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BIFURCATIONS OF THE PERIODIC SOLUTIONS
IN SYMMETRIC SYSTEMS

Avrois KLi¢

(Received December 3, 1984)

Summary. Bifurcation phenomena in systems of ordinary differential equations which are
invariant with respect to involutive diffeomorphisms, are studied. The ‘“‘symmetry-breaking”
bifurcation is investigated in detail.

1. PRELIMINARIES

This work contains a generalization of the author’s results from [3] and also
a generalization of some results from [4], [5].

1.1. Let g € Diff (R") be such that
1) gog =1id,
i.e. g is an involutory mapping of R" on to itself.
We shall consider a 1-parameter system of ordinary differential equations
(2 % =o(x, p),
where x € R", u e R'. Sometimes we shall write v,(x) = v(x, p).
We suppose that

a) the vector field o(x, p) is of class C* in both variables x and p;

b)
(3) 9(9(x)) = (84)x (%)
for all x e R" and all pe R', that means the vector field »(x, y) is invariant under
the diffeomorphism g for every pe R';

c) for every pe R', the flow T}, t € R, of the system (2) exists;
d) the set

4 = Fix(g) = {xeR", g(x) = x}

is a smooth connected submanifold of R".
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Remarks. 1. In the relation (3), (g4), denotes the Jacobi matrix of the mapping
g at the point x. Sometimes we shall write (g4), = (dg),.

2. The diffeomorphism g is called a symmetry of the system (2) and such a system
we shall call a symmetric system.

3. The vector field »(x, u) is invariant under the difffomorphism g; hence if x()
is a solution of (2), then g(x(?)) is also a solution of (2), see [1], and every trajectory
y of (2) has a corresponding trajectory g{y).

This last remark results also from the following well-known lemma, see [2], p-
141:

Lemma 1. Let T, be the flow of the vector field v(x, jt) which is invariant under
the diffeomorphism g for all pe R. Then

4 goTp=Tiog
forallte R and peR.
Lemma 2. The dimension of the submanifold A is equal to the multiplicity of the

eigenvalue 1 of the matrix (dg),, x € A. The tangent space T4, x € 4, can be natur-
ally identified with the eigenspace of the matrix (dg), belonging to the eigenvalue 1.

Proof. In virtue of the relation (1), for all x e R" we have (E denotes the unit
matrix)

E = (d(g - 9))x= (d9),(x) (d9)

and also
E= (d(g ° g))th) = (dg)x (dg)q(x) :
Hence
(%) \d9)s " = (99),x) -
For X € 4 the relation (5) yields
(6) (dg)s (dg)s = E.

So, the matrix (dg);, ¥ € 4 has only two eigenvalues 1 and —1 with the multiplicity
k and r, respectively, k + r = n.

Now we determine T;4, ¥€ 4. Let ¢: R — A be differentiable with ¢{0) = %.
Then c is a curve on 4 based at ¥ and

de
7 —(0) =t;eTe4 .
) =
In view of the fact that ¢() € 4 for all t € R we have
(8) g(e(1)) = (1)
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for all ¢ € R. Differentiating both sides of (8) with respect to ¢, we obtain for t = 0

(9) (dg)g t,=1t;.
Hence every tangent vector t; € T; must lie in the eigenspace of the matrix (dg);(
belonging to the eigenvalue 1.

Thus we have proved that

(10) dim4 = dim T:4 £ k.

Let us define the mapping F: R” — R" by the relation

(11) F(x) = g(x) — x.

It is easy to see that 4 = F~'(0). From (11) we obtain
(dF), = (dg), — E.

Hence for every X € 4

(12) rank (dF); = r,

because the matrix (dF); has a k-multiple zero eigenvalue and an r-multiple eigen-
value —2.

It results from the relation (11) that the points of the set 4 are just the solutions
of the following equations

where the functions Fj(x) = F(xy, ..., x,),j = 1,2,..., n,are the coordinate functions
of the mapping F. Then the matrix (dF); can be written in the from

OF, . oF, ..
— (%), ..., — (¥
0x, ( ) 0x, { )
13 e
oF, ... oF, ,.
x), ..., X
_6x1( ) ox. ( )_

For % € A the rank (dF); = r and we can suppose that the first » rows in (13) are
linearly independent vectors (if it is not the case we must rearrange the equations).
Further, there exists such a neighbourhood U of ¥ in 4 that for every x e U < 4 the
first r rows in (13) are linearly independent vectors.

Hence the functions F,, F,, ..., F, are independent at each point of U < 4 =
= F~Y(0). Thus we have proved that codim 4 = r, i.e.
(14) dmd=n—-r=k.

From (14) it follows that dim Tz4 = k and Lemma 2 is proved.
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Corollary 1. For every %€ 4, v,(%) € T:A.
Proof. The relation (3) has the form (for % € 4):
”u(g) = (dg)i v,(%) .

This means the vector vu(i) is an eigenvector of the matrix (dg)g belonging to the
eigenvalue 1, so v,(%) € Tid.

2. EXAMPLES

In this section several examples will be given in order to motivate and illustrate
the subsequent text.

2.1. Example 1. A two-box model of the reaction-diffusion system with Brussel-
ator kinetics is well-known in the chemical literature. The system is described by the
following set of four differential equations:

(15) ;=4 —(B+ 1) x; + xiy; + Dy(x; — x1)
V1= Bx; — x%)’l + Dz()’z - yl)
X, =A — (B+ 1)x, + x5y, + Dy(x; — x,)

Y, = Bx; — x3y, + Dz(y1 - J’2) >

where A, B, D, D, are adjusted parameters. The state of the system is determined
by the quadruple x = (xy, yy, x5, y,) € R%.
Let us consider a mapping g: R* — R* defined by the relation

0010]fx,

000 1]y
g(xn)’bxz,y'z): 1000 x; )

0100]|y,

i.e. in a short form
gixX1, Y15 X2, )"2) = (Xz, Y25 X1, Y1) .

It is easy to see that the following statements are true:
(i) gog =1id.
(ii) g is a linear diffeomorphism of R*.

(iii) Fix (g) =4 = {(xu Vi X2, yz) € R4, X1 = X2, Y1 = J’2} s
that is, 4 is the diagonal in R*.

(iv) The matrix A defining the mapping g has two double eigenvalues 1 and —1.
The eigenvectors corresponding to them are e, = (1,0, 1,0), e, = (0, 1,0, 1)
and e; = (1,0, —1,0), e, = (0, 1,0, —1), respectively.

We see that the vectors e, and e, lie in T, 4.
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The vector field » on the right hand side of the system (15) is invariant under the
diffeomorphism g. Since the mapping g is linear, (g4), = g for all xe R*. In this
case the relation (3) has the form »(g(x)) = g .v(x) and its verification is easy.

Further, for xe 4 we immediately see that v(x)e T,4 when putting x, = x, and
y2 = y; in the system (15).

2.2. Example 2. In [4] the following system of ordinary differential equations

(16) *=ulx,y), xeR', kz2
y=uvx,y), yeR",

with the symmetry

(17) w(—x,y) = —ulx, y)

U(—x, y) = v(x> y)
has been considered.

The symmetry relations (17) can be expressed in the form of the relation (3) with
help of the following diffeomorphism: Let us put z = (x, y)e R* x R™ = R**™.

Then w(z) = w(x, y) = [u(x, y), »(x, y)] is a vector field on R**™ The desired
diffeomorphism is given by

(19) o) = ot = | 7o |[3] = (.

where the E, and E,, are the unit matrices of the order k and m, respectively.

In this case the diffeomorphism g is also a linear mapping, hence (g4). = g for
all ze R*™™ and the relation (3) has the form

w(9(z) = 9. w(z),

—E, 0 ({

o[£
(19) [#(—x, y), o(—x, »)] = [—u(x, y), o(x, y)] .
By comparing the first and second coordinates in (19) we obtain the relations in (17).

Let us summarize the properties of the system (16).

(i) gog=id;
(i) Fix(g) = 4 = {{0, y)e R* x R"} = {0} x R";
(iif) w0, y) = [1.0, y), 0.0, y)] = [0, »0, y)] € T, , 4.

2.3. Example 3. We shall show here that Example 2 includes the famous Lorenz
equations (for k = 2, m = 1):

(20) % = o(y - x)
y=—y+rx—xz

Il
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zZ= —bz + xy,
o, r, b are positive parameters. In this case Fix (g) = {z-axis}. We have
oy — X)

ox,y,z)=| -y +rx —xz
—bz + xy

and further

ogix, y, 2)) = 0 —x, =y, z) =

—a(y — x) -1 00 o(y — x)
= y—rx+xz|=| 0-10||-y+rx—xz|=g.0x,2).
—bz + xy 0 O01]|[—bz+ xy

2.4. Example 4. Let us consider, see [5], the system of nonautonomous ordinary
differential equations with an w-periodic right hand side

(21) X =0otx), v+ ox)=01x),

where x e R" and t € R.

We can transform the system (21) into an autonomous system by incorporating
the time variable into the phase space. Set z = (t, x) e R x R"and w(z) = [1, v(¢, x)],
where 1 denotes the constant scalar function with value one. Then w is a vector
field on the extended phase space R x R". In the periodic case the extended phase
space is in fact §' x R" due to the natural identification of the points (¢ + o, x)
and (¢, x) from the extended phase space R x R".

Let us define the mapping g: $* x R" —» S' x R" by the relation

»
1 0 t -
(22) g1, %) = +]2 =<z+9, -x>.
0 —E,||x 0 2
It is easy to see that g € Diff (§' x R") and
(]) gogdg = id

for g g1, x)) = g(t + *;“), —x) =(t+ wx)=(1x);
(i) Fix(g) = 0
(i) (0= | _p,| foral ce@x R
*)z O __E" .

Suppose that the vector field w(z) is invariant under the diffeomorphism g. What
does it mean for the primary vector field v? The invariance relation (3) has in this case

the form
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Thus the vector field w is invariant under g, if and only if
(23) w1, x) = —v(t+%), —x>.

An example of a nonautonomous system of ordinary differential equations with
the symmetry (22) is the driven damped pendulum, see [5].

3. THE PERIOD DOUBLING BIFURCATION OF (HS)
Let us return to the system (2) for which the assumptions a)—d) are fulfilled.

3.1. Definition 1. The periodic solution x,(f) of (2) will be called a g-invariant
solution iff its trajectory y, is an invariant set of the mapping g, i.e. g(v,) = Ve

The g-invariant solution x,(f) for which y, = A will be called a homogeneous
solution — (HS).

A g-invariant solution x,(t) for which y, n 4 = 0 will be called a A-symmetric
solution.

The following lemma yields a useful characterization of the 4-symmetric solution.

Lemma 3. Let x,(1) be a periodic solution of (2) and v, its trajectory. Let both
the points x and g{x) % x lie on y,. Then the point g(y) % y lies on 7y, for every
ye€y, and hence g(y,,) = y,. The phase shift of the points y €y, and g(y) €y, is one
half of the period of the solution x”(t).

Proof. (From now on the subscript ¢ will usually be omitted.) Let w be the smallest
period of the solution x(¢). Under our assumption the points x and g(x) + x lie
on 7, hence T%(x) = x and T“{g(x)) = g(x). Then there exists a number s € (0, )
such that T%(x) = g{x). From (4) and with help of g - g = id we obtain

¥ = g%(x) = 9lg(x)) = 9{T"(x)) = T'\g ¥)) = T(T'x)) = T").

Hence o )
B =w, s= 5 and g(x) = T"*(x).

Let y be an arbitrary point of y. A number r € (0, ) can be found such that y = T"(x).
Then
T**(y) = T€?™(x) = T(T**(x)) = T"(9(x)) = 9(T"(x)) = g(»),
QED.
3.2. Let y,, = 4 be the trajectory of a (HS) of the system (2) for . = y,. A Poincaré
map will be used for the description of the bifurcation phenomena. Let x, € y,,.
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We consider a section X through the point x,, transversal to the trajectory 7y,
The section X may be chosen in such a way (see [6]) that

(24) g(x)==2.

By P, let us denote the Poincaré map associated with the trajectory y,, and the
section X. We suppose that none of the multipliers of this trajectory equals one.
In this case there exists a one-parameter family P, of Poincaré maps associated
with to closed trajectories 7,, € O{p,) and O{y,) is an appropriate neighbourhood
of uq.

Lemma 4. For every pe O{u,) we have
(25) g°Pu:Pu°g
whenever P, o g is defined.

Proof. The Poincaré map P, can be expressed with help of the flow T}, see [7].
If w,, is the period of the corresponding (HS), then

(26) P,(x) = Tiontu®y)
where 6,2 = R, 5,(x,) =0, x,eXn 7y, k
Let us denote
(27) 0, (%) = o, + 6,(x).
For x € 2 we have
g(P,(x)) = g{T*(x)) = T™(g(x)) = P,(g(x)) .
The validity of the relation w,{g{x)) = w,{x) results from the following consideration:

The trajectory y starting at the point x € 2 intersects 2 for the first time at the same
moment as the trajectory g{y) starting at the point g/x) € X intersects .

3.3. Theorem 1. Case A: dim 4 = 2. Then after a generic period doubling bi-
furcation of a (HS), the resulting double period solution is A-symmetric.

Case B: dim 4 = 3. Then after a generic period doubling bifurcation of a {HS),
the resulting double period solution is either a (HS) or a A-symmetric solution.

Proof. Let I', be trajectory of the double period solution bifurcated from the (HS)
in question. It is well-known that after a period doubling bifurcation two fixed
points of P} arise; let us denote them by x,(u) and x,(u). Then

P(x\{p)) = x,(p) and P, (x,(p)) = x,(p).

The relation (25) yields (the letter u is omitted)
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P{g(x,)) = g(P(x,)) = g(x,),
P(g(x,)) = g(P(x;)) = g{x,),
hence
gix;) = Pig{xy)) = P\Pgix,))) = P*(g{x,)),
analogously
g(x2) = Pg(x,)) .

So we have the quadruple x;, x,, g{x;), g(x,) of the fixed points of the square Poincaré
map P2, Two possibilities arise: Either

(i) x; = g{x;) and x, =g(x;), ie. x;,x,€4,
or

(ii) x; = g{x,) and x, = g{x;).

If dim 4 = 2, the case {i) is not possible, because I', = 4 which is impossible —
a period doubling bifurcation cannot arise in the two-dimensional 4. Thus the
equality g{x,) = x, holds and the points x, and x, = g{x,) + x, lieon I, hence I',
is A-symmetric.

If dim 4 = 3 both cases (i) and (ii) can arise. In the case (i) we obtain after the
bifurcation a (HS) and in the case (ii) we obtain a A-symmetric solution, QED.

Remark. In the nongeneric case, the points x;, x,, g{x,), g(x,) can be mutually
different and after this nongeneric bifurcation fwo double periodic nonsymmetric
solutions can arise.

4. THE PERIOD DOUBLING BIFURCATION OF A 4-SYMMETRIC SOLUTION

4.1. Let p, be the trajectory of a A-symmetric solution of the equation (2) with
a period w,. Let us denote the cros-section which transversally intersects the trajectory
7, at a point x;, by X, and let P,(x) be the corresponding Poincaré map. Under our
assumption, the point g(xj) = x|, must lic on y,. Then X, = g X,) is the cross-
section of the trajectory y, at the point g{x?). Let us denote by P, x) the correspond-
ing Poincaré map. It is known that the maps P, and P, are locally conjugate, see[7].
In our special case the following lemma is valid.

Lemma 5. For the maps P, and P, defined above we have
(28) ﬁu:gop;(OQ-lzgopuog:
whenever P, o g is defined.

Proof. We express the maps P and P by the flow T': for x € £, we put P(x) =
= T°™(x) and for y e Z; we put P{y) = T®)y). By an argument fully analogous
to the one used before (cf. Theorem 1), we obtain the equality

(29) B(g(x)) = o(x).
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Then for an arbitrary x € Z, we have g(x) = ye X, and
Flg(x)) = T20(g(x)) = g(T°0(x) = g(T*(x)) = g(P(x).
hence the relation (28) holds.
4.2. Let us define the maps
P):Zy— 2%, and P} X, -2,
by the following relations: for x € X,
PY(x) = T"P(x)e X,

where B(x) is the time of the first intersection of the trajectory starting at x e Z,
with the cross-section X ;. Analogously for ye Z,,

Py(y) = T y)e 2, .
We note that for y = g(x) the equation
(30) pix) = Big(x)) -
holds.
Remark. It is easy to see that
(31) P="P).P):2, > 2,

is the corresponding Poincaré map.

Lemma 6. For the maps P9 and Py defined above we have
(32) Plog=g-F°,
whenever g o PY is defined.
Proof. We have
Py(g(x)) = T?"(g(x)) = ¢;T"*(x)) = g(P}(x)), QED.

Definition 2. Let us put
(33) H=go.P:3)—Z2,.

Theorem 2. The Poincaré map P associated with a A-symmetric trajectory vy,
is the square of the map H, i.e.

(34) P=H0H=H2.
Proof. With help of Lemma 6 and the relation (31) we obtain

HoH=goP}ogoP)=PiogogoP)=P,oP) =P, QED.
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Remark. We see from Theorem 2 that the generic bifurcations of a 4-symmetric
solutions correspond to the generic bifurcations of the fixed points of the map H.

4.3. Theorem 3. The A-symmetric solution cannot bifurcate by the period doubling
bifurcation in the generic case.

We give three different proofs of this theorem.

Proof I. Let us suppose that for u = u, the “double” trajectory I', arose from
the A-symmetric trajectory y,, by the period doubling bifurcation. Hence the two
fixed points x,(u) and x,(u) of the mapping P; lic on the trajectory I', and P,(x,) =
= x,, P,(x,)=x,. The points y, = g(x,) and y, = g(x,), however, are also
fixed points of the mapping P}, for

Piy)) =(g-Pog)(y) = g(P(x,) = g(x;) = »,
and

Piy;) = (9o Pog)(y2) = 9(P(x2)) = gix;) = ;.

Hence the trajectory I', is 4-symmetric, because both the points x, and g(x,) =
* x;lieonTl,.

Let Q, be the period of the double period solution corresponding to the trajectory
I',. The points x;, X3, ¥1, ¥, lie on the trajectory I', in the order x,, yy, X, y,, X; or
in the order x;, y,, X2, ¥1, Xx;. According to Lemma 3 the phase shift between x,
and y, and also between the points x, and y, is $2,. Hence the segments of I',
between the points x,, ¥; and also xy, y, have no “‘moving” time. This is in contradic-
tion with our assumption about the existence of a period doubling bifurcation.

Proof II. As in Proof I let x,; and x, be a couple of fixed points of P2, i.e.

(35) P(x,) = x, and P(x,) = x,,
hence
(36) PYx) =x,, i=12.

With help of Theorem 2 the relations yield
HYx)=»x;, i=12.

Let us put
(37) yi=H(x), i=12y *x.
Then (35) and (37) imply

H(y,) = H*(x,) = x; and H(y,) = H(x;) = x, .
Further,

Hz(yl) = H(xz) =y, and Hz(yz) = H(x,) = y,,
hence

HYy) =y, i=12
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The mapping H* has four fixed points x;, X,, y;, ¥,. As is easy to see, the square
of the Poincaré map P? = H* has the same four fixed points. This contradicts the
genericity assumption.

Proof ITI (see [4].) Let xo(u) be a fixed point of the map H,, which means that
xo(p) is a fixed point of the Poincaré map P, as well. Theorem 2 yields

(38) (dP),, = (dH),, . (dH)y, = (dH)S, .

Let Ay, ..., 4, be the eigenvalues of the matrix (dP), and Z,, ..., 4, the eigenvalues
of the matrix (dH),,. From (38) we obtain
(39) Ai=1%, i=1,2...n.

If an eigenvalue A leaves the unit circle at the point —1, then the two eigenvalues
Ay, must leave the unit circle at the points +i and —i. But this phenomenon is
nongeneric.

4.4. In this section we give the list of generic bifurcations of 4-symmetric solutions
in one-parameter families (2).

As we have mentioned in the remark after Theorem 2, this list must be made
with respect to the mapping H.

1. A single eigenvalue of the matrix (dH), leaves the unit circle at + 1. It means
a single eigenvalue of the matrix (dP), leaves the unit circle at +1. Thus in this case
the usual saddle-node bifurcation occurs.

2. A single eigenvalue of the matrix (dH), leaves the unit circle at —1. It means
a single eigenvalue of the matrix (dP), leaves the unit circle at + 1. But, in contra-
distinction to the previous case, two fixed points of the map H? arise. Thus after
this bifurcation there exist one unstable fixed point x, and two fixed points x;, x,
of the mapping H2. The point x, is also a fixed of the corresponding Poincaré map
P, as P{x,) = H*(x,) = x,. The points x, and x, are also fixed points of P, as
P(x;) = H*(x;) = x;, i = 1,2. Thus there are three closed trajectocies in the phase
space. The unstable trajectory y, corresponds to the point x, and the two stable
trajectories y; and y, correspond to the points x, and x,, respectively.

Theorem 4. None of the trajectories y; and vy, is A-symmetric and g(y;) = 7,,

Proof. If x,, x, are fixed points of the Poincaré map P, then the points y, = g(x,),
¥, = g(x,) are fixed points of the Poincaré map P, (see relation (28)) since

B(g(x)) = g(P(xy)) = g(xs), i=1,2.

The trajectory 7, starting at the point x, cannot intersects X, at the point g(x,).
We prove this by contradiction. Let the trajectory y, intersect X, at the point g(x,).
It means that
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(40) Pi(x,) = g(x,) .
Then (40) implies

X = g(g(x,)) = g(P{x,)) = H(x,),

i.e. x; is a fixed point of the mapping H, which is a contradiction, for only the point
X, is a fixed point of the mapping H.

Thus the trajectory y; starting at x, intersects Z; at g(x,). Analogously, the
trajectory y, starting at x, intersects X; at g(x,). Hence g(x,) # x; does not lie
on the trajectory y,, consequently y, cannot be A-symmetric. Analogously, the
trajectory y, cannot be A-symmetric, either. From the proof it is easy to see that
g(y1) = y2 holds, QED.

The bifurcation just described is called the symmetry-breaking bifurcation,
because the loss of symmetry occurs on the branch of the stable solution.

3. A pair of complex conjugate eigenvalues of the matrix (dH), crosses the unit
circle. Assuming that the eigenvalues satisfy a non-resonance condition A" # 1,n =
=1, 2, 3, 4, we conclude there is an invariant torus created or annihilated in the
phase space.
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Souhrn
BIFURKACE V SYSTEMECH S INVOLUTIVNI SYMETRII

ALois KLi¢
V préaci jsou zkoumany bifurkaéni jevy v soustavach obydejngch diferencialnich rovnic, jez

jsou invariantni vzhledem k involutivnimu difeomorfismu. Podrobné je zkoumana bifurkace
,,Symmetry-breaking*‘.
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Pe3ome
BUAO®VPKALIMU B CUCTEMAX C MHBOJIFOTUBHOM CHUMMETPUEN
Avrois KLi¢

B craTtbe n3yyaroTcs OudypKauMOHHEIE SBJICHHS B CUCTEMaX OOBIKHOBEHHBIX TuddepeHuuanbHbIX
YPaBHEHHI, MHBADMAHTHBIX OTHOCHTEJILHO WHBOJIOTMBHOro auddeomopdusma. IToapobHo usy-
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