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31(1986, APLIKACE MATEMATIKY No. 1.27—40 

BIFURCATIONS OF THE PERIODIC SOLUTIONS 
IN SYMMETRIC SYSTEMS 

ALOIS KLIC 

(Received December 3, 1984) 

Summary. Bifurcation phenomena in systems of ordinary differential equations which are 
invariant with respect to involutive diffeomorphisms, are studied. The "symmetry-breaking" 
bifurcation is investigated in detail. 

1. PRELIMINARIES 

This work contains a generalization of the author's results from [3] and also 
a generalization of some results from [4], [5]. 

1.1. Let g e Diff (/ft") be such that 

(1) 9 o g = id , 

i.e. g is an involutory mapping of Rn on to itself. 

We shall consider a 1-parameter system of ordinary differential equations 

(2) x = v(x, JI) , 

where xe Rn, peR1. Sometimes we shall write vj^x) = v(x, fi). 

We suppose that 

a) the vector field v(x, fi) is of class C00 in both variables x and n; 

b) 

(3) ».-(*(*))-(&)-»,(*) 

for all XE Rn and all ft e R1, that means the vector field v(x, y) is invariant under 
the diffeomorphism g for every fieR1; 

c) for every jxe R1, the flow T^, t e R, of the system (2) exists; 
d) the set 

A = Fix (g) = {xe Rn, g(x) = x] 

is a smooth connected submanifold of Rn. 
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Remarks . 1. In the relation (3), (g*)x denotes the Jacobi matrix of the mapping 
g at the point x. Sometimes we shall write (g*)x = (dg)x. 

2. The diffeomorphism g is called a symmetry of the system (2) and such a system 
we shall call a symmetric system. 

3. The vector field v(x, ju) is invariant under the diffeomorphism g; hence if x(t) 
is a solution of (2), then g(x(t)) is also a solution of (2), see [1], and every trajectory 
y of (2) has a corresponding trajectory g(y). 

This last remark results also from the following well-known lemma, see [2], p. 
141: 

Lemma 1. Let T^ be the flow of the vector field v(x, JJ) which is invariant under 
the diffeomorphism g for all fi e R. Then 

(4) g o T; = r ; 0 g 

for all t e R and fie R. 

Lemma 2. The dimension of the submanifold A is equal to the multiplicity of the 
eigenvalue 1 of the matrix (dg)x, x e A. The tangent space TXA, x e A, can be natur­
ally identified with the eigenspace of the matrix (dg)x belonging to the eigenvalue 1. 

Proof. In virtue of the relation (1), for all xe Rn we have (£ denotes the unit 
matrix) 

E = (d(g o g))x= (dg)g(x) (dg)x 

and also 
E = (d(g o g))g{x) = (dg)x(dg)g{x). 

Hence 

(5) [dg);1 =(dg)gix)-

For xe A the relation (5) yields 

(6) (dg)x(dg)x = E. 

So, the matrix (dg)x, xe A has only two eigenvalues 1 and — 1 with the multiplicity 
k and r, respectively, k + r = n. 

Now we determine T^A, xeA. Let c: R -» A be differentiable with c(0) = x. 
Then c is a curve on A based at x and 

(7) J(0) = ^ e T^. 
at 

In view of the fact that c(t) e A for all t e R we have 

(8) g(c(t)) = c(t) 
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for all t e R. Differentiating both sides of (8) with respect to t, we obtain for t = 0 

(9) {*g)*U--t** 

Hence every tangent vector tx e T% must lie in the eigenspace of the matrix (dg)$ 
belonging to the eigenvalue 1. 

Thus we have proved that 

(10) dim A = dim T^A ^ k . 

Let us define the mapping F: Rn -> Rn by the relation 

(11) F(x)~g(x)-x. 

It is easy to see that A = F~x(0). From (11) we obtain 

(dF)x = (dg)x - £ . 

Hence for every xe A 

(12) rank (c/.F% = r , 

because the matrix (dF)x has a k-multiple zero eigenvalue and an r-multiple eigen­
value — 2. 

It results from the relation (11) that the points of the set A are just the solutions 
of the following equations 

Ft(xu ...,xn) = 0 , 

F2(xl9 ...9xn) = 0 , 

Fn(xl9 ...,xn) = 0 , 

where the functions Fj(x) = Fj(xu ..., xn), j = 1,2,..., n, are the coordinate functions 
of the mapping F. Then the matrix (dF)z can be written in the from 

(13) 

-^ (*)....,-£(*) 
ćbcj дxn 

Oxi Ox., 

For xe A the rank (dF)* = r and we can suppose that the first r rows in (13) are 

linearly independent vectors (if it is not the case we must rearrange the equations). 

Further, there exists such a neighbourhood U of x in A that for every xeU ~z A the 

first r rows in (13) are linearly independent vectors. 

Hence the functions Fl9 F2, ••, Fr are independent at each point of U c A = 

= F~x(0). Thus we have proved that codim A = r, i.e. 

(14) dim A = n — r = k . 

From (14) it follows that dim T%A = k and Lemma 2 is proved. 
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Corollary 1. FOr every x e A, vjx) e T^A. 

Proof. The relation (3) has the form (for Jc e A): 

»,(*) = (*?)**v(*) • 

This means the vector IL_(JC) is an eigenvector of the matrix (dg)^ belonging to the 
eigenvalue 1, so vjx) e TXA. 

2. EXAMPLES 

In this section several examples will be given in order to motivate and illustrate 
the subsequent text. 

2.1. E x a m p l e 1. A two-box model of the reaction-diffusion system with Brussel-
ator kinetics is well-known in the chemical literature. The system is described by the 
following set of four differential equations: 

(15) x_ = A - (B + 1) x_ + x\y1 + Dx(x2 - x_) 

yi = -3*i ~ *iy i + £2(y2 ~ yi) 

x2 = A - (B + 1) x2 + x2 j ;2 + D_(x_ - x2) 

y2 = Bx2 - x\y2 + D2(y1 - y2) , 

where A, B, Dl9 D2 are adjusted parameters. The state of the system is determined 
by the quadruple x = (x_, yl9 x2, y2) e R4. 

Let us consider a mapping g: R4 -+ R4 defined by the relation 

_/(x_, yl9 x2, y2) = 

i.e. in a short form 
g(xl9 yl9 x2, y2) = (x2, y2, xi9 yx). 

It is easy to see that the following statements are true: 

(i) g o g = id . 

(ii) # is a linear diffeomorphism of R4. 

(iii) Fix (#) = A == {(x_, y_, x2 , y2) e /j?4, xx = x2, y1 = y2) , 

that is, A is the diagonal in R4. 

(iv) The matrix A defining the mapping g has two double eigenvalues 1 and — 1. 
The eigenvectors corresponding to them are ex = (1, 0, 1, 0), e2 = (0, 1, 0, 1) 
and e3 = (1, 0, - 1 , 0), e4 = (0, V 0, - 1 ) , respectively. 

We see that the vectors ex and e2 lie in TXA. 

"0 0 1 o" x_ 
0 0 0 1 yl 
1 0 0 0 * 2 

0 1 0 0 _y2_ 
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The vector field v on the right hand side of the system (15) is invariant under the 

diffeomorphism g. Since the mapping g is linear, (g*)* = g for all xe R*. In this 

case the relation (3) has the form v(g(x)) = g . v(x) and its verification is easy. 

Further, for xe A we immediately see that v(x) e TXA when putting x2 = x± and 

y2 = yx in the system (15). 

2.2. E x a m p l e 2. In [4] the following system of ordinary differential equations 

(16) = »( u[x, y) , XЄ i k>2 

Ў = v(x, y), yєRm, 

with the symmetry 

(17) u(-x,y) = ~u(x,y) 

Ч~ x > У) = Ч*> У) 

has been considered. 

The symmetry relations (17) can be expressed in the form of the relation (3) with 

help of the following diffeomorphism: Let us put z = (x, y) e Rk x Rm = Rk+m. 

Then w(z) = w(x, y) = [u(x, y), v(x, y)] is a vector field on Rk+m. The desired 

diffeomorphism is given by 

0 
(18) g(z) = g(x, y) -(-*.y), 

where the Ek and Em are the unit matrices of the order k and m, respectively. 

In this case the diffeomorphism g is also a linear mapping, hence (g*)z = g for 

all ze Rk+m and the relation (3) has the form 

w(0(z)) = 9 • w(z) , 

{-x>y) = 0 E„ 
uiz) 

(19) [u(-x, y), v{-x, yj] = [-u(x, y), v(x, y)] . 

By comparing the first and second coordinates in (19) we obtain the relations in (17). 

Let us summarize the properties of the system (16). 

(i) g o g = id ; 

(ii) Fix (g) = A = {(0, y)eRk x Rm} = {0} x Rm ; 

(in) w(0, y) = [u[0, y), v(0, y)] = [0, v(0, y)] e T{0,y)A. 

2.3. E x a m p l e 3. We shall show here that Example 2 includes the famous Lorenz 

equations (for k = 2, m = 1): 

(20) x = a(y — x) 

y = —y + rx — xz 
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z = —bz + xy, 

a, r, b are positive parameters. In this case Fix (g) = {z-axis}. We have 

v(x, y, z) 
a(y - x) 

-y + rx — xz 
•bz + xy 

and further 

-a(y - x) 
y — rx + xz 

— bz + xy 

v(g(x, y, z)) = v(-x, -y,z) = 

a(y - x) 
y + rx — xz 

— bzĄ- xy 

- 1 0 ol 
0 - 1 0 
0 

0 1 J 
= g • Kx> У>

 z ) 

2.4. E x a m p l e 4. Let us consider, see [5], the system of nonautonomous ordinary 

differential equations with an co-periodic right hand side 

(21) x = v(t, x) , v(t + co, x) = v(t, x), 

where x e Rn and t e R. 

We can transform the system (21) into an autonomous system by incorporating 
the time variable into the phase space. Set z = (t, x) e R x Rn and w(z) = [ l , v{t, xj], 
where 1 denotes the constant scalar function with value one. Then w is a vector 
field on the extended phase space R x Rn. In the periodic case the extended phase 
space is in fact S 1 x Rn due to the natural identification of the points (t + co9 x) 
and (t, x) from the extended phase space R x Rn. 

Let us define the mapping g: S 1 x Rn -> S 1 x Rn by the relation 

(22) g{t, x) = 
1 0 t 

+ 
~CO~ 

2 

0 - £ « _ A _0_ 
t + co 

It is easy to see that g e Diff (S1 x Rn) and 

(i) g o g = id 

for g'g(t, x)) = git + - , -x \ = (t + co, x) = (t, x 

(ii) Fix (#) = 0 

for all z e R x R" 

Suppose that the vector field w(z) is invariant under the diffeomorphism g. What 
does it mean for the primary vector field vl The invariance relation (3) has in this case 
the form 

32 



^-»-[i..(.+f. -»)]-(».). «w-[LEJUJ-[i- -«*• 
Thus the vector field n> is invariant under g, if and only if 

(23) v(t,x) = -v(t + —9 -x\ . 

An example of a nonautonomous system of ordinary differential equations with 
the symmetry (22) is the driven damped pendulum, see [5]. 

3. THE PERIOD DOUBLING BIFURCATION OF (HS) 

Let us return to the system (2) for which the assumptions a) —d) are fulfilled. 

3.1. Definition 1. The periodic solution xjj) of (2) will be called a g-invariant 
solution iff its trajectory y^ is an invariant set of the mapping g, i.e. g(y^) = y^. 

The g-invariant solution x^t) for which y^ cz A will be called a homogeneous 
solution — (HS). 

A g-invariant solution xj(t) for which y^ n A = 0 will be called a Asymmetric 
solution. 

The following lemma yields a useful characterization of the A-symmetric solution. 

Lemma 3. Let xjj) be a periodic solution of (2) and y^ its trajectory. Let both 
the points x and g(x) #= x lie on y^. Then the point g(y) =¥ y lies on y^ for every 
y ey^ and hence g(y^) = y^. The phase shift of the points y ey^ and g(y) e yfl is one 
half of the period of the solution xjj). 

Proof. (From now on the subscript /L will usually be omitted.) Let co be the smallest 
period of the solution x(t). Under our assumption the points x and g(x) =j= x lie 
on y, hence Tw(x) = x and T\g(x)) = g(x). Then there exists a number s e (0, co) 
such that Ts(x) = g(x). From (4) and with help of g o g = id we obtain 

x = g2(x) = g(g(x)) = g(T\x)) = T\gx)) = TS(TV)) = T2\x). 

Hence 
2s = co, s = - and g{x) = Tw/2(x) . 

Let y be an arbitrary point of y. A number r e (0, co) can be found such that y = T\x). 
Then 

T*'\y) = T^2+'\x) = T(T-'2(x)) = T(g(x)) = g(T(x)) = g(y) , 
QED. 

3.2. Let y^0 c= A be the trajectory of a (HS) of the system (2) for /i = fi0. A Poincare 
map will be used for the description of the bifurcation phenomena. Let JCMO e yM0. 
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(26) Pџ(x) = Ij»м+M«)l 

We consider a section E through the point xm transversal to the trajectory yM0. 

The section E may be chosen in such a way (see [6]) that 

(24) g(l) = I. 

By P^0 let us denote the Poincare map associated with the trajectory yfl0 and the 

section E. We suppose that none of the multipliers of this trajectory equals one. 

In this case there exists a one-parameter family P^ of Poincare maps associated 

with to closed trajectories y^, ft e 0(fi0) and O(pt0) is an appropriate neighbourhood 

of 1*0. 

Lemma 4. For every \x e O(\i0) we have 

(25) g o P„ = P„ o g 

whenever P^o g is defined. 

Proof. The Poincare map Pfl can be expressed with help of the flow T^, see [7]. 

If ojp is the period of the corresponding (HS), then 

(x) 

where 5^: E -* R, S^x^) = 0, x^eE n y^. 

Let us denote 

(27) coJKx) = 0)^ + S^x). 

For x e I WQ have 

g(Pjx)) = g(T^x\x)) = 3 r ^ * % ( j c ) ) - P„(g(x)). 

The validity of the relation o)Jg(x)) = co^x) results from the following consideration: 

The trajectory y starting at the point xeE intersects E for the first time at the same 

moment as the trajectory g(y) starting at the point g(x) e E intersects E. 

3.3. Theorem 1. Case A: dim A = 2. Then after a generic period doubling bi­

furcation of a (HS), the resulting double period solution is Asymmetric. 

Case B: dim A ^ 3. Then after a generic period doubling bifurcation of a (HS), 

the resulting double period solution is either a (HS) or a Asymmetric solution. 

Proof. Let F^ be trajectory of the double period solution bifurcated from the (HS) 

in question. It is well-known that after a period doubling bifurcation two fixed 

points of Pj arise; let us denote them by xx(fi) and x2([i). Then 

Pv(xi{v)) = x2(fi) and Pj.xJ.jij) = xt(fi) . 

The relation (25) yields (the letter ji is omitted) 
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hence 

analogously 

P(g(*i)) = g(p(xi)) == g(x2), 

P(g(x2)) = g(P(x2)) = g(xt), 

g(Xí) = P(g(x2)) = P(Pкg(x±))) = P2(g(x,)), 

#(x2) = P2(g(x2)) . 

So we have the quadruple x 1 ? x 2, g(x1), g(x2) of the fixed points of the square Poincare 

map P2. Two possibilities arise: Either 

(i) xt = g(xx) and x 2 = g(x2), i.e. x 1 ? x 2 e A , 
or 

(ii) xx = g(x2) and x 2 = g(xt). 

If dim A = 2, the case (i) is not possible, because F^ <= A which is impossible — 
a period doubling bifurcation cannot arise in the two-dimensional A. Thus the 
equality g(x1) = x2 holds and the points xt and x 2 = g(xx) #= x x lie on FM, hence F^ 
is A-symmetric. 

If dim A ^ 3 both cases (i) and (ii) can arise. In the case (i) we obtain after the 
bifurcation a (HS) and in the case (ii) we obtain a A-symmetric solution, QED. 

R e m a r k . In the nongeneric case, the points xi9 x2, g(xx), g(x2) can be mutually 
different and after this nongeneric bifurcation two double periodic nonsymmetric 
solutions can arise. 

4. THE PERIOD DOUBLING BIFURCATION OF A ^-SYMMETRIC SOLUTION 

4.1. Let yfl be the trajectory of a A-symmetric solution of the equation (2) with 
a period co^. Let us denote the cros-section which transversally intersects the trajectory 
y^ at a point x° by I0 and let Pjx) be the corresponding Poincare map. Under our 
assumption, the point g(x®) 4= x£ must lie on y^. Then It = g I0) is the cross-
section of the trajectory y^ at the point g(x°). Let us denote by P^x) the correspond­
ing Poincare map. It is known that the maps P^ and Pfl are locally conjugate, see[7]. 
In our special case the following lemma is valid. 

Lemma 5. For the maps P^ and P^ defined above we have 

(28) PM - g o P„ o g~l = g o PM o g , 

whenever PM o g is defined. 

Proof. We express the maps P and P by the flow T*: for x e I0 we put P(x) = 
= T°^x\x) and for y e S} we put P(y) = T™(y)(y). By an argument fully analogous 
to the one used before (cf. Theorem 1), we obtain the equality 

(29) co(g(x)) = co(x) . 
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Then for an arbitrary x e I0 we have g(x) = yel1 and 

P(g(x)) = T*«'->Xg(x)) = a(T s<^»(*) = a(T»«(x)) = g(P(x)), 

hence the relation (28) holds. 

4.2. Let us define the maps 

P°1:Z0-+Z1 and P0:I1-^I0 

by the following relations: for x e I0, 

p?(x) = T«*>(x)er., 

where /?(x) is the time of the first intersection of the trajectory starting at x e I0 

with the cross-section I1. Analogously for y e Sx, 

P1
0(y) = T^\y)eI0. 

We note that for y = g(x) the equation 

(30) p[x) = p(g(x)). 

holds. 

Remark . It is easy to see that 

(31) P = P0OP?:r0^Z0 

is the corresponding Poincare map. 

Lemma 6. For the maps P? and P0 defined above we have 

(32) Pi o g = g o P? , 

whenever g 0 P? is defined. 

Proof. We have 

Pl(g{x)) = T^»(g(x)) = a(T«*>(x)) = a(P?(x)), QED. 

Definition 2. Let us put 

(33) H = ^ o P ? : I 0 - , Z 0 . 

Theorem 2. The Poincare map P associated with a Asymmetric trajectory yM 

is the square of the map H, i.e. 

(34) P = H o H = H2 . 

Proof. With help of Lemma 6 and the relation (31) we obtain 

H o H = g o P? o g o P? = Pl
0 o g o g o P? = P0 o P? = P , Q E D . 

36 



R e m a r k . We see from Theorem 2 that the generic bifurcations of a A-symmetric 

solutions correspond to the generic bifurcations of the fixed points of the map H . 

4.3. Theorem 3. The Asymmetric solution cannot bifurcate by the period doubling 

bifurcation in the generic case. 

We give three different proofs of this theorem. 

P r o o f I. Let us suppose that for p = p0 the "double" trajectory F^ arose from 

the A-symmetric trajectory y^ by the period doubling bifurcation. Hence the two 

fixed points xx(p) and x2(p) of the mapping P2 lie on the trajectory FM and Pu(*i) — 

= x 2, P^(x2) = x x. The points yx = g(x1) and y 2 = g(x2), however, are also 

fixed points of the mapping P2 for 

P(yi) = (g o P o g) (yi) = g(P(x1)) = g(x2) = y2 

and 

Piyi) = (g o P o g) (y2) = g(P(x2)) = g(xt) = y1 . 

Hence the trajectory FM is A-symmetric, because both the points x{ and g(Xl) =1= 

4= xx lie on F^. 

Let Qp be the period of the double period solution corresponding to the trajectory 

FM. The points xl9 x2, yl9 y2 lie on the trajectory F^ in the order xl9 yl9 x2, y2, Xl or 

in the order xl9 y2, x2, yl9 xx. According to Lemma 3 the phase shift between x1 

and yx and also between the points x2 and y2 is ^Q^. Hence the segments of FM 

between the points x2, yx and also xl9 y2 have no "moving" time. This is in contradic­

tion with our assumption about the existence of a period doubling bifurcation. 

P r o o f II. As in Proof I let xt and x 2 be a couple of fixed points of P2, i.e. 

(35) P(xj) = x 2 and P(x2) = xx , 

hence 
(36) P2(x,) = x,, i = 1, 2 . 

With help of Theorem 2 the relations yield 

H4(xt-) = x,, i = 1, 2 . 

Let us put 

(37) yt = H(xt) , i = 1, 2, yt * xt. 

Then (35) and (37) imply 

H(yt) = H2(Xl) = x2 and H{y2) = H2(x2) = x, . 

Further, 

hence 

H\Уí) = H(x2) = yг and H\y2) = Щxt) = Уl 

H\y) = Уi, i = 1, 2. 
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The mapping H4 has four fixed points xl9 xl9 yl9 y2. As is easy to see, the square 
of the Poincare map P2 = H4 has the same four fixed points. This contradicts the 
genericity assumption. 

P r o o f I I I . (see [4].) Let X0(JI) be a fixed point of the map HA., which means that 
x0(ji) is a fixed point of the Poincare map P^ as well. Theorem 2 yields 

(38) (dP)X0 = (dH)X0.(dH)X0 = (dH)X0. 

Let Xl9..., Xn be the eigenvalues of the matrix (dP)XQ and Xl9 ..., X„ the eigenvalues 
of the matrix (dH)X0. From (38) we obtain 

(39) A, = X\9 i = 1,2, ..., n . 

If an eigenvalue X leaves the unit circle at the point — 1 , then the two eigenvalues 
Xlt2 must leave the unit circle at the points + i and - i . But this phenomenon is 
nongeneric. 

4.4. In this section we give the list of generic bifurcations of A-symmetric solutions 
in one-parameter families (2). 

As we have mentioned in the remark after Theorem 2, this list must be made 
with respect to the mapping H. 

1. A single eigenvalue of the matrix (dH)x leaves the unit circle at + 1 . It means 
a single eigenvalue of the matrix (dP)x leaves the unit circle at + 1 . Thus in this case 
the usual saddle-node bifurcation occurs. 

2. A single eigenvalue of the matrix (dH)x leaves the unit circle at —1. It means 
a single eigenvalue of the matrix (dP)x leaves the unit circle at + 1 . But, in contra­
distinction to the previous case, two fixed points of the map H2 arise. Thus after 
this bifurcation there exist one unstable fixed point x0 and two fixed points xl9 x2 

of the mapping H2. The point x0 is also a fixed of the corresponding Poincare map 
P, as P(x0) = H2(x0) = x0. The points x1 and x2 are also fixed points of P, as 
P(xt) = H2(xt) = xh i = I, 2. Thus there are three closed trajectories in the phase 
space. The unstable trajectory y0 corresponds to the point x0 and the two stable 
trajectories yx and y2 correspond to the points x1 and x2, respectively. 

Theorem 4. None of the trajectories yx and y2 is A-symmetric and g(yi) = y2% 

Proof. If xl9 x2 are fixed points of the Poincare map P, then the points yx = g^), 
y2 = Q(X2) are fixed points of the Poincare map P, (see relation (28)) since 

% ( * ; ) ) = ff(P(x.)) = £7(*«) , i = 1, 2. 

The trajectory yx starting at the point xx cannot intersects I1 at the point g(xx). 
We prove this by contradiction. Let the trajectory y1 intersect Ix at the point g(xt). 
It means that 
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( 4 0 ) tf(*l)«*(*l). 

Then (40) implies 

x i = 9(g(xi)) = g(P°t(x1)) = H(Xl), 

i.e. x1 is a fixed point of the mapping H, which is a contradiction, for only the point 

x0 is a fixed point of the mapping H. 

Thus the trajectory y1 starting at x1 intersects I1 at g(x2). Analogously, the 

trajectory y2 starting at x2 intersects Ix at g(x1). Hence g(xt) + xx does not lie 

on the trajectory y19 consequently yx cannot be A-symmetric. Analogously, the 

trajectory y2 cannot be A-symmetric, either. From the proof it is easy to see that 

g(ji) = 72 holds, QED. 

The bifurcation just described is called the symmetry-breaking bifurcation, 

because the loss of symmetry occurs on the branch of the stable solution. 

3. A pair of complex conjugate eigenvalues of the matrix (dH)x crosses the unit 

circle. Assuming that the eigenvalues satisfy a non-resonance condition ln 4= 1, n = 

= 1, 2, 3, 4, we conclude there is an invariant torus created or annihilated in the 

phase space. 
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S o u h r n 

BIFURKACE V SYSTÉMECH S INVOLUTIVNÍ SYMETRIÍ 

A L O I S KLÍČ 

V práci jsou zkoumány bifurkační jevy v soustavách obyčejných diferenciálních rovnic, jež 
jsou invariantní vzhledem k involutivnímu difeomorfismu. Podrobně je zkoumána bifurkace 
„symmetry-breaking". 
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Р е з ю м е 

БИФУРКАЦИИ В СИСТЕМАХ С ИНВОЛЮТИВНОЙ СИММЕТРИЕЙ 

Аьо13 Кхю 

В статье изучаются бифуркационные явления в системах обыкновенных дифференциальных 
уравнений, инвариантных относительно инволютивного диффеоморфизма. Подробно изу­
чается „нарушающая симметрию" бифуркация. 

АшНог'з Шгем: Вт. А1ои КПе, С8с, У8СНТ, ЗисЬЪ&агоуа 1905, 166 28 Ргапа 6. 
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