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SVAZEK 30 (1985) APLI K A C E MATE M Á T I KY ČÍSLO 6 

CONSTRUCTIONS OF INTERPOLATION CURVES FROM GIVEN 
SUPPORTING ELEMENTS (I) 

JOSEF MATUSU, JOSEF NOVAK 

(Received May 15, 1984) 

This paper deals with the constructions of interpolation curves which pass through given 
supporting points (nodes) and touch supporting tangent vectors given at only some of these 
points or, as the case may be, at all these points. The mathematical kernel of these constructions 
is based on Lienhard's interpolation method. 

Keywords. Interpolation, curves. 

1. ADJUSTMENT OF LIENHARD'S INTERPOLATION METHOD 

Our approach is based on the papers [1], [2], The original Lienhard method will 
be modified so that instead of polynomials of the fifth degree we shall use polynomials 
of the third degree which are "more stable" from the viewpoint of the behaviour of 
the interpolation curves. In the text which follows the method applied is briefly 
referred to as method I. 

Let n ^ 3 be an integer. In the space Rm (m > 1 integer) let n different points 
Pi = Xy0 (i = 1,..., n; I == 1,..., m) be given. The symbol x(jl) denotes also the 
corresponding ordered m-tuple of coordinates, or rather the vector which has these 
coordinates. Thus, the elements of the set Rm are either points or vectors, according 
to which of the notions corresponds more to our conception in the given context. 
As a rule, we use the notion of a point in situations when location in the space Rm is 
discussed while the notion of a vector indicates that we are interested in the direction. 
Also, bold types will be sometimes used to denote vectors. 

We shall look for polynomials in the real variable t (of degree at most K, not deter­
mined more precisely at the moment) 

(i.i) - w - £ « $ - * (i = i,...,»-i) 
ft = 0 
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such that 

(1.2) p < ? ( - i ) = x< ' \ p<;»(i) = x y + , \ 

(1.3) | ( P ^ ( l ) = | / i ' + , , ( - l ) -

Conditions (1.2) guarantee that the interpolation arc parametrized with the 
aid of the functions P(

x
l)(t) (j = 1, ..., m) passes through the points PhPi+l 

while conditions (1.3) guarantee fluent transition from arc to arc. To satisfy conditions 
(1.3) we have to know the values of the functions dP^fyjdt at the points Ph Pi + 1: 

(i.4) i p < < > ( - i ) = D*y>, ^py;>(i) = D.x-y+i>; 
dt dt 

Dx(jl\Dxjl+1) is the notation used for these values. The manner of determining 
these values will be discussed later. By (1.2), (1-3), four determining conditions are 
given for every polynomial (VI). With their aid each of the polynomials is uniquely 
determined as a polynomial of degree at most K — 3: 

(1-5) P^(t) = i a ^ . 
k = 0 

We have 

(i.6) T - ^ O - S K * - 1 -
d t k = i 

If we substitute the values t = —1 , 1 into (1.5), (1.6), we obtain (taking (V2), (1.4) 
into account) the following system of four linear equations for the four unknown 
coefficiencts afy of polynomial (V5): 

(1.7) I(-l)k4, = 4'\ 
3 

I 
k = 0 

£(-iГ 
3 

\k-i hn(\) _ nxí.o 
A = l 

k = 0 

І ц < > = Dл-y 

\jk - f 

k = 0 

3 

,(0 __ riv( l ' + 1 ) 

We introduce the matrices 

(1-8) Al} = (a%a%a%a$), 

(1.9) X I 7 = (xf, Dx% x% * >, D x j i + ' >). 

The matrix of coefficients of system (V7), which is necessarily regular in view of the 

uniqueness of the determination of the desired polynomials, is denoted by A. Then 
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the solution of system (1.7) is represented in matrix notation by the equality 

(1.10) A ^ A - ' o X j , 

where the superscript T denotes the transposed matrices to matrices (1.8), (1.9) 
while A'1 denotes the inverse matrix to matrix A. 

The values of the first derivative at the points Pt, Pi+l (see (1.4)) are determined 
as follows. According to Fig. 1 

Ficj.1 

the points (2h,x(ji+h)) ( - 1 g h g 1, h integer) uniquely determine a polynomial 
of at most second degree 

(i-ii) ^}(t) = i ^ . 
fc = 0 

With its aid we put 

(1-12) J à t x;U jl 

The originality of Lienhard's interpolation method consists precisely in this manner 
of determining the values (1.4), where the "missing" values of the first derivatives are 
obtained from the auxiliary polynomials (1.11). Since every coefficient of polynomial 
(1.11) is a certain linear combination of the values x(ji~x\ x(/\ x(jl+x\ the same is 
true for the derivative Dx^P. Therefore there exists a matrix B of type (1, 3) such that 
we have 

( L B ) Dxy> = (x^~x\ xy>, *y+i>) o BT . 
Here we have identified the type (1, 1) matrix (DxJ°) with the element DxJ.l>; this 
will be done always in the sequel. Then we have 

(i.i4) (*y>, Dxy>) = (xy-^, *y>, ^+x\ x^+2>) 

"0 
1 ßт 

0 
0 0 
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"o 0 " 
0 
1 ß т 

0 

Analogously we obtain 

(1.15) (x<;+ 1\ Dx<;'+1>) = ( x y - " , x<'\ x< ; + 1 \ x<!+2)) o 

in this case the number i was replaced by the number i + 1 in Fig. 1. By (1.14), 
(1.15), the matrix (1.9) can be represented in the form 

(1.16) X,,. = (x<'-1\x<'>,x<'+1\x<<+2>)o 

After substituting (1.16) into (1.10) we have 

(1.17) 

0 0 0 " 

1 ß т 0 

0 1 ß т 

0 0 0 

A Ï - - . C . 

"x<- - 1 ) " 
J 

x<' ) 
J 

v ( í + 1 ) 
x\ J 
x</ + 2) 

J _ 
where 

(1.18) C = Л~ 1 0 

0 1 0 0 

ß 0 
0 0 1 0 
0 ß 

A simple computation yields 

(1.19) A ~ x = i 
( 

г ì 2 
$ - 1 3 
) - 1 0 
l 1 - 1 

- 1 
- 1 

1 
1 

(1.20) 8 = £ ( -1 ,0 , 1). 

With the aid of (1.18), (1.19), (1.20) it is then possible to represent (1.17) in the form 

(1.21) 16AT = 

- 1 9 9 - l " ~ ү ( i - l ) ~ Лj 

1 - 1 1 11 - 1 x</> 

1 - 1 - 1 1 o 
x < i + 1 > 

- 1 3 - 3 1 x< í + 2 > 
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2. GROUPING OF NODES 

From the given nodes Pl9 ..., Pn we form groups consisting of four points each 
(see (1.21)) as follows: 

1-st group: P2, Pi, P2, P3 , 

2-nd group: Pi, P2, P3, P4 , 

3-rd group: P2, P3, P4, P5 , 

(n - l)-st group: P„-2, P„-i, P„, P„-i . 

If formula (1.21) is applied to the first group, we obtain polynomials Px
l\t) (j = 

= 1, ..., m) which parametrize the arc PiP2. Similarly, if formula (1.21) is applied 
to the second group of points, we obtain polynomials Px

2\t) (j = 1, . . . , m) which 
parametrize the arc P2P3. Finally, if formula (1.21) is applied to the (n — l)-st 
group of points, we obtain polynomials P^-1)(t) (j = 1, . . . , m) which parametrize 
the arc Pn_xPn. These arcs constitute the desired unclosed interpolation curve 
PiP2 ... P;._iP,,. For instance, for n = 3 we form the following groups consisting 
of four points each: 

1-st group: P2, Pi, P2, P3 , 

2-nd group: Pl9 P2, P3, P2 . 

In case that we are looking for a closed interpolation curve PiP2 . . . PnP\ we group 
the nodes in the following manner: 

1-st group: Pn9 Pi, P2, P3 , 

2-nd group: Pl9 P2, P3, P4 , 

3-rd group: P2, P3, P4, P5 , 

n-th group: Pn_l9 Pn9 Pl9 P2 . 

For instance, for n = 3 we have: 

1-st group: P3, Pi, P2, P3, 

2-nd group: Pl9 P2, P3, Px , 

3-rd group: P2, P3, Pi, P2 . 

E x a m p l e 1. In the plane R2 we consider the points P1 = (0,0), P2 = (2, 3), 
p 3 = (15, - 6 ) , P4 = (2, -10 ) , P5 = (10, 5). For the individual arcs of the unclosed 
planar interpolation curve P1P2P3P4P5 we have, by (1.21), the following parametric 
equations: 

( v Px\\i) = 0-0625 + 0-5625* + 0-9375*2 + 0-4375t3, 
(2.1) P!P2 . . . p ( ^ = 1 < g 7 5 + 2625t __ 0315f2 _ i n 5 t 3 ^ 
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P(2)(t) = 9-4375 + 8-8125* - 0-9375t2 - 2-3125l3 , 
P P 

pg\t) = -1-0625 - 5-5625t - 0-4375t2 + l-0625t3, 

Px
3Ht) = 8-8125 - 9-4375t - 0-3125t2 + 2-9375t3 , 

p p *i \ / 
p£>(t) = -9 -5 - 2-875t + l-5t2 + 0-875t3 , 

P{4)(t) = 5-6875 + 6-3125t + O-3125ř2 - 2-3125t3 , 
P P 

pW(ř) = -1-8125 + 10-5625f - 0-6875t2 - 3-0625í3 . 

The interpolation curve is shown in Fig. 2. 

Fig .2 

3. MODIFICATION OF THE ADJUSTED LIENHARD METHOD 

When constructing interpolation polynomials in Section 1 we did not consider 
the mutual distances between the nodes. "Better" behaviour of the resulting inter­
polation curve may be expected if these distances are taken into account. In his paper 
[1] Lienhard mentions the possibility of a modification of his method which would 
take into account the mutual distances of the nodes. In [2] this modification is elabo­
rated in detail for interpolation polynomials of the fifth and seventh degrees. Here 
we shall work out this modification for the adjusted Lienhard method from Section 1, 
i.e., for interpolation polynomials of the third degree. In the text which follows 
we briefly speak of method II. 

We shall proceed in the same way as in Section 1, but with the difference that the 
values —2, 0, 2 (see Fig. 1) of the variable t are replaced by the values —2qi^ijqi0, 
0, 2qifllqh0, where we denote qi>_1 = [P|_1P£|? qitl = |PfPI + 1 | (the distances of the 
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respective points), qit0 = {qt,-i + gu)/2. Exploiting the corresponding polynomial 
(1.11) and condition (1A2) we then have (cf. (1.13)) 

(3.1) 
where 
(3.2) 

Then (cf. (1.14)) 

Dx<'') = (xy'- , ),x< ř>,x< í+ 1>)oBj, 

Bf = i ( - - „ r ( - rr1,^^), r, = qUÍ\qi,-l 

"0 
I ß ľ 
0 
0 0 

(3.3) (*<«), Dxy>) = (xy- •>, x<'>, x<i+i>, xy+2>). 

and similarly (cf. (V15)) 

(3.4) ( x ^ + i ) , Dx<£+1)) = (xj1-^, *y\ *y + i ) , xy+2)) o 

By (3.3), (3.4) it is possible to represent matrix (1.9) in the form 

(35) x I , = (xy-» ,xf ,xy+ l > ,xy+ 2 ) ) 

After substituting (3.5) into (1.10) we have 

(3.6) 

0 0 
0 

1 ß7+i 
0 

0 0 0 

Ißľ 0 
0 
0 0 

1 Bľ+i 
0 

AІ = CГ 

0*-l) 
j 

;(0 

O + l ) 

(ï+2) 
7 

where 

(3.7) C, = A 

0 1 o o" 
ß, 0 

0 0 1 0 
0 ß , + 1 

To sum up: If in the unmodified case, i.e., when the mutual distances of the nodes 
are not considered, the matrix S (cf. (1.20)) in formula (1.18) is constant for all 
interpolation arcs PtPi+u then in the modified case, i.e., when the mutual distances 
of the nodes are considered, this matrix changes from arc to arc (and passes into 
matrix (3.2)). Simultaneously the matrix C from formula (1.18), which passes into 
matrix (3.7), also changes. 
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With the aid of (3.7), (1.19), (3.2) it is then possible to represent (1.17) in the form 

(3.8) 16/.* = 

— r 
r 
r 

— r 

+ ГІ 

- 1 2 Гi + rt 

~ ГІ + rŢ 
4 + Г: — rŢ 

+ ri+ì 

+ ri+í 

8 + r 
12 - r 

— r 
- 4 + r 

ГІ+Í + ri+1 

Гi+Í + Г / + L ~ГІ + 

+ rн 
+ rи 

- 1 
i + 1 

_ \ И í - 1 ) l i+ 1 И í - 1 ) l 
i+ 1 4° - 1 ° v ( / + i ) 
í+ 1 XJ 
- 1 ^•(i+2) 
i+í -XJ 

Example 2. Let us consider the same nodes P1? P2, P3, P4, P5 as in Example 1. 
For the individual arcs of the unclosed planar interpolation curve PiP2I

>3^4P5 
we then have, by (3.8), the following parametric equations: 

ptp2 

R,R, 

P<|}(t) = 0-26656 + 0-76656t + 0-73344t2 + 0-23344t3 , 

px\\t) = 0-80603 + l-55603t + 0-69397t2 - 0-05603t3 , 

px
2\t) = 9-47902 + 9-26213t - 0-97902t2 - 2-76213t3 , 

Px
2J(t) = -0-03153 - 6-66947t - l-46847t2 + 2-16947t3 , 

P(
x
3)(t) = 8-86989 - 8-88896t - 0-36989t2 + 2 38896t3, 

P3P4 . . . Xl W 

px
3

2\t) = -9-21212 - 2-66312Í + l-21212t2 + 0-66312t3 , 

px
4\t) = 5-38453 + 6-61547t + 0-61547t2 - 2-61547t3 , p p *i \ / 

Px
4J(t) = -2-06238 + 10-81238t - 0-43762t2 - 3-31238t3 . 

The interpolation curve is shown in Fig. 3. 

F i g . 3 

If we compare the behaviour of the interpolation curves in Figs. 2 and 3, we see 
that the "smaller" curvature of the arc PXP2 combined with the "larger"curvature 
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of the arc P2P3 in Fig. 3 is "more favourable" for the overall behaviour of the inter­
polation curve than the "larger" curvature of the arc PXP2 combined with the 
"smaller" curvature of the arc P2P3 in Fig. 2. From this point of view, the modified 
interpolation method is thus more advantageous in the given example. 

A more convincing justification of the advantages of the modified interpolation 
method consists in the following facts: When constructing the auxiliary polynomials 
(1.11) with whose aid the "missing" values of the first derivatives are determined 
(see (1.12)), the points —2, 0, 2 are equidistantly distributed on the t axis (see Fig. 1). 
This is "equivalent" to the fact that mutual distances between nodes are not taken 
into account (as if these distances were the same). If the construction of the auxiliary 
polynomials is performed under the mentioned nonequidistant distribution of the 
points on the t axis, this is "equivalent" to the fact that the mutual distances of the 
nodes are taken into account. The "missing" values of the first derivatives obtained 
from these polynomials have an intuitively "better" chance to render "better" 
overall behaviour of the resulting interpolation curve. 

4. COMPUTATION OF THE TANGENT VECTOR. 

In this and the following sections we follow method I. Consider the nodes Ph Pi+1, 
Pi+2 and look for the tangent vector at the point Pi+1 with respect to the interplation 
arc PiPi+1. Since we require that condition (1.3) hold this tangent vector is equal to 
the tangent vector at the point Pi+1 with respect to the interpolation arc P( + 1P ( + 2 . 
By (1.21) the relation 

16P<<>(í) = (1, t, t\ ř) o 16.4* 

yields, by differentiation, 

(4.1) 16P;<;>(Í) = (1, t, t\ Í 3 ) 

1 - 1 1 11 - f "xy-1* 
2 - 2 - 2 2 xf 

- 3 9 - 9 3 
0 

v y + п 
0 0 0 0 y ( i ' + 2) 

_ J 

For t = 1 we obtain, from (4.1), 

(4.2) 4P;<;>(І) = ( 0 , - 1 , 0 , 1 ) 0 

V/-«-
ү(0 
лj 

( í + i ) 
лj 
ү ( i + 2) 
Лj 

M + 2) M) 

i.e., the tangent vector at the point Pi+1 W l t h r e s p e c t to the interpolation arc P(P( + 1 
5,. 

is collinear with the vector P;P*+2, its length being four times smaller than that of 
> 

the vector PtPi+2. 
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5. CONSTRUCTION OF INTERPOLATION CURVES WITH PRESCRIBED 

TANGENT VECTORS (METHOD ST) 

With the aid of formula (4.2) it is possible to construct an interpolation arc which 
passes through two adjacent nodes one of which is provided with a supporting 
tangent vector (see Fig. 4). 

Fig.4 

For this purpose we construct, in the first case, the auxiliary point 

(5-0 P.v_. = P . + 1 - 4 v , , 

and, in the second case, the auxiliary point 

(5.2) P(

v

+_ = P . + 4v. + 1 . 

Now we assign to every node Pt with a supporting tangent vector (or without a sup­
porting tangent vector) the number Kt = 1 (or Kf = 0, respectively). Then every 
interpolation arc is processed according to the following scheme: 

YES 
I n t e r p o l a t i o n : 

P . , , P ., P. 

> 0 = 0 < 0 

Construction of the 

; point 1 .;
2
 by (5.2) 

Construction of the 

pOІПtS P". ЛJ P"ľo 
1
 г-1 г+2 
by (5.1), (5.2) 

Construction of the 

point .
;
; '",_. by (5.1) 

Interpolation: 

P - i>Г l iл l І + V Pi+2 

Interpolation: 

Pv. P .. P . P
v
" 

ъ-V i9 г + V г + 2 

Interpolation: 

pS
. P . P P 
г-1

J i3 i+\3 i+2 

In this scheme "Interpolation" stands for the procedure of the adjusted Lienhard 
method (method I), as applied to the respective quadruples of points (see (1.21)). 
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E x a m p l e 3. Let us choose the same nodes P± = (0, 0), P2 = (2, 3), P3 = 
= (15, - 6 ) , P4 = (2, - 10 ) , P5 = (10, 5) as in Example 1. At the points P3, P4 let 
us consider the supporting tangent vectors v3 = (1, —2), v4 — (0, 3). In accordance 
with the above scheme we construct a planar unclosed interpolation curve 
P1P2P3P4P5 which takes account of the given supporting tangent vectors. 

We start with the interpolation arc P1P2. Since Kx + K2 = 0 + 0 = 0, we apply 
formula (1.21) to the points P2, Pl9 P2, P3. This leads to the following parametric 
equations of the arc PlP2 (cf. (2.1)): 

px\\t) = 0-0625 + 0-5625t + 0-9375t2 + 0-4375t3 , 
1 2 '" pM(t) = 1-875 + 2-625t - 0-375t2 - l-125t3 . 

Next we treat the arc P2P3. Since K2 + K3 = 0 + 1 = 1 4= 0, K3 - K2 = 
- 1 - 0 = 1 > 0, we construct by (5.2) the point P4 v = P2 + 4v3 = (2, 3) + 
+ 4(1, - 2 ) = (6, - 5 ) . We apply (1.21) to the points Pl5 P2, P3, PI v , which leads 
to the following parametric equations of the arc P2P3: 

px\\i) = 9-1875 + 8-5625t - 0-6875t2 - 2-0625t3 , 
2 3 ' ' " P(2

2\i) = -1-375 - 5-875t - 0-125t2 + l-375t3 . 

Then we treat the arc P3P4. Since K3 + K4 = 1 + 1 = 2 + 0,K4 - K3 = 1 - 1 = 
= 0, we construct by (5.1) the point Pv = P4 - 4v3 = (2, - 1 0 ) - 4(1, - 2 ) = 
= ( - 2 , - 2 ) and by (5.2) the point Pv v = P3 + 4v4 - (15, - 6 ) + 4(0, 3) = 
= (15, 6). To the points P2 , P3, P4, P5

V v we apply (1.21) and obtain the following 
parametric equations of the arc P3P4: 

px\\t) = 8-75 - lOt - 0-25t2 + 3-5t3 , 
3 4 ' * * P(

x
3

2\t) = -9-25 - 3-25* + l-25t2 + l-25t3 . 

It remains to treat the arcP 4 P 5 . Since K4 + K5 = 1 + 0 = 1, K5 — K4 = 
= 0 — 1 = — 1 < 0, we construct by (5.1) the auxiliary point P3 = P5 — 4v4 = 
= (10,5) - 4(0,3) = (10, - 7 ) . If we apply (1.21) to the quadruple of points Pv, P4, 
P5, P4, then we obtain the following parametric equations of the arc P4P5: 

0 0 PiV(t)= 6 + 6 t - 2 t 3 , 
• • • p<4)^j = _ 1 . 7 5 + lQ.5t _ 0 .75t2 - 3t3 . 

The desired interpolation curve is shown in Fig. 5. 

E x a m p l e 4. In the space R3 consider the points P± = (0, 0, 0), P2 = (10, 5, 5), 
P3 = (0, 10, 15), P4 = ( —5, 3, 8). At the points Pl9 P3 let us consider the supporting 
tangent vectors v1 = (4,0,0), v3 = ( — 2, —2,2). We construct a spatial closed 
interpolation curve P1P2P3P4P1 which takes into account the given supporting 
tangent vectors. We shall proceed in accordance with the above scheme. 
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We start from the interpolation arc P i P 2 . Since Kt + K2 = 1 + 0 = 1 + 0, 
K2 — Ki = 0 — 1 = - 1 < 0, we construct by (5.1) the auxiliary point PQ = 
= P2 - 4vL = (10, 5, 5) - 4(4, 0, 0) = ( - 6 , 5, 5). To the points P v , Pl9 P 2 , P 3 we 
then apply (1.21) and obtain the following parametric equations of the arc PtP2: 

px\\t) = 6 + 6-5* - t2 - l o t 3 , 

P i P 2 . . . Px\\t) = 1-875 + 3-125t + 0-625*2 - 0-625t3 , 

px\\t) = 1-5625 + 2-8125* + 0-9375t2 - 0-3125*3 . 

We continue with the arc P2P3. Since K2 + K3 = 0 + 1 = 1 + 0, K3 - K2 = 
= 1 ~ - 0 = 1 > 0 , we construct by (5.2) the auxiliary point P 4

 v = P 2 + 4v3 = 
= (10, 5, 5) + 4 ( - 2 , - 2 , 2) = (2, - 3 , 13). To the points Pl9 P 2 , P3 , PI v we then 
apply (1.21) and obtain the following parametric equations of the arc P2P3: 

Px
2\t) = 5-5 - It - 0-52 + 2 t 3 , 

P2P3 . . . P{2
2\t) = 8-625 + 3-625* - l-125t2 - l-125t3, 

Px
2
3\t) = 10-4375 + 60625t - 0-4375t2 - l-0625t3 . 

We continue with the arc P3P4. Since K3 + K4 = 1 + 0 = 1 + 0, K4 - K3 = 
= 0 - 1 = - 1 < 0, we construct by (5.1) the point P2

V = P 4 - 4v3 = ( - 5 , 3, 8) -
- 4 ( - 2 , - 2 , 2 ) = (3, 11,0). To the points P v , P3 , P 4 , Px we then apply (1.21) 
which leads to the following parametric equations of the arc P3P4.: 

p£\t) = - 3 - 3-25t + 0-5t2 + 0-75t3, 

P3P4 ... Px\\t) = 6-625 - 4125* - 0-125t2 + 0-625*3, 

Px\\i) = 12-9375 - 4-8125* - 1-4375*2 + 1-3125*3 . 

The arc P4P1 remains last. Since K4 + Kt = 0 + 1 = 1 + 0, KL - K4 = 
-= 1 - 0 = 1 > 0, we construct by (5.2) the point P2

V v = P 4 + 4^i = ( - 5 , 3, 8) + 
+ 4(4, 0, 0) = (11, 3, 8). If we apply (1.21) to the points P 3 , P 4 , Pu P2

V v , we obtain 
the following parametric equations of the arc P 4 Pi : 

p£\t) = - 3 -5 + 2-75* + t2 - 0-25*3 , 

P 4 Pi . . . P£\t) = 0-875 - 1-625* + 0-625*2 + 0-125*3 , 

px
4
3\t) = 3-0625 - 5-0625* + 0-9375*2 + 1-0625*3 . 

The interpolation curve is shown in Fig. 6 in axonometric projection. For the sake 
of simplicity, the symbol Pt is also used here to denote the axonometric projection 
of a node while the symbol P- denotes its axonometric first projection. The similar 
holds for supporting vectors. 

In the conclusion, we note that the spatial interpolation curve of Fig. 6 manifests 
the "deficiency" which consists in the fact that the osculation plane at the point P f 

with respect to the arc Pj- iP^ is generally different from the osculation plane at the 
same point with respect to the arc P fP I + i (provided these planes exist). Therefore 
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Fig .5 Fig .6 

the question arises how to remove this deficiency; this problem we shall treat in 
a separate paper. 

6. CONSTRUCTION OF INTERPOLATION CURVES WITH PRESCRIBED 
TANGENT VECTORS (METHOD ST) 

We will again examine cases when at some nodes (or at all nodes) the supporting 
vectors are prescribed. 

a) Let K; = 1, K, = 0. We put (see (1.4)) T>xf = v(/K Then we have 

(6A) (*y\D*y>) = ^^\^\v/\xy+]\x<;+2')oi 

Further, by (1.15), (1.20) we have 

r 0 0-1 

4 0 
0 4 
0 0 

Lo o-

(6.2) ( x v + • \ D.Y«.Í+ '») = (A-y-1 >, x<f>, vf, xf+1\ %y+2>) ° i 

г° °1 
o - 1 
0 0 
4 0 

-0 1-

With the aid of (6.1), (6.2) it is possible to represent the transposed matrix to matrix 

(1.9) in the form 
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(6.3) X т - -1 

O 4 0 0 0 

0 0 4 0 0 

0 0 0 4 0 

0 - 1 0 0 1 

( i - l ) . 
7 
.(0 
7 

'Г 
. ( i+l) 
7 
.(i + 2) 

Substituting (6.3) into (1.10), where A * stands for the matrix (1.19), we obtain 

(6.4) 1 6 A * -

0 9 4 8 - 1 

0 - 1 1 - 4 12 — 1 

0 - 1 - 4 0 1 

0 3 4 - 4 1 

. ( i - i ) . 
XJ 

ү ( 0 
xj 
«(.o ł + 1 ) 

и ( i + 2) 

b) Let Kt = 0, Ki+l = 1. By (1.14), (1.20) we have 

(6.5) (xf, Dx<''») = (xy- 1 ), x<f\ x<. ;+1\ v^+1\ xy + 2 ) ) o i 

Further, we put (see (1.14)) Dx(/+ ° = y*.' + 1 ) . Then we have 

(6.6) (x< i + i>, Dxy + , >) = (xy-1*, xy>, xy+ i >, v y + l >, xy+ 2>) <> j 

-0 - l п 

0 0 

4 1 

0 4 

L0 0 

-0 0 
0 0 
4 0 
0 4 

-0 0 

With the aid of (6.5), (6.6) it is possible to represent the transposed matrix to the 

matrix (1.9) in the form 

(6.7) Лij ~ 4 

0 4 0 0 0 

- 1 0 1 0 0 

0 0 4 0 0 

0 0 0 4 4 

Y ( І - І ) . 
xj 

xy> 
ү ( i + l ) 
xj 

v < ř + 1 ) 

(*+2) 

Substituting (6.7) into (1.10), where A 1 stands for the matrix (1.19), we obtain 

y ( i - i L 

(6.8) 16-AJ, = І 

- 1 8 9 - 4 0 

1 - 1 2 11 - 4 0 

1 0 - 1 4 0 

- 1 4 - 3 4 0 

ү ( i ) 
xj 
x { i + í ) 
xj 

vy+i) 

ү ( i + 2 ) 
"Xj 
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c) Let Kt = Ki+1 = 1. By (61), (6.6) it is possible to represent the transposed 
matrix to matrix (1.9) in the form 

(6.9) x т 

0 4 0 0 0 0" 

- ү ( i - l ) - I 
лj 

xf 
0 0 4 0 0 0 

vf 
0 0 0 4 0 0 

o 
x< í + 1 ) 

0 0 0 0 4 0 „У+D 
x< í + 2 ) 

Substituting (6.9) into (110), where A l stands for the matrix (1.19), we obtain 

(6.10) Í6AI = 

0 8 4 8 
0 --12 - 4 12 
0 0 - 4 0 
0 4 4 - 4 

- 4 0" 
xj 

xf 
- 4 0 vf 

4 0 
o „ ( i + 1 ) 

j 

4 0 VJ}+1) 

ү ( i + 2 ) 
Lxj A 

We easily verify that cases a), b) can also be computed by applying formula (610) 
if we prescribe, in case a), the supporting tangent vector vy+1) = (P i + 2 — Pf)/4 at 
the point Pi+1, or, in case b), the supporting tangent vector v^l) = (P i + 1 — Pf-0/4 
at the point Pf (cf. Section 4). For instance, in case a) we thus obtain 

(6.11) Г*; І _ 1 >~ J 

xf J 

vf 
ү ( i + l ) Xj 

1 
— 4 

Л i + l ) 
J 

_ ү ( i + 2 ) _ 

4 

0 

0 

0 

0 0 0 0" 

4 0 0 0 

0 4 0 0 

0 0 4 0 
o 

г*Г1}i 

vf 
v ( i + - ) 

0 

0 

- 1 0 0 1 

0 0 0 1 

Xj 

Xj 

substitution of (6.11) into (6.10) yields (6.4). Formula (610) can be further simplified 
to the form 

(6.12) 

2 1 2 - 1 xf 
AAІ = 

- 3 

0 

- 1 

- 1 

3 

0 

- 1 

1 
o 

vf 
xf 

1 1 - 1 1 » < • -

7. THE EQUIVALENCE OF METHODS Sf, F 

Let, e.g., K,- = Ki+1 = 1. According to method 9> (see the scheme in Section 5) 
we have Kt + Ki+1 = 1 + 1 = 2 + 0, Ki+1 - K. = 1 - 1 = 0. Therefore we 
determine the auxiliary points PiX_1 = Pi+1 — 4vi? P^ = Pt + 4v i + 1 (see (5.1), 
(5.2)) and then apply formula (1.21) to the quadruple of points P?_u Ph Pi+1, Pi+V-
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(7.1) 

We have 

16A] 

- 1 9 9 - 1 
1 - 1 1 11 - 1 
1 - 1 - 1 1 

- 1 3 - 3 1 

v ( í + i ) 

v ( 0 

v ( í + l ) 

4 ř ; ľ } 

(7.2) 

v ( f + i ) 
л j 

v ( 0 

v ( ' " + 1 ) 

4vj° 

лo 
j 

x)-' + 4v>j (í+1) 

"o - 4 1 0" x<'> 
1 O O O <;<'> 
0 0 1 0 

0 
x ( ; + i ) 

1 0 0 4 „(.+ !) 

so that the substitution of (7.2) into (7.1) yields 

(7.3) 164;. = 

8 4 8 - 4 
12 - 4 12 - 4 
0 - 4 0 4 
4 4 - 4 4 

Гяf> 
l>< ř ) 

x < ř + I > 

."У + , ) . 
However, (7.3) can also be written in the form 

(7.4) 16ÄJ, = 

~o 8 4 8 - 4 0 
0 --12 _ 4 12 - 4 0 
0 0 - 4 0 4 0 
0 4 4 - 4 4 0 

vy-»-| 
v ( 0 

vy> 0 

x V ' + l ) 
j 

t Á i + l ) 
j 
f i + 2) 

L4 Ч 

"̂ ° 0 4 0 0" "x<ř+I>-4t><'> 

vy> _ 4 
- 1 0 1 0 *ľ 

4 І + 1 ) _ 4 
0 0 4 0 

0 
ү ( ' + 0 

/ _ , ( / + ! ) _ 0 - 1 0 1 
x(.o + 4 l ! y

+ 1 ) 

which is formula (6.10). 

Let Kt = Ki + 1 = 1. Then formula (7.4), which can be modified to the form (7.3), 
holds by method &~ (see Section 6c)). We have 

(7.5) 

Substituting (7.5) into (7.3) we obtain (7A). This proves the equivalence of methods tf 
and BT for the case when KL = Ki+1 = 1. The equivalence is proved analogously 
for the other cases. 

In conclusion we wish to add a few remarks. The interpolation method introduced 
by H. Lienhard in [1] for polynomials of at most fifth degree can be easily generalized. 
Polynomials of degree at most 2(2 + 1, where Q > 1 is an integer, are generally 
applied in [2]. Moreover, in this paper the case Q = 1 is investigated (method I, 
or its modification - method II). The auxiliary polynomial (cf. (1.11)) which is 
required to pass through the points (2h, xy+/j)) ( — 1 <; h S V h integer) can pass 
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in the general case, i.e. for Q ^ 1, through the points (2h,x{/+h)) (—Q + p S 
S h S Q — P, P integer); here the fixed chosen number p satisfies the inequality 
O ^ p g Q - 1. If Q = 1, then we necessarily have p = 0, and this leads to method 
I. Then the values of the "missing" derivatives of the first up to the Q-th orders 
depend on the choice of the parameter p as well. Generally, we see that the interpola­
tion curve obtained loses "stability" with increasing Q. The reason is the possibility 
of the occurrence of a larger number of points of inflection. In addition, for a fixed 
chosen number Q the behaviour of the interpolation curve is the "better" the smaller 
is the paprameter p, i.e. the larger is the number of nodes which are used for the 
construction of the above mentioned auxiliary polynomials. For this reason the case 
0 -= 1? p = 0 seems to be the most interesting. 

The application of polynomials of the third degree for the interpolation has the 
advantage, as compared with polynomials of higher degree, that besides the mentioned 
smoother behaviour of the curve the computation of the coordinates of its points 
requires a smaller number of operations and, consequently, is faster. As compared 
with interpolation by cubic splines, the interpolation method presented is more 
advantageous in that it is possible to shape the curve better by determining its tangent 
vectors. Further, it is faster since the solution of the system of linear equations for 
the computation of the coefficients of the polynomials is not performed. On the other 
hand, the continuity of not only the first but also the second derivatives is the prefer­
able property of the cubic splines. The freedom of the choice of some supporting 
tangents in the interpolation approach presented is its considerable advantage in 
comparison with, e.g., Ferguson's interpolation method where it is necessary to assign 
tangents at all nodes, or Akimov's interpolation method where tangents at the nodes 
are determined implicitly by the construction and cannot be prescribed. 

The computation of the coordinates of the points of all interpolation curves was 
performed by computer. Spatial curves are drawn in axonometry, computer graphics 
was applied to the construction of all curves. 

References 

[1] H. Lienhard: Interpolation von Funktionswerten bei numerischen Bahnsteuerungen. Un­
dated publication of CONTRAVES AG, Zurich. 

[2] J MatuSu: The Lienhard interpolation method and some of its generalization (in Czech). 
Acta Polytechnica - Prace CVUT, Prague, 3 (IV, 2), 1978. 

S o u h r n 

KONSTRUKCE INTERPOLACNICH KRIVEK 
Z DANYCH OPERNYCH ELEMENTC (I) 

JOSEF MATUSU, JOSEF NOVAK 

Predmetem clanku jsou konstrukce interpolacnich kfivek prochazejicich danymi 
opernymi body a dotykajicich se opernych tecnych vektoru v nekterych z techto 
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bodů, popř. ve všech opěrných bodech. Matematickým jádrem těchto konstrukcí 
je Lienhardova interpolační metoda. 
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