Let Gm(a) be defined analogously to (3.5). Using the same approach as in the proof 
of Theorem 3.2, we can find a subsequence of {»„} (still denoted by {»„}) such that 

(A.8) pn - »(weak1y) in (H\Gj<x))2 
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for any m integer. Let m be fixed. As 

(*iA9)> £ij(v))o,Gm _š lim inf (sij(vn), tij(vn))o,Gm -> 0 , 

one can easily get, by applying the first Konťs inequality in V(Gw(a)) that v = 0 
in Gm(a) and hence in Q(a). On the other hand 

(A Q) \\v W2 — II» II2 4- IIv II2 

v^*7/ lr«i|o,on — |r«||o,Gm ^ lr»llo,Qn-Gm 

for n sufficiently large. By a direct calculation we obtain 

(A.10) W|o> n -G m = c max |a(xx) + l/m - a^x^)] 
xie[o,ft] 

so that for n, m sufficiently large 

IMS.On-Gm(«) = ^/4-

From this, (A.7) and (A.9) we finally get 

I W | O . C M Ž 2 / 4 Vn, 

which contradicts to the fact that v = 0 in Q(a). 

Souh rn 

OPTIMÁLNÍ NAVRHOVÁNÍ TVARU OBLASTI PRO PRUŽNÉ TĚLESO 
V KONTAKTU, ZALOŽENÉ NA PENALIZACI STAVOVÉ NEROVNICE 

JAROSLAV HASLINGER, PEKKA NEITTAANMÁKI, TIMO TIIHONEN 

Práce je věnována studiu optimálního návrhu kontaktní plochy pružného tělesa, jednostranně 
podpíraného dokonale tuhou oporou. Původní variační nerovnice, jež popisuje chování daného 
modelu, je převedena pomocí penalizační metody na systém nelineárních rovnic. Tyto penál izo-
vané úlohy nyní vystupují v úloze nových, penalizovaných relací. V práci se zkoumá vzájemný 
vztah mezi původní úlohou optimálního návrhu oblasti se stavovou nerovnicí a posloupností 
obdobných úloh se stavovými penalizovanými rovnicemi. Práce se rovněž zabývá problematikou 
aproximace dané úlohy pomocí metody konečných prvků. V závěru jsou uvedeny některé nume­
rické výsledky pro modelové úlohy. 
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Authoťs addresses: Dr. Jaroslav Haslinger, CSc, MFF UK Malostranské 25, 118 00 Praha 1, 
Dr. Pekka Neittaanmáki, Department of Physics and Mathematics, Lappeenranta University 
of Technology, Box 20, SF-53851 Lappeenranta 85, Dr. Timo Tiihonen, Department of Mathemat­
ics, University of Jyváskylá, Seminaarinkatu 15, SF-40100 Jyváskylá 10, Finland. 

77 


		webmaster@dml.cz
	2020-07-02T05:51:57+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




